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a b s t r a c t

Accurate quantification and clear understanding of regional scale cropland carbon (C) cycling is critical
for designing effective policies and management practices that can contribute toward stabilizing at-
mospheric CO2 concentrations. However, extrapolating site-scale observations to regional scales repre-
sents a major challenge confronting the agricultural modeling community. This study introduces a novel
geospatial agricultural modeling system (GAMS) exploring the integration of the mechanistic Environ-
mental Policy Integrated Climate model, spatially-resolved data, surveyed management data, and
supercomputing functions for cropland C budgets estimates. This modeling system creates spatially-
explicit modeling units at a spatial resolution consistent with remotely-sensed crop identification and
assigns cropping systems to each of them by geo-referencing surveyed crop management information at
the county or state level. A parallel computing algorithm was also developed to facilitate the compu-
tationally intensive model runs and output post-processing and visualization. We evaluated GAMS
against National Agricultural Statistics Service (NASS) reported crop yields and inventory estimated
county-scale cropland C budgets averaged over 2000e2008. We observed good overall agreement, with
spatial correlation of 0.89, 0.90, 0.41, and 0.87, for crop yields, Net Primary Production (NPP), Soil Organic
C (SOC) change, and Net Ecosystem Exchange (NEE), respectively. However, we also detected notable
differences in the magnitude of NPP and NEE, as well as in the spatial pattern of SOC change. By per-
forming crop-specific annual comparisons, we discuss possible explanations for the discrepancies be-
tween GAMS and the inventory method, such as data requirements, representation of agroecosystem
processes, completeness and accuracy of crop management data, and accuracy of crop area represen-
tation. Based on these analyses, we further discuss strategies to improve GAMS by updating input data
and by designing more efficient parallel computing capability to quantitatively assess errors associated
with the simulation of C budget components. The modularized design of the GAMS makes it flexible to be
updated and adapted for different agricultural models so long as they require similar input data, and to
be linked with socio-economic models to understand the effectiveness and implications of diverse C
management practices and policies.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Agroecosystems not only provide essential life-supporting
goods (e.g. food, fuel, livestock, and fiber) for humans, but also
hold the promise to sequester carbon dioxide (CO2) and other
greenhouse gases (GHGs), thereby mitigating potential negative
impacts of future climate change (Lal and Bruce, 1999; Paustian
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et al., 2006; Smith et al., 2007). The potential impact of changing
farming practices for global emissions of GHGs has been widely
recognized (UNEP, 2013). Agricultural technologies and practices
can potentially mitigate ~5.5e6.0 Pg CO2-eq yr�1 emissions at the
global scale (Smith et al., 2007). The significant magnitude of this
mitigation potential makes it necessary to consider physical,
chemical, and biological dynamics of managed landscapes when
understanding, quantifying, and regulating the global carbon (C)
cycle (Moureaux et al., 2008; Sus et al., 2010).

The development of effective measures to stabilize atmospheric
CO2 concentration requires accurate quantification of the spatial
variation andmagnitude of C flux. Due to the lack of systematic and
extensive collection of C budget observations, modeling approaches
have been often used by researchers and decision makers (Saby
et al., 2008; Ogle et al., 2010; West et al., 2010). A suite of
modeling tools and methods operating at national or regional
scales have been developed to estimate soil organic C (SOC) change
and/or land-atmosphere C exchange by using inventory statistics,
computer simulation models, satellite remote sensing products,
geographic information systems, and/or eddy covariance flux tower
measurements (Post et al., 2001; Whittaker et al., 2013). For
example, an inventory method (West et al., 2008, 2010) was
developed to estimate county-scale harvested biomass C, net pri-
mary production (NPP), SOC inputs and decomposition, and net
ecosystem exchange (NEE), as well as agronomic production
emissions of GHGs from seeding, tillage, fertilizer application, and
harvesting. This inventory method is heavily rooted in the inte-
gration of U.S. Department of Agriculture's (USDA) National Agri-
cultural Statistics Service (NASS) surveyed crop yields, State Soil
Geographic (STATSGO) data (USDA-NRCS, 1995), and empirical re-
lationships between SOC dynamics and diverse crop management
practices derived from hundreds of field experimental sites. This
data-rich and fine-scale approach has been recognized as a
benchmark for cropland C budgets in several compelling model
intercomparison and C budget synthesis projects, including the
North American Carbon Program's (NACP) Midcontinent Mid-
Continent Intensive (MCI) Campaign (Ogle and Davis, 2006;
Schuh et al., 2013) and Regional Interim Synthesis (Hayes et al.,
2012; Huntzinger et al., 2012). Despite the strength of the in-
ventory approach in reliably quantifying the flux of C from eco-
systems, the lack of detailed representation of the mechanisms
regulating crop growth and development, water and biogeo-
chemical cycling, and human interventions, limits its role in un-
derstanding the feedbacks among land use, climate change, and C
cycling (Smith et al., 2012).

The study of complex agroecosytem relationships is best
approached through process-based model analyses in combination
with experimental data and field monitoring. Mechanistic agro-
ecosystemmodels are being suggested as an important component
of an integrated global framework for soil C monitoring and
assessment (Smith et al., 2012). For example, a framework by Ogle
et al. (2010) used the process-based CENTURY ecosystem model
(Parton et al., 1994), operating at the monthly time step, to estimate
SOC changes on the US croplands from 1990 to 2000. Their
modeling system employed 121,000 National Resources Inventory
(NRI) sampling sites across the US and integrated tillage practices,
fertilization, soil types and edaphic characteristics, and climate
variations. The point scale simulations were generalized to the
scale ofmajor land resource areas (MLRA) for reporting SOC change.
The Environmental Policy Integrated Climate (EPIC) model
(Williams, 1995) was tested at eighteen sites in Iowa and incorpo-
rated into a geospatial modeling system to simulate SOC change
over the Iowa croplands (Causarano et al., 2008). Their modeling
system used the Soil Survey Geographic (SSURGO) data that con-
tains more detailed soil survey maps than STATSGO and a Landsat

based cropland map at a resolution of 30 m, but aggregated them
into a composite layer of 250 m to explicitly define EPIC modeling
units. They simulated a typical cornesoybean rotation character-
ized with three types of tillage practices at the state-level. Their
simulations were evaluated against state-level NASS surveyed corn
and soybean yields. These studies consistently demonstrated the
importance of using mechanistic models and highlighted the
promise of using fine-scale spatial and intensive management in-
formation for accounting cropland C budgets (Smith et al., 2012).

