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Abstract—Total variation has been used as a popular and effective 
image prior model in the regularization-based image processing fields. 
However, as the total variation model favors a piecewise constant 
solution, the processing result under high noise intensity in the flat 
regions of the image is often poor, and some “pseudo-edges” are 
produced. In this paper, we develop a regional spatially adaptive total 
variation (RSATV) model. Firstly, the spatial information is extracted 
based on each pixel, and then two filtering processes are respectively 
added to suppress the effect of “pseudo-edges”. After that, the spatial 
information weight is constructed and classified with k-means 
clustering, and the regularization strength in each region is controlled 
by the clustering center value. The experimental results, on both 
simulated and real datasets, show that the proposed approach can 
effectively reduce the “pseudo-edges” of the total variation 
regularization in the flat regions, and maintain the partial smoothness 
of the high-resolution image. More importantly, compared with the 
traditional pixel-based spatial information adaptive approach, the 
proposed region-based spatial information adaptive total variation 
model can better avoid the effect of noise on the spatial information 
extraction, and maintains robustness with changes in the noise 
intensity in the super-resolution process. 
Index Terms—Super-resolution, total variation, regional spatially 
adaptive, majorization-minimization  
 

I. INTRODUCTION 

High-resolution (HR) imagery plays a key role in many diverse 
areas of application, such as medical imaging [1], remote sensing [2], 
[3], and video surveillance [4]. However, because there are a number 
of limitations with both the theoretical and practical aspects, such as 
the sensor resolution and high cost, amongst other things, it is 
obviously more difficult to obtain a HR image than a low-resolution 
(LR) image. Consequently, researchers have explored ways to produce 
a HR image from the image processing aspect, and, in recent decades, 
super-resolution (SR) technology, which produces a HR image from 
single-frame or multi-frame LR images, has been proposed. In this 
paper, our research is mainly focused on the multi-frame image SR 
problem: the process of reconstructing a HR image from a sequence of 
LR images. 
A. Problem Formulation 

Assume that a HR image x  is shifted, blurred, downsampled, 

has some additive noise, and produces a sequence of LR images 
k

y  

(Fig. 1). The standard image degradation model for the problem of SR 
is in the form: 
                         1, ,k k k ky DB M x n k p                                  (1) 
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where 
k

y  is the kth  LR image rearranged in lexicographic order, 

which has the size of 
1 2 1L L  , and x  is the original HR image, 

which is also rearranged in lexicographic order, and which has the size 

of 
1 2 1H H  . 

k
M  stands for the warp matrix with size 

1 2 1 2H H H H , 

k
B  is the blurring matrix with size 

1 2 1 2H H H H , D  is the 

downsampling matrix with size 
1 2 1 2L L H H , vector 

k
n  is the system 

noise with size 
1 2 1L L  , which, in this paper, is assumed to be 

Gaussian additive noise with zero mean, and p represents the number 

of LR images. In this paper, we assume that the blurring matrix 
k

B  

remains the same between the LR images
k

y . The purpose of 

multi-frame SR reconstruction is to reconstruct the HR image x  from 

sequences of LR images 
k

y , as shown in Fig. 1.  

 

 
Fig. 1. The degradation process of the HR image, and the super-resolution 

process. 

B. Previous Algorithms 
In recent decades, the multi-frame SR problem has been widely 

explored by many researchers, and considerable progress has been 
achieved. Tsai and Huang [5] first proposed to use multi-frame SR 
theory to enhance the resolution of multi-temporal Landsat TM images 
in the frequency domain. After that, many other improved frequency 
domain SR algorithms have also been proposed [6], [7]; however, for 
the frequency domain approaches, although they have the advantage of 
a short computation time, it is difficult to add the prior information of 
the HR image. Therefore, researchers have attempted to solve the SR 
problem in the spatial domain, and various algorithms have been 
developed, such as the projection onto convex sets (POCS) approach 
[8], [9], maximum likelihood (ML) approach [10], maximum a 
posteriori (MAP) approach [11], [12], joint MAP approach [13]–[14], 
and the hybrid approach [15]. Recently, some excellent SR algorithms 
that do not rely on exact motion estimation have been proposed [16], 
[17], and very promising SR results were produced, especially when 
complex motions are contained in the LR image sequences. In addition, 
wavelet domain SR methods have also been proposed [18], [19]. 
Reviews of the state of the art of SR methods can be found in 
[20]–[24]. 