The continuous development of spatial data for climate, terrain,
crop classification, and soils has resulted in dramatic increase in
spatially-explicit information, thereby providing new opportunities
to further advance the application of process-based models. How-
ever, as most management data, such as tillage and fertilization, are
not available in a spatially-explicit way, it is risky to assume that the
performance of these models at the site level transfers to the
regional scales. Recent studies (Zhang et al., 2013b, 2014) showed
that C flux simulated by process-based models is sensitive to the
accuracy and completeness of cropmanagement data, as well as the
resolution of soil data. In addition, process-based models demand
many more parameterization and data preparation efforts than
inventory approaches, rendering them prone to more sources of
uncertainty. The lack of extensive evaluation of the process-based
models at the regional scales makes it difficult to assess their
credibility for large-scale C budget estimates, thus limiting their
role in developing effective C management practices.

Our objective, therefore, was to describe and test a geospatial
agricultural modeling system (GAMS) that integrates the process-
based EPIC model with spatially-explicit climate, soils, land use,
terrain data, and surveyed crop management data (including
fertilization, tillage, planting, and harvesting) to characterize
cropping systems in the US Midwest. GAMS operates at a spatial
resolution of 56 m that is consistent with the recently developed
Crop Data Layer (CDL) (Johnson and Mueller, 2010). GAMS contains
a Geographic Information System (GIS), a proven tool for geospatial
data processing and management in regional scale environmental
modeling (Rao et al., 2000; Schaldach and Alcamo, 2006; Liu, 2009;
Wang et al., 2010). To facilitate model implementation and results
processing at such a high resolution, it is also equipped with a
parallel computing component and a relational database that is
compatiblewithmulti-threadingmodel execution, data processing,
and analysis.

We selected the US Midwest as the study area to examine the
performance of GAMS (Fig. 1). Agroecosystems in the Midwest
provide >85%, >80%, and >50% of total maize, soybean and wheat
production in the entire US (USDA-NASS, 2011) and, concomitantly
provide ~60%, ~45%, and ~20% of world trade in these crops (USDA-
ERS, 2010). This highly productive agricultural area is a hotspot of
cropland C sequestration in the US (West et al., 2010) and contains
biofuel production activities aimed at enhancing energy security
and GHG mitigation (EISA, 2007; NRC, 2011; USGCRP, 2012). These
dimensions combined make the US Midwest an ideal test bed for
applying and assessing GAMS.

As EPIC has been extensively tested for cropland C budget
simulation at the site scale (e.g. (Wang et al., 2005; He et al., 2006;
Izaurralde et al., 2006; Causarano et al., 2007; Izaurralde et al.,
2007; Causarano et al., 2008; Apezteguía et al., 2009; Schwalm
et al., 2010; Zhang et al., 2013b)), this research focused on assess-
ing its performance at the county-scale against NASS-surveyed
harvested biomass and cropland C budgets estimated by an in-
ventory approach (West et al., 2010). Although this inventory
method has been used as a benchmark in numerous model in-
tercomparisons and C budget syntheses, its estimates of NPP, NEE,
and SOC change have not been independently corroborated at the
county scale with other process-based agro-ecosystem models.
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Thus, this comparison not only serves as an evaluation of the EPIC's
county-scale estimates, but also provides an independent confir-
mation of the inventory method. Besides evaluating GAMS for
multi-year average total cropland C flux, we also analyzed results
for individual plant species and years. Overall, although GAMS
exhibited a high degree of agreement with county-scale NASS crop
yield data and inventory estimates (West et al., 2010), noticeable
discrepancies were observed, particularly at the level of individual
crop species and annual scale evaluations. Based on these spatial
and temporal analyses, we identify possible causes for the in-
consistencies and uncertainties in GAMS and discuss strategies for
further enhancing its performance and promoting its uses in
cropland C management.

2. Materials and methods

2.1. Overall framework design

GAMS contains three components (Fig. 2). A Geographic Information System
(GIS) that fuses multi-source data to prepare spatially-explicit map units and derive
each unit's climate, management, soil, land use, and terrain attributes. The
employment of high-resolution land use and soil maps in defining homogeneous
spatial modeling units (HSMUs) results in ca. 2 million units and ca. 15 million
inputeoutput files for cropland in the US Midwest. This requires supercomputing
resources in order to efficiently execute EPIC and analyze results. These EPIC
compliant input files are fed into a Python-based parallel computing package, which
simultaneously employs hundreds of processors to execute EPIC on the Pacific
Northwest National Laboratory's (PNNL) Evergreen computing cluster. The simula-
tion variables are sorted out and stored in online PostgreSQL relational databases
and can be easily queried and linked to geospatial data for thematic mapping,

summarization, and verification. The three components of GAMS are loosely
coupled, rather than wrapped in an integrated software package. This flexible
configuration allows GAMS to be modified and/or extended for other modeling
exercises and analyses.

2.2. Description of EPIC

The EPIC model has been extensively tested for many agricultural cropping sys-
tems landscapes, and applied worldwide to examine agronomic and environmental
impacts of alternativemanagement practices and climate change (Wang et al., 2012).
EPIC is a comprehensive terrestrial ecosystem model capable of simulating key bio-
physical and biogeochemical processes, such as plant growth and development,
water balance, C and nutrient cycling, soil erosion, and greenhouse-gas emissions;
and how these processes are influenced by climate conditions, landscape configu-
rations, soil properties, and management practices. The plant growth sub-model of
EPIC is a revised version of Crop Environment REsource Synthesis (CERES) (Williams
et al., 1989; Jones et al., 1991), employing the concept of radiation-use efficiency by
which a fraction of daily photosynthetically-active solar radiation is intercepted by
the plant canopy and converted into plant biomass. Daily gains in plant biomass are
affected by vapor pressure deficits, atmospheric CO2 concentrations, nutrients
availability, and other environmental controls and stresses. Currently, EPIC is
parameterized for approximately 120 plant species including food crops, native
grasses, and trees. EPIC's hydrology module contains all salient terrestrial water
cycling processes including snowmelt, surface runoff, infiltration, soil water content,
percolation, lateral flow, water table dynamics, and evapotranspiration. EPIC's
biogeochemical module is a modified version of the CENTURY model describing
decomposition and transformation of soil C and nitrogen (N) (Izaurralde et al., 2006)
as regulated by many factors and processes, such as soil texture, pH, crop yields, at-
mospheric N input, fertilizer and manure, and tillage, among others.