Because SR is an ill-posed problem, it is wise to incorporate some 
prior distribution of the HR image to constrain the SR process and 
obtain a stable and relative optimal solution. Therefore, in recent 
decades, many prior models of the HR image have been proposed. The 
most widely used prior model is the Tikhonov regularization model 
[13], which is used to guarantee the smoothness property of the 
original HR image. However, although the Tikhonov model is simple 
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to realize and easy to solve, it has the drawback of blurring the edges 
Therefore, many edge-preserving prior image models have been 
proposed, including the Huber-Markov random field (Huber-MRF) 
model [11], total variation (TV) model [25]–[27], bilateral total 
variation (BTV) model [21], and the weighted Markov random field 
(WMRF) model [4]. Recently, sparse representation-based prior 
models have been proposed and have shown very promising single 
image restoration and SR results [28]–[31]. Among these models, the 
TV model is a very popular one because of its strong ability of edge 
preserving. However, the traditional TV model also has its 
shortcoming in that because it assumes that the image is piecewise 
smooth, some “pseudo-edges”, which are also called the “staircase 
effect”, may be produced in the smooth regions, especially in high 
noise or blur conditions [32]. 

Therefore, to overcome the shortcoming mentioned above, some 
spatially adaptive TV (SATV) models, which use the spatial 
information to constrain the regularization strength in each pixel, have 
been developed. The basic idea of the spatially adaptive regularization 
model is to use the spatial information distributed in the image to 
constrain the regularization strength. A weak regularization strength is 
enforced in the edge pixels to preserve detail information, and a strong 
regularization strength is enforced in the homogeneous area pixels to 
effectively suppress noise. The first spatially adaptive idea for a TV 
model can be attributed to Strong et al. [33], where the authors 
proposed to use a gradient image to constrain the TV regularization 
strength in different pixels. A weak regularization strength is enforced 
in the edge pixels with a large gradient to preserve detail information, 
and a strong regularization strength is enforced in the flat area pixels 
with a small gradient to effectively suppress noise and the 
“pseudo-edges”. Clearly, the performance of this model is largely 
dependent on the gradient information extraction process. Because the 
gradient information is based on a pixel unit, if high-intensity noise is 
included in the observation image, a noise pixel will be falsely 
recognized as an edge pixel and a weak regularization strength will be 
enforced, which will cause the noise and “pseudo-edges” in the flat 
regions to be poorly suppressed. Recently, Chen et al. [34] proposed a 
new edge indicator called “difference curvature”, instead of the 
gradient information, to further improve Strong’s method. However, 
although the difference curvature indicator works better than the 
gradient information, it is also based on a pixel unit, and cannot work 
well in high noise intensity conditions. Guo et al. [35] proposed a local 
mutual information weighted TV model to denoise a magnetic 
resonance image (MRI), but this approach needs a regulating image to 
compute the local mutual information, which limits it to use with MRI 
images. Under the variational Bayesian framework, Chantas et al. [36] 
developed a product of a spatially weighted TV model, in which the 
image restoration and spatially weighted parameter estimation are 
executed simultaneously. Chopra et al. [37] proposed to adapt the 
smoothly clipped absolute deviation (SCAD) penalty theory from the 
statistical community to improve the SATV model. In addition, the 
SATV model has also been used on color image 
sharpening-demosaicking problems [38]. 
C. Proposed Algorithm 

In this paper, we aim to construct the spatial constraint from a 
regional perspective, and a regional spatially adaptive total variation 
(RSATV) model is proposed. The main idea and contribution of the 
RSATV model can be concluded as follows, and the outline of the 
proposed RSATV model is specifically presented in Fig. 2. 
 To suppress the effect of the noise, a median filter process is enforced 
on the pixel-based spatial information, before it is used to construct the 
spatial weight, After the spatial weight is computed, it is mean filtered 
and classified with the k-means clustering method, and the spatial 
weight in different image regions is defined with the cluster center 
value of each spatial information class, instead of each pixel, as in the 
traditional SATV models. This means that for different regions, 
different regularization strengths are enforced, which maintains the 

homogeneous nature of the spatial information and further suppresses 
the effect of noise. For the optimization process, the 
majorization-minimization (MM) algorithm is adopted. In each 
iteration, both filtering and clustering processes are executed, and the 
spatial weight is updated iteratively, which maintains a more accurate 
and robust regional spatial information constraint. 
D. Organization of the Paper 

 The remainder of this paper is organized as follows. The 
regularization-based SR model is described in Section II. In Section III, 
our RSATV model is presented in detail. The optimization process is 
described in Section IV. In Section V, the experimental results and a 
discussion are presented and, finally, conclusions are drawn in Section 
VI. 

 

 
Fig. 2. Outline of the proposed RSATV model (the red dashed line 

presents our contribution). 

 

II. TOTAL VARIATION REGULARIZED SUPER-RESOLUTION 

In this section, we introduce the regularized SR model and the TV 
regularization model. 
A. The Regularized Super-Resolution Model 

For the degradation model presented in (1), because the SR 
process is an ill-posed problem, some prior information about the HR 
image should be added to guarantee a stable and relative optimal 
solution. A popular and effective approach to this problem is to use the 
regularization-based least squares method, which has the following 
formulation [39]: 

              
2

2
1

ˆ arg min{ ( )}
p

k k
x k

x y DBM x P x


                          (2) 

In (2), p  represents the number of LR 

images,
2

2
1

p

k k

k

y DBM x


  is the data fidelity item, which stands for 

the fidelity between the observed LR image and the original HR image, 

and ( )P x is the regularization item, which gives a prior model of the 

HR image x .  is the regularization parameter, which controls the 
trade-off between the data fidelity and prior item. 
B. Total Variation Regularization 

 In (2), the regularization item ( )P x , which stands for the prior 

distribution of the HR image, plays a very important role in the SR 
process. It controls the perturbation of the solution, solves the ill-posed 
problem for SR reconstruction, and guarantees a stable HR estimation. 
Among the many proposed prior models, the TV model is very popular 
and effective because of the property of edge preserving [40]. For the 
HR image x , the TV model can be defined as follows: 
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                                   2 2

( ) h v

i i

i

TV x x x                            (3) 

where 
h

i
  and 

v

i
  are linear operators corresponding to the 

horizontal and vertical first-order differences, respectively. At pixel i , 
h

i
x = ( )i r i

x x , ( )
v

i i b i
x x x   , and ( )r i  and ( )b i  

represent the nearest neighbor to the right and below the pixel, 
respectively. The TV model presented in (3) is often defined as an 
isotropic total variation model, which means it is unaffected by 
rotation, reflection and changes in the position of an image [41]. 
Correspondingly, the anisotropic TV model is also defined as: 

                                ( ) h v

i i

i

TV x x x                               (4) 

Usually, an isotropic TV model is preferred over the anisotropic 
ones [41], [42]. Therefore, in this paper, an isotropic TV model is used. 

Substituting ( )P x  in (2) by ( )TV x , as presented in (3), the 

TV SR problem can be written as: 

           2

2
1

ˆ arg min{ ( )}
p

k k
x k

x y DBM x TV x


                           (5) 

 
III. RSATV: REGIONAL SPATIALLY ADAPTIVE TOTAL VARIATION 

MODEL 
In this section, our regional spatially adaptive total variation 

(RSATV) model is introduced in detail. 
A. Spatial Information Extraction and Filtering 

For a given image x , we first extract the edge information 

distributed in the image. In this paper, the difference curvature 
indicator proposed in [34] is used. It has been proved that this indicator 
can effectively distinguish edges from flat and ramp areas in the image, 
and it performs better than the traditional gradient operator [34]. The 
definition of the difference curvature indicator is introduced as 
follows: 

For the ith  pixel in the image x , the difference curvature i
C  is 

defined as: 

                                            
i

C u u                                (6) 

where:                      
2 2

2 2

2
x xx x y xy y yy

x y

u u u u u u u
u

u u


 



                         (7) 

                                       
2 2

2 2

2
y xx x y xy x yy

x y

u u u u u u u
u

u u


 



                      (8) 

where   and   are the direction of the gradient and the direction 

perpendicular to the gradient. In (7) and (8), x
u , y

u , xx
u , yy

u  and 

xy
u stand for the first and second derivative gradient information of 

the pixel, respectively.    denotes the absolute value operator. u  

and u  represent the second derivatives in the direction of the 

gradient u  and in the direction perpendicular to u . The 

behavioral analysis of the difference curvature can be concluded as 
follows [34]: 

1) For edges, u  is large and u  is small, so i
C  is large. 

2) For flat and ramp regions, u  and u  are both small, so i
C  

is small. 