The crop growth and SOC algorithms of EPIC have been examined against field
observations from numerous sites across the world (Wang et al., 2005; He et al.,
2006; Izaurralde et al., 2006; Causarano et al., 2007; Izaurralde et al., 2007;

Fig. 1. Location of the study area. (The 12 states in the US Midwest show a high overlap with the Corn Belt. The extent of the Corn Belt is adapted from Liang et al. (2012) ).
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Causarano et al., 2008; Apezteguía et al., 2009; Schwalm et al., 2010; Zhang et al.,
2013b). Its robust performance has made it a useful tool for assessing conserva-
tion effects of the Conservation Reserve Program (CRP) (USDA-FSA, 2008, 2010).
Recent studies (Schwalm et al., 2010; Zhang et al., 2013) showed that the C algorithm
in EPIC simulated well NEE of diverse agroecosystems in the Midwest, where NEE
was calculated as heterotrophic soil respiration minus the net C sequestration from
the atmosphere into plant biomass (i.e. NPP) and is opposite in sign to Net
Ecosystem Production (NEP) (Chapin et al., 2006). A negative sign of NEE indicates C
sequestration into biosphere, while a positive one denotes emission into the at-
mosphere. Here, we focus on the biogenic-related cropland C processes included in
the NEE calculation but do not consider fossil fuel C emission from agronomic
practices and heterotrophic respiration by humans and livestock (West et al., 2011).

Key parameters and initial state variables need to be determined before running
models. One parameterization strategy that has been adopted in multiple model
assessment and intercomparison projects (Schwalm et al., 2010; Srinivasan et al.,
2010) consists of parameterizing variables based on prior information (e.g. from
literature or field experiments) without attempting to extensively calibrate pa-
rameters to match observed variables of interest. In this case, model performance is
highly dependent on the quality of input data. Therefore, we did not modify the
default crop, hydrologic, and biogeochmical parameters within EPIC (Williams,
1995), but focused on deriving data-based agroecosytem parameters to charac-
terize cropping systems across the Midwest US and using extensively state-of-the-
art geospatial data to drive EPIC. Detailed description of the data used and param-
eterization procedures is presented in the following section.

2.3. Fusing spatially-explicit and multi-scale surveyed data into EPIC

We expanded the spatially explicit modeling system from the nine county area
previously examined (Zhang et al., 2010) to operate across the entire US Midwest. In
so doing, we performed the following efforts: processing SSURGO soil map and
attribute data, replacing a uniform crop rotation pattern with spatially-explicit crop
sequences derived from multi-year CDL data, and compiling North- American Land
Data Assimilation System 2 (NLDAS2, ldas.gsfc.nasa.gov/nldas) climate data.

We compiled a series of geospatial databases, including land use/land cover, soil,
catchment and political boundaries, and topography data, to define homogeneous
spatial modeling units (HSMUs) and provide relevant parameters to drive the EPIC
model. We used the following geospatial layers:

2.3.1. Crop rotation map

To create crop rotation maps for the US Midwest, we used a method developed
using ArcPy in the ArcGIS environment to combine multi-year CDLs and select
representative crop rotations (Sahajpal et al., 2014). We used four years of CDL data
from 2007 to 2010 and for each state identified dominant rotation classes that ac-
count for over 85% of the spatial and temporal crop patterns in the US Midwest. This
simplification lowered the total number of crop rotations from 115,425 to around
200, greatly reducing redundancy and computational burden at a relatively low cost
inaccuracy.

2.3.2. Soils

The county-scale vector SSURGO maps downloaded from the US Department of
Agriculture (USDA) Geospatial Data Gateway (datagateway.nrcs.usda.gov) were
merged and converted into a raster format with a resolution of 56m, consistent with
the CDL. Soil properties processed for EPIC included the number of soil layers; layer
depth; slope gradient and length; albedo; bulk density; pH; percent sand, silt, clay
and coarse fragments; and percent organic C and total N.

2.3.3. Topography

The Shuttle Radar Topography Mission (SRTM), which produced a digital
elevation model (DEM) for the region at a resolution of 30 m (Farr et al., 2007),
provided elevation for EPIC to calculate atmospheric pressure.

2.3.4. Catchment and political boundaries

10-digit hydrologic units, and county and state boundaries were also used to
define HSMUs, which were further linked to surveyed data to prepare EPIC inputs.

By overlaying the above geospatial layers, we obtained a spatial map composed
of units with unique properties defined by the following dimensions: unique ID,
latitude, longitude, elevation, slope, crop rotation, soil type, county, state, and hy-
drologic unit.

The geo-location information contained in each HSMU was used to geo-
reference climate records and management practices at various scales. First, we
used the latitude and longitude of each unit to locate the closest climatological grid
of the NLDAS 2, which contains climate forcing data (temperature, precipitation,
solar radiation, wind speed, and relative humidity) covering the US at an 8-km
resolution. Second, we estimated annual N and phosphorus fertilizer application
rates over 1991 to 2008 based on the state-level statistics from USDA (USDA-ERS,
2013). All counties within a state share the same fertilization levels. The fertilizer
application rates differentiate between various crop species, but do not address
variations for a crop species in different rotations. We derived planting and har-
vesting dates and heat units required by different crops to reach maturity from
typical planting and harvesting dates of major crops in the U.S. provided by USDA
(USDA-NASS, 1997) and using the potential heat unit program available at swat.
tamu.edu/software/potential-heat-unit-program. We also filled gaps in annual fer-
tilizer databases with the value from the closest year. Finally, at the county level, we
derived the fractions of tillage practices compiled by the Conservation Technology
Information Center (CTIC, 2008), which were re-processed into three categories:
conventional tillage, conservation tillage, and no-till, and gap-filled for 2000e2008
(West et al., 2010). In order to cover the entire simulation period (1991e2008), we
assumed that the spatial pattern of tillage practices for the initialization period
(1991e1999) was similar to that averaged over 2000e2004. We allocated different
tillage practices to each HSMU by assuming that farmers apply no-till and conser-
vation tillage to steep soils in order to preserve soil productivity and protect the
environment. Conventional tillage was assigned to flattest HSMUs, while no-till was
applied to HSMUs with steepest slopes. The remaining HSMUs implemented con-
servation tillage.

Fig. 2. Conceptual diagram of the geospatial modeling framework. (It contains a GIS system fusing multi-source data, a Python based parallel computing package, and relational
database query and visualization functions.)
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Each HSMU of the composite layer possessed multi-dimensional information as
illustrated in Fig. 2. The spatially-explicit scheme employed here allows us to pre-
serve the spatial details of land use and soils patterns, while making it flexible for
geo-referencing climate data and crop management practices and aggregating
simulation results to the county-scale for comparison.

2.4. Parallelized EPIC execution and output data analysis

For the entire US Midwest, executing the over 2 million EPIC runs serially would
need5555.6 h or 231.5 days. This time consuming task necessitated thedevelopment of
a parallel computing facility to improve themodelingefficiency. The parallel computing
component of the GAMS was constructed by revising and re-structuring modules of
software developedbyNichols et al. (2011); Zhanget al. (2013a). It seamlessly combines
Python (python.org),mpi4py (Dalcin et al., 2011) andOpenMPI (www.open-mpi.org) to
make use of hundreds of processors simultaneously. The architecture of the parallel
computing package was similar to that depicted in Zhang et al., (2013a), except that it
executedEPIC insteadof theSoil andWaterAssessmentTool (SWAT)(Arnoldetal.,1998).
It first identifies aMaster processor among those allocated to a submitted job and splits
the entire EPIC runs into a specifiednumberof folders.Next, theMaster processor sends
commands to the remainingprocessors to execute EPIC in eachof the folders inparallel.
The parallel computing package extracts, organizes, and uploads EPIC simulated agro-
nomic and environmental variables stored in millions of text files into an online Post-
greSQL relational database to facilitate data query, analysis, and visualization.

2.5. Model performance assessment

In alignment with the previous inventory based cropland C budget estimates by
West et al. (2008), (2010), we executed EPIC from 1991 to 2008, with 1991e1999 as
an initialization period, and focused on comparing spatial patterns of modeling
variables averaged over 2000e2008 at the county scale. We compared our modeling
results with two types of data to assess its credibility and identify gaps for further
improvements. The first type of data was the county-scale crop yield survey data
from USDA-NASS' Quick Stats (quickstats.nass.usda.gov) from 1991 to 2008. The
second type of data was derived from an inventory model, which calculates C in
harvested biomass by multiplying NASS county crop yield with a C content factor of
0.45; estimates NPP as a function of C in harvested biomass, harvest index and root-
shoot ratio; and calculates SOC changes by considering organic matter input, tillage,
initial SOC concentration, SOC saturation, and the number of years in cultivation.

Two metrics that have been widely used in model assessment (Moriasi et al.,
2007) were employed here: percent bias (PBIAS) (Gupta et al., 1999) and Pearson
product-moment correlation coefficient (R) (Pearson, 1895). PBIAS is calculated as:

PBIAS ¼

0

B

B

B

@

PT
k¼1ðfk � ykÞ
PT

k¼1 yk

1

C

C
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A

� 100 (1)

where fk is the model simulated value at a time unit or location k, yk is the corre-
sponding benchmark data value, and T represents the total pairs of data. PBIAS
measures the average tendency of the simulated data to be larger or smaller than
their observed counterparts. Note that, due to cancellation, a result of zero does not
necessarily indicate low error (Bennett et al., 2013). Therefore, instead of examining
a single aggregated PBIAS, we also derived PBIAS for each location (here at the county
scale) and visually presented these values to detect geographic distribution of model
performance.

The formula for calculating R is:
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where y is the mean of benchmark data for the entire time period or across all sites
under evaluation, f is the mean of simulated data. R measures the correlation of the
measured and modelled values and indicates how well the model explains the
variance in the observations. R ranges between þ1 and �1, with 1 indicating total
positive correlation, 0 denoting no correlation, and �1 representing total negative
correlation.We calculatedR to analyze the performance of GMAS to reproduce spatial
patterns of cropland C budgets averaged over multiple years and at the annual scale.
The joint use of PBIAS and R helps depict a fuller picture of themodel performance in
terms of both relative error and preserving the data pattern (Bennett et al., 2013).

3. Results and discussion

3.1. Evaluating EPIC simulated cropland carbon budgets against

USDA-NASS surveyed crop yield and inventory based C estimates

With the inventory estimates of total C in harvested biomass, we
observed concentrated areas of harvested biomass and associated

regional C sinks in the study area (Figs.1 and 3aeb). GAMS captured
this spatial pattern with an R value of 0.89 (Fig. 4a). As crop yield
represents a significant portion of total biomass production and the
crop yield-to-total biomass ratio does not vary much geographi-
cally, the spatial distribution of NPP is similar to that of harvested C
(Fig. 3ced). Not surprisingly, the inventory estimates and EPIC
simulations of NPP agree favorably with each other with a high
correlation of 0.90 (Fig. 4b), though these two methods derive total
biomass production with fundamentally different approaches.
Summed over the cropland in the Midwest US, EPIC slightly
underestimated total crop yield compared to NASS data
(164 TgC yr�1 vs 172 TgC yr�1), but overestimated total NPP by
about 20% (499 TgC yr�1 vs. 401 TgC yr�1) as compared to the in-
ventory based estimate. This is likely related to the difference in
how harvest index is determined in these two approaches.
Although the maximum harvest index in EPIC is the same as those
used by West et al. (2008), the actual harvest index used at har-
vesting is lower, because EPIC considers impacts of environmental
stresses, including water and nutrients, and reduces the harvest
index accordingly. The smaller harvest index in EPIC resulted in
higher estimated NPP, even though EPIC underestimated crop yield.

The closematch regarding cropyield andNPP indicates that these
two methods estimated similar amounts of residue inputs into soils,
which were calculated as NPP minus harvested C. However, this did
not translate into a close correspondencebetween the simulated SOC
change patterns by these two methods (Fig. 3eef; Fig. 4c); though
they agreed on the total SOC change (~14 TgC yr�1sequestration
predicted by EPIC vs. ~12 TgC yr�1 by the inventorymethod). A closer
look at the spatial distribution of SOC change reveals a wider vari-
ability in the EPIC results versus the inventory based estimates. EPIC
simulated county-scale SOC change ranges from ~�80,614 to
~270,012 MgC county�1 yr�1, which compares to a much narrower
range between ~�43e~107,292MgC county�1 yr�1 of the inventory
method. This contrast is related potentially to the more variable
spatial details represented in the EPIC modeling system, which in-
cludes finer soils, land use, and climate forcing. For example, EPIC
used SSURGO (with a scale 1:24,000) for soil properties, CDL to map
crop rotation, andNLDAS climate inputswith a resolution of ca. 8 km,
while the inventory method derived SOC change from STATSGO
(with a scale 1:250,000) and does not account for climate forcing
variability.