3) For noise pixels, u  and u  are both large, so i
C  is small. 

Before using the difference curvature information to construct the 
spatial weight, the difference curvature information is filtered with a 
median filter. The reason why the median filter is used will be 
explained specifically in the last part of this section. For example, for a 

3 3  neighborhood window around ,i j
C  (Fig. 3), the median value 

of its neighborhood pixel is selected as the filtering result. 

                   1, 1 1, 1, 1, 1( , , )i i j i j i j i jV median C C C C                      (9) 

i, jC

1i , jC1 1 i , jC 1 1 i , jC

1i, jC 1i, jC

1 1 i , jC
1i , jC 1 1 i , jC

 
Fig. 3. The neighborhood of 

i, jC  

B. Spatially Weighted Parameter Construction 
After the spatial information is extracted and filtered, the 

following process is used to relate the spatial information of each pixel 
to the regularization strength of the TV model. In this paper, we 

construct a spatially weighted parameter 
i

W  for each pixel, as 

follows: 

                                             
1

1
i

i

W
V




                             (10) 

where 
i

V  is the median filtered difference curvature value of pixel i , 

and   is a contrast factor. For the TV model in (3), we add the 

spatially weighted parameter in the following way: 

                2 2

( ) h v

i i i

i

PSATV x W x x
      
 

                       (11) 

2

2
1

ˆ arg min{ ( )}
p

k k
x k

x y DBM x PSATV x


                      (12) 

From (10), (11) and (12), it is shown that the spatially weighted 

parameter 
i

W  can adaptively adjust the regularization strength of the 

TV model in different pixels in the image. For the flat region pixels, 

because the difference curvature i
V  is small, the weighted parameter 

i
W  will be large, and a strong regularization strength will be enforced 

on them to suppress noise. Conversely, for edge region pixels, as the 

difference curvature 
i

V  is large, the weighted parameter 
i

W  will be 

small, and a weak regularization strength will be enforced on them to 
preserve edge information. 
C. Spatially Weighted Parameter Filtering and Clustering 

Next, to automatically extract the flat regions and realize the 
spatially adaptive idea from a regional perspective, we propose to 
classify 

i
W  with a k-means clustering approach, which has also been 

used in clustering based denoising problems [42], [43]. We expect the 
pixel-based spatial weight 

i
W  to be divided into not necessarily 

contiguous regions, and each region will contain pixels with a similar 
spatial weight. Finally, the regularization strength of each pixel in the 
same clusters is controlled by the cluster center value. In the following 
paragraphs, the detail procedure is given. 

Firstly, the spatially weighted parameter 
i

W  is smoothed with a 

mean filter to help the clustering: 
 

                                     
2

2
1

1 w

i i

i

U W
w 

                                  (13) 



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

  
 

   
(a)  (b)  (c)  

   
(d) (e) (f) 

 
Fig. 5. A comparison between a mean filter and a median filter in the iteration. (a) One of the HR images in the iteration; (b) the spatial 

information in (a); (c) the mean filter result on (b); (d) the median filter result on (b); (e) the regional spatial weight constructed from (c); 

and (f) the regional spatial weight constructed from (d). 
 
where w is the small window size used in the mean filter. After 

filtering, it is classified with k-means clustering. 
It is assumed that, with k-means clustering, the spatially weighted 

parameter 
i

U  is classified into n clusters, and the cluster center 

value of the cluster j  is denoted as (1,2, )
j

j n ,  . For 

example, as is shown in Fig. 4, with the k-means clustering, the spatial 

weight i
U  is classified into five clusters. The cluster with the largest 

cluster center value is determined to be a flat part, because using the 
k-means clustering approach, the pixels with a large spatial weight 

i
U  will be grouped together, and the cluster center value will also be 

the largest. Therefore, for each cluster, the cluster center value j
  is 

known and can be used to control the regularization strength. It can be 
clearly seen from Fig. 4 that, with the clustering process, a flat part can 
be automatically extracted and a large regularization strength can be 
easily enforced on it. 

 

Fig. 4. The k-means clustering process of the spatial weight i
U . 

For each region, because the cluster center value j
  is known, 

the final spatial weight is defined as follows: 

                               

jregion

i

j

if i
U

if i

 



   

     flat region

          detail region
              (14) 

where   is a constant parameter which helps to control the 

regularization strength and guarantee that a large regularization 
strength is enforced in the flat regions of the image. 