Regarding NEE, the relatively smaller magnitude of SOC change
as compared with harvested C rendered the pattern of NEE domi-
nated by the distribution of harvested C (Fig. 3geh). Not surpris-
ingly, we achieved a high correlation (R of 0.87) between the two
sets of NEE estimates (Fig. 4d). EPIC estimated an annual cropland C
flux of ~�272 TgC yr�1, which is much greater in magnitude than
the NEE of~�185 TgC yr�1 estimated by the inventory method. This
difference is primarily caused by the discrepancy between NPP
estimates, which influences residue inputs into soils and respired C
flux into the atmosphere.

At the annual scale, harvested C, NPP, SOC change, and NEE
estimated by EPIC also showed positive correlation with those
estimated from the inventory method, but the spatial agreement
deteriorated compared to the assessment using data averaged over
2000e2008 (Fig. 5). For example, the average annual correlation
from 2000 to 2008 is ca. 0.73 for harvested C, lower than the R value
of 0.89 calculated using the multi-year average crop yield data.
Generally, EPIC's performance improved over time, with average
performance over 2000e2008 better than that over 1991e1999.
The relatively poor performance during 1991e1999 may be related
to the unstable equilibrium in SOC due to incomplete initialization
and the lack of accurate crop management data. Notably, the GAMS
simulations can be extended beyond 2000e2008 for long-term
estimates when climate and crop management data are provided.
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Fig. 3. Multi-year average (2000e2008) spatial comparison between EPIC simulated and inventory estimated cropland carbon budget components. (Left panel presents results from
the inventory method by West et al. (2010); Right panel includes EPIC simulated variables).



Overall, the corroboration between the inventory method and
GAMS highlights the robustness of GAMS for simulating county-
scale cropland C budgets as influenced by a suite of interacting
climatic, edaphic, hydrologic, and anthropogenic factors. Mean-
while, as an independent estimate of cropland C budgets, the EPIC
results also confirmed the reliability of a widely used inventory
method (West et al., 2008, 2010). However, the comparisons also
raised the disagreement between EPIC and the inventory method
for SOC change and NEE, deserving further analysis.

3.2. Individual species comparison between EPIC simulated and

NASS surveyed crop yields

The results presented in Section 3.1 compared cropland C bud-
gets aggregated across all crop species in the US Midwest (West
et al., 2010). This aggregated assessment provides little informa-
tion on the performance of EPIC for each crop species. We further
examined the performance of EPIC for reproducing spatial patterns
of each of the six major crop species, including corn, soybean,
winter wheat, spring wheat, alfalfa, and sorghum (Figs. 6 and 7).
Two types of assessments were conducted: [1] spatial correlation
between EPIC simulated and NASS reported crop yield averaged
over 2000e2008, and [2] annual spatial correlation over
1991e2008.

Corn and soybean, the two most planted crops in the US Mid-
west, have higher yield in the central and eastern states than in the

northern states of the US Midwest. EPIC preserved this NASS re-
ported pattern (Fig. 6aed). Notably, EPIC tended to substantially
under-estimate corn and soybean yield in western Nebraska and
Kansas, while exhibiting large positive biases in eastern Kansas,
much of Missouri, and part of Indiana. For counties in other states,
the yield bias in general fell between �30% and þ30% (Fig. 9aeb).
When excluding the two heavily irrigated states (i.e. Nebraska and
Kansas), we observed a noticeable increase in spatial correlation
between EPIC simulated and NASS reported corn and soybean yield.
For corn, correlation increased from 0.42 when all states data were
used (R_all) to 0.72 when excluding Kansas and Nebraska
(R_rainfed) (Fig. 8a). Similarly, R_rainfed for soybean (0.78) was
much higher than R_all (0.48) (Fig. 8b).

For winter wheat, we observed a poor performance of EPIC for
capturing NASS reported spatial yield distribution (Fig. 6eef), with
R_all of 0.19 and R_rainfed of 0.42 (Fig. 8c). For about half of the
counties with winter wheat production, EPIC simulated yield bias
was either less than 40% or over 40%, with the greatest under- and
overestimations in Kansas and North Dakota, respectively (Fig. 9c).

For alfalfa, EPIC overestimated alfalfa yield averaged over
2000e2008 in northern Wisconsin, southern Illinois, and the
southeast of Kansas by 50%, while under-estimating yield in
western Nebraska and Kansas by 40% (Fig. 7aeb; Fig. 9d). We also
observed significant increase in spatial correlation between EPIC
simulated and NASS reported alfalfa yield by excluding Nebraska
and Kansas, with R_all of 0.34 and R_rainfed of 0.77 (Fig. 8d).

Fig. 4. Spatial correlation between EPIC simulated and inventory estimated multi-year average (2000e2008) cropland carbon budget components.
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The spatial domains of spring wheat and sorghum are more
localized compared with the other four crops; with sorghum
mainly present in Kansas and spring wheat in North Dakota and
much of Minnesota (Fig. 7cef). For spring wheat, EPIC captured its
spatial yield pattern well with an R value of 0.83 (Fig. 8e), the
highest among all six crops. The bias of EPIC simulated, spring
wheat yield was between �30% and þ30% for most counties, but
reached 50% in eastern North Dakota and several counties in
middle Minnesota (Fig. 9e). For sorghum, we also observed a close
match between the spatial distribution of the EPIC simulated and
NASS reported yield as indicated with an R value of 0.73 (Fig. 8f), as
well as an overestimation of crop yield in most counties (Fig. 9f).

For the multi-year average assessment, the crop yields simu-
lated by EPIC explained the dominant spatial pattern at the county
scale reported by NASS for all six crops (Figs. 7 and 8). However, we
also observed pronounced overestimation and underestimation in
the eastern and western parts of the evaluation domain, respec-
tively (Fig. 9). The failure to adequately simulate irrigation man-
agement in Nebraska and Kansas significantly compromised the
performance of EPIC in these two states. By excluding them, we
observed a noticeable increase in spatial correlation (at least 0.23)
between EPIC simulated and NASS reported crop yield for the four
widespread crops (i.e. corn, soybean, winter wheat, and alfalfa) that
spanned across both rainfed and irrigated regions. In most counties
of the ten states dominated with rainfed cropping systems, we
observed either moderate underestimation or overestimation
(Fig. 9aed), with overestimation as the major pattern for all six
crops except sorghum. For some counties, overestimation reached
over 50%. An extreme case is spring wheat, for which EPIC

overestimated crop yield by 50% for about half of the counties
within the spring wheat domain. The optimistic prediction by EPIC
for rainfed regions is possibly caused by the inadequate consider-
ation of the negative effects of pest damage and excess water on
crop growth, among other factors.

We also extended the multi-year average assessment of EPIC to
an annual scale for the period of 1991e2008 (Fig. 10). In general,
EPIC performed better in the later years than in the early years of
the simulation period for all six crops, highlighting that
completeness and accuracy of input data play a crucial role in
reliable agroecosystem modeling. This is consistent with previous
findings obtained at the site scale that EPIC performed better for
sites with complete and detailed agronomic data than for those
sites without detailed management information (Zhang et al.,
2013b). EPIC's annual performance (Fig. 10) is in general compa-
rable to the multi-year average assessment (Fig. 8). The average
annual spatial correlation over 2000e2008 is close to the spatial
correlation calculated with multi-year average crop yield. When
excluding Nebraska and Kansas, we also obtained increased spatial
correlation similar to that shown in Fig. 8.

3.3. Assessing accuracy of simulated cropland area used in GAMS

simulations

Accuracy of the geospatial modeling system is heavily depen-
dent on the CDL and SSURGO.When overlaying CDL and SSURGO to
define HSMUs, the final cropland area used by EPIC is determined
by both the accuracy of CDL and the completeness of soil properties
in SSURGO. We found a high correlation between the county-scale

Fig. 5. Time series of annual spatial correlation between EPIC simulated and inventory estimated cropland carbon budget components over 1991e2008.
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cropland area used by EPIC and those from NASS (Fig. 11). The US
Midwest cropland area simulated by EPIC was about 72 million ha,
approximately 6.5% lower than the NASS surveyed area of 77
million ha. Notably, in the USMidwest, the total alfalfa in NASS is ca.
4.3 million ha, which is much higher than the simulated alfalfa area
of only 1.6 million ha. This was mainly caused by the low accuracy

of CDL for alfalfa identification (USDA-NASS, 2014), which under-
estimated alfalfa by 40e50%. In addition, we discarded numerous
small HSMUs that only accounted for about 2% of the total cropland
area, but comprised about 2 million units. These factors, in
conjunction with missing complete soil parameter sets for EPIC
runs on a small portion of the cropland area, resulted in an overall

Fig. 6. Spatial distribution of species-specific crop yield averaged over 2000e2008 for corn (aeb), soybean (ced), and winter wheat (eef). (GAMS overestimates winter wheat's
extent in Iowa and Minnesota, and northern Wisconsin. In contrast, the crop rotation map used in GAMS leaves out winter wheat in Nebraska and Missouri. This is because we
simplified crop rotations derived frommulti-year CDLs, which merges crop rotations with minor areas into dominant ones. The winter wheat area in these two states represents less
than 8% of the total cropland area, leading to its omission.)
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underestimation of cropland area in the US Midwest by 5 million
ha. The cropland area underestimation in part explains why we
over predicted crop yield per unit area (Figs. 7e9) but still simu-
lated well total crop yields. With future updates of the SSURGO
database and refinement of CDL, we expect to see further
improvement in geospatial representations of the agricultural
landscapes in the US Midwest.

An individual plant species analysis indicated that simulated
cropland area closely matched the corresponding NASS data for
corn, soybean, and winter wheat, but alfalfa areawas pronouncedly
underestimated (Fig. 12). Compared to NASS data averaged over
2000e2008, the simulated cropland area across the US Midwest
was overestimated by 13% and 17%, respectively, for corn and soy-
bean, and underestimated by 8.4% for winter wheat. For alfalfa, our

Fig. 7. Spatial distribution of species-specific crop yield averaged over 2000e2008 for alfalfa (geh), spring wheat (iej), and sorghum (kel). (The NASS started to report alfalfa yield
and area data in 2009 for Missouri, Indiana, and Ohio; therefore (g) does not show the presence of alfalfa in these states; The underestimation of spring wheat in South Dakota is
because it is a minor crop and was removed during the process of simplifying crop rotation; similarly the missing extent of sorghum in South Dakota and Nebraska is also due to the
crop rotation simplification that results in the loss of crops with small area).
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simulated area was about 60% lower than that reported by NASS. In
addition, our modeling system significantly overestimated spring
wheat area while underestimating sorghum area. These accuracy
metrics are in general poorer than those reported for CDL (USDA-
NASS, 2014), which may be caused by the simplification of crop
rotations with the aim of reducing the complexity of preparing EPIC
required crop management files and the number of HSMUs
(Sahajpal et al., 2014). As mentioned above, we identified over 2
million HSMUs for EPIC simulations. Without crop rotation

simplification the number of HSMUs would reach over 7 million,
greatly increasing the computational cost and data storage burden.
Cropland area under corn and soybean increased because they
represent dominant crop rotations and certain crop rotation types
with small shares were merged into them during the simplification
procedure.

For the two locally concentrated crops (spring wheat and sor-
ghum) significant biases in crop area were identified. Simulated
spring wheat area was 34% higher than the NASS reported area,

Fig. 8. Spatial correlation between EPIC simulated and NASS reported multi-year average (2000e2008) species-specific crop yield. (R_all is calculated with data from all counties,
while R_rainfed is derived from counties other than Kansas and Nebraska).
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while simulated sorghum area was about 60% lower. Our rotation
simplification scheme expands dominant rotations while dimin-
ishing minor ones (Sahajpal et al., 2014). In North Dakota, spring
wheat was a dominant crop species that accounts for ca. 34% of
total cropland of 7.8 million ha, but a minor crop species covering
only ca. 9% of the total cropland area (6.4 million ha) in South
Dakota. As the simplified crop rotations in South Dakota preserved
only ~80% of the accuracy of CDLs, we omitted all the spring wheat

in South Dakota (Fig. 7iej). Crop rotations simplification caused
shrinkage of sorghum area in Nebraska and South Dakota, because
its acreage accounted for only 1.9% and 2.0% of the total cropland
area in Nebraska and South Dakota (Fig. 7kel), respectively, leading
tomerging of sorghum-involved rotations into other representative
ones. Similarly, acreage of sorghumwas ca.1.2million ha or 13.8% of
the total cropland in Kansas, making it a minor rotation and thus a
significant loss of sorghum area.