From the above description, it can be seen that in the flat regions of 
the image, a large spatial weight value can enforce a strong 
regularization strength to suppress noise and the “pseudo-edges” 
phenomenon. Conversely, in the detail regions of the image, a small 
spatial weight parameter can guarantee a weak regularization strength 
to preserve the detail information. 

After the spatially weighted parameter is constructed for each 
spatial region of the image, the RSATV model used in this paper can 
be defined as: 
                                  

   2 2

( ) region h v

i i i

i

RSATV x U x x
      
 

             (15) 

D. The Reason Why a Median Filter is Used 
In Section III-A, a median filter is used to reduce the noise or 

artifacts in the spatial information i
C . The reason why a median filter 

is used here is strongly related to the structure of i
C . In our method, 

the HR image is solved iteratively, the spatial information is extracted 
in all the iterations , and the “pseudo-edges” are also reduced 
iteratively. Over the first few iterations, because of the effect of the 
noise, the spatial constraint is not accurate, causing the 
“pseudo-edges” to still exist in the reconstruction image. 
Consequently, the “pseudo-edges” will also be present in the spatial 
information i

C  extracted from the SR image. For the “pseudo-edges”, 
they can be more suitably reduced with a median filter than a mean 
filter smoothing. With a median filter.  
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Fig. 6 A comparison between a mean filter and a median filter on the final SR results (noise variance = 18). 

 
Fig. 5 is a comparison between a mean filter and a median filter in 

the iteration. From the figure, it can be seen that some “pseudo-edges” 
appear in the reconstruction image in each iteration, which can be seen 

more clearly from the spatial information extraction result 
i

C in (b). If 

a mean filter is used on 
i

C , we can see that although the 

“pseudo-edges” in the flat region are partially suppressed, the edge and 
texture information is smoothed. However, with a median filter, not 
only are the “pseudo-edges” in the flat region well suppressed, but this 
is also done without smoothing of the detail information. The 
advantage of a median filter is also reflected in the clustering results of 
(e) and (f), where it can be seen that the regional spatial weight 
produced by a median filter is more reasonable. 

Fig. 6 is a comparison between the final reconstruction results with 
mean and median filters. This shows that a more accurate spatial 
constraint is produced with a median filter, and a better reconstruction 
image is also produced. 

 
V. MAJORIZATION-MINIMIZATION OPTIMIZATION 

In this paper, the RSATV SR model is optimized with the MM 
approach proposed in [44]–[47]. The main idea of the MM 
optimization approach is to replace the traditional non-quadratic 
function with a quadratic and differentiable upper bound (majorization) 
equation, and then the optimization of the non-quadratic function can 
be replaced with the iterative optimization of the majorization 
equation [47]. 

To accomplish the MM idea with the RSATV model, we first 
consider the following relationship: 

                                 
2 2

a b a b
ab a

b

 
                              (16) 

Let 
m

x  be the current iterated image, and x  is the HR image to 

be solved in the next iteration. Let 

       2 2 2 2

,and h m v m h v

i i i ib x x a x x        . 

Applying (16) to the RSATV model in (15), the functional 
majorization of the RSATV model in (15) can be defined as: 
             

   

2 2 2 2

2 2

1
( | )

2

h v h m v m

i i i im region

RSATV i
h m v mi
i i

x x x x
G x x U

x x

  
           

      


  (17) 

In (17), because 
m

x  is known, (17) can be further written as: 

   

   
   

2 2

2 2

1
( | )

2

h v

i im region

RSATV i
h m v mi
i i

x x
G x x U C

x x

  
         

       


          (18) 

Where C  is a constant. Define 
m

i
 , which has the formation: 

                        

   2 2

1m

i
h m v m

i i
x x

 
  

                          (19) 

Let 

h

v

R
R

R

 
  
 

, 

m

m

m
Q

 
   

 and 

( )m m

i
diag   .

h
R  and 

v
R represent two matrices that have a 

size of 1 2 1 2H H H H , such that 
h

R x  and 
v

R x  are the 

first-order differences of x . Equation (18) can be further written as: 

     2 21
( | )

2
m region m h v

RSATV i i
i i

i

G x x U R x R x C 
     
 
              

(20) 
Finally, (20) can be written as: 

                ( | ) ( ) ( )   m T m

RSATVG x x Rx Q U Rx                   (21) 

                               ( )