Fig. 9. Spatial distribution of species-specific bias in EPIC simulated multi-year average (2000e2008) crop yield. (Only those counties with concurrent EPIC simulated and NASS
reported data are shown.)
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An annual-scale analysis also showed higher accuracy of simu-
lated crop area for corn, soybean, and winter wheat than for alfalfa,
spring wheat, and sorghum (Fig. 13). A clear accuracy improvement
over time was observed for all crops, as we derived crop rotations
using CDLs from 2007 to 2011 and assumed this crop rotation
pattern was the same for years before this period. This trend, to
some extent, explains the improved performance of EPIC for
simulating crop yield over time (Fig. 10). Furthermore, these high
annual correlation coefficients between simulated and NASS re-
ported cropland area testify to the value of the GAMS for annual
scale cropland C flux estimates.

3.4. Discussion

Overall, GAMS, as described and tested here, successfully
simulated crop yields and cropland C budgets. The correlation be-
tween EPIC and the inventory method was close to 0.9 for har-
vested C, NPP, and NEE for multi-year average comparison, and was

larger than 0.65 at the annual scale. We also identified notable
discrepancies between the EPIC simulated crop yields and C fluxes
and those either reported by NASS or estimated with a widely used
inventory method. Below we elaborate on possible causes of these
disagreements and discuss potential opportunities for further
improving GAMS to support sustainable C management.

3.4.1. Possible explanations for the discrepancies between EPIC

simulated and NASS reported crop yields

For the six crops simulated here, crop yield overestimation was
the dominant pattern, except for winter wheat. For corn, soybean,
alfalfa, spring wheat, and sorghum, EPIC generally underestimated
crop yields in the west while overestimated crop yields in the
middle and the east of this region. The underestimation in western
Nebraska and Kansas was primarily due to the failure to adequately
simulate the effects of irrigation, a key practice boosting crop
production in these areas. The lack of spatial representation of
species-specific irrigated farms, irrigation schedule, and irrigation

Fig. 10. Time series of annual spatial correlation between EPIC simulated and NASS reported species-specific crop yield over 1991e2008.
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volume impeded us from incorporating irrigation into GAMS in a
consistent way. Irrigation changes plant growth and water avail-
ability, which in turn affects plant litter inputs and microbially-
mediated SOC decomposition, thereby altering net cropland C
flux. Therefore, integrating detection of irrigated areas by remote
sensing and locally surveyed, irrigation management information
promise to help improve simulations of crop yields and C budgets.

We did not identify any obvious reasons behind EPIC's over-
estimation of crop yield. A literature review on previous applica-
tions of EPIC revealed that EPIC tended to over predict crop yield on
rainfed land (Thomson et al., 2005b). Possible explanations are
diverse, such as inadequate considerations of pest damage, detri-
mental effects of excess soil water, and competition between staple
crops and weeds, as well as unrealistically optimistic simulation of
biophysical parameters (such as leaf area index). Additionally, un-
certainties arise from errors in soil data, climate forcing, and
management schedule, including inaccurate planting and har-
vesting dates, extending state-level fertilizer application to each
county, approximation of the timing of fertilization and tillage, and
idealized allocation of county-scale tillage fractions. All these
sources of uncertainties interact with each other and propagate
through the processes simulated in EPIC, making it a challenge to
identify the mechanisms responsible for EPIC's performance. To
address this challenge, new data with refined quality and details
(both spatial and temporal) and improved understanding of rele-
vant agroecosystem processes and their robust mathematic rep-
resentation in models are required. How to characterize and
quantify these sources of uncertainties remain a challenge and
require further research.

Similar to previous studies, we found that EPIC has difficulties
for simulating winter wheat yields (Asseng et al., 2013). In general,
winter wheat yield was underestimated in the northern area while
overestimated in the southern part of the US Midwest. We derived
three major crop rotations containing winter wheat, i.e.
cornesoybeanewinter wheat in the northern states and winter
wheat-fallow and corn-winter wheat in the southern states. Winter
wheat distinguishes itself from other annual crops because it is
planted in fall and harvested in late spring or early summer of next
year. We encountered some difficulties in preparing crop rotation
management files that involve winter wheat. The typical planting
date is usually earlier than the typical harvesting date of other
annual crops such as corn and soybean, while its typical harvesting

date is often later than the planting date of other annual crops. We
had to shrink the length of growing seasons of both winter wheat
and other annual crops in rotation by delaying planting and shift
harvesting date earlier. This midway solution may deteriorate
EPIC's performance for both winter wheat and other annual crops,
with greater negative effects on winter wheat simulations because
it is always impacted by such a compromise while other annual
crops do not suffer when they are not in rotation with winter
wheat. In addition, the varying performance of EPIC in Kansas as
compared to that in the northern areas for winter wheat might be
related to the crop species rotated with winter wheat. In Kansas,
winter wheat often alternates with fallow, while in other areas it is
usually in rotation with other crops. These factors interact with
many other aforementioned uncertainties and require further
systematic analysis.

3.4.2. Mismatch between EPIC simulated and inventory estimated

SOC change

Of the estimated ~5.5e6.0 Pg CO2-eq yr�1 GHG mitigation po-
tential of agricultural technologies and practices at the global scale,
approximately 89% comes from soil C sequestration (Smith et al.,
2007). Therefore, diagnosing the discrepancies between EPIC
simulated and inventory estimated SOC change is important for
improving the understanding of the potential of soils in the US
Midwest for GHGs mitigation.

We believe the major cause for the difference between EPIC
simulated and inventory estimated SOC change lies in the funda-
mentally distinct approaches used to calculate SOC dynamics. EPIC
explicitly considers microbially mediated, soil organic matter
(SOM) dynamics as influenced by an array of biotic and abiotic
factors, such as the quantity and quality of the plant litter inputs
(e.g. lignin and cellulose content), soil texture, water content,
temperature, oxygen availability, and the physical and chemical
structure and composition of SOM, among others. In order to
adequately simulate these processes, EPIC needs inputs of climate
forcing, physical and chemical soil properties, and crop manage-
ment practices (e.g., fertilizer, tillage, planting, and harvesting). In
contrast, the inventory method estimates SOC change by consid-
ering its empirical relationship with initial SOC, residue input,
tillage practice, length of cultivation, and SOC saturation. These two
approaches suffer from different sets of uncertainty factors. EPIC
uncertainties arise from errors in climate records, inaccurate soil
parameters, incompletemanagement information, and interactions
among these factors. Although the inventory method suffers less
from input data and parameter errors, it relates SOC change with
several control factors instead of systematically examining SOC
dynamics as regulated by the joint impacts of all controls. This
renders it susceptible to uncertainties arising from extrapolating
site-scale observations to regional-scale estimates.

Another cause of the mismatch is the inaccurate representation
of crop rotations in GAMS. As noted in Section 3.3, the CDL-derived
alfalfa area is substantially underestimated in GAMS; the simplifi-
cation of crop rotation brought enormous computation benefits but
at the cost of the accuracy of different crop species. These mis-
representations of crop species undermine simulated NPP, har-
vested biomass, and residue input into soils, as well as SOC change.
In addition, we did not explicitly consider corn silage and sorghum
silage, because CDL does not distinguish between the uses of these
two crops for grain and silage. Due to a higher harvest index (more
biomass is removed from field) for silage crops, plant residue inputs
into soils and SOC sequestration are likely to be discounted. How-
ever, this simplified treatment of corn silage and sorghum silage
seems to have minimal impacts on simulation results of SOC and
NPP, as corn silage and sorghum silage account for only 4.7% and
2.4% total corn and sorghum acreage, respectively.

Fig. 11. Spatial correlation between simulated and NASS reported multi-year average
(2000e2008) total cropland area.
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Due to the lack of regional scale SOC observations, it is difficult
to derive solid conclusions about which method performs better
under what conditions. Systematic analysis of the sources of un-
certainty for each approach is required to better understand their
strength and limitations.

3.4.3. Potential parameterization strategies to further improve EPIC

simulations

In this modeling exercise, we used priori literature reported
parameter values and extensive geospatial data to drive EPIC. This
model setup method heavily relies on the quality of input data. In

Sections 3.4.1 and 3.4.2, we discussed the uncertainties of EPIC
simulations related input data. With further improvement in CDL, a
more complete SSURGO map and soil properties database, and
improved crop management survey data, the reliability of EPIC
simulations is expected to be further enhanced. For example, by
including more rotations into agricultural landscapes, the accuracy
of the crop rotation map can be further improved (Sahajpal et al.,
2014). However, this benefit comes at a significant cost of compu-
tational resources.

Another popular parameterization strategy consists of identi-
fying the most uncertain parameters and adjusting them within

Fig. 12. Spatial correlation between simulated and NASS reported multi-year average (2000e2008) species-specific cropland area.
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prescribed ranges to minimize the difference between simulated
and observed variables of interest. However, information contents
contained in observed variables may not be adequate for charac-
terizing complex hydrologic, biophysical, and biogeochemical
processes (Jakeman and Hornberger, 1993). Using crop yields alone
to calibrate EPIC may result in parameter overfitting. That is, pa-
rameters may be adjusted to compensate for errors associated with
input data, model structure, and observations against which a
model is calibrated (Jakeman et al., 2006; Zhang et al., 2009). In
addition, this strategy often requires running models repeatedly,
demanding many more computational resources than the first
strategy. Given the limited availability of computing time and data
storage capacity, we did not perform extensive parameter calibra-
tion in this exercise. Note that uncertainty identification and
characterization of input data andmodel parameters are important,
and have the potential to help quantitatively assess errors associ-
ated with prediction of C budget components, which are critical for

minimizing risks of C related management arrangements and pol-
icy making (Post et al., 2008a, 2008b; Updegraff et al., 2010; Varella
et al., 2010).

3.4.4. Flexibility of the geospatial modeling framework

As shown in Fig. 2, GAMS encompasses three loosely connected
components, each of which can be adapted for other models and
analyses. For example, with minor/moderate revisions, the GIS
analysis and parallel computing functions can be applied to geo-
spatial data at a global scale or other biophysical and biogeo-
chemical models. If the historical climate databases are replaced
with future climate predictions, GAMS can be applied to simulate
and understand climate change impacts on agroecosystem pro-
ductivity (Izaurralde et al., 2003; Thomson et al., 2005a). The
composite geospatial layer used to define HSMUs for EPIC simula-
tions contains multi-dimensional information, allowing the inte-
gration of the model results with hydrologic and social-economic

Fig. 13. Time series of annual spatial correlation between simulated and NASS reported species-specific cropland area over 1991e2008.
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models to explore the broader impacts of shifts in agricultural
management practices. For example, the hydrologic layer
embedded in HSMUs enables the joint use of EPIC land simulations
with aquatic processes simulated in watershed models, such as
SWAT, to understand water quality consequences of upland soil
management.

The geo-location information contained in the composite HSMU
layer also allows the spatially modeling results to be aggregated to
coarser scales (e.g. low vs. high productive lands within a county,
hydrologic unit, or state) that are commensurate with economic
and policy analysis models. For example, EPIC simulations at a
multi-county scale have been fed into a regionally focused Global
Climate Assessment Model (GCAM) for understanding future agri-
cultural land use changes under alternative C prices and radiative
forcing levels (Thomson et al., 2013). EPIC simulations were also
grouped by differentiating less productive and fertile lands within a
10-digit hydrologic unit and used to explore availability of alter-
native bioenergy crops under various biomass prices and associated
environmental consequences (Egbendewe-Mondzozo et al., 2011,
2013; Gelfand et al., 2013). GAMS provides detailed spatial results
for the historical baseline scenario that are critical for robust esti-
mation of benefits and costs of alternative land use scenarios. The
flexibility of the geospatial modeling framework makes it easy to
provide the inputs required by those socio-economic models and
provides opportunities for understanding potential uncertainty
arising from aggregating spatial variability.

4. Conclusions

This study introduces a novel geospatial agricultural modeling
system, or GAMS, integrating a mechanistic model (in this case
EPIC), spatially-resolved data, surveyed management data, and
supercomputing functions. Importantly, GAMS was designed to be
highly modularized and thus flexible, rendering it straightforward
to update input datawith emerging observations; replace EPICwith
other models; and integrate its simulation results with socio-
economic and watershed modelsdthus making it cost-effective
to maintain and adapt GAMS for diverse application purposes.

The overall agreement between the GAMS simulated and in-
ventory estimated cropland county-scale C budgets provided in-
dependent confirmation of the credibility of both methods.
However, we also detected notable differences in the magnitude of
NPP and NEE, as well as in the spatial pattern of SOC change. With
individual plant species analyses and annual-scale comparisons, we
explored potential causes of the discrepancies by analyzing the
differences between EPIC and the inventory method in data re-
quirements, representation of agroecosystem processes,
completeness and accuracy of cropmanagement data, and accuracy
of spatial crop area representation. Based on these analyses, we
discussed strategies to further improve GAMS' performance by
updating input data (such as land use, soil, and irrigation) and by
designing more efficient parallel computing capability that allows
for a systematic examination of uncertainty factors. Improvements
will increase our ability to use GAMS to predict C budget compo-
nents, and understand potential outcomes and risks of C-related
management and policy making.
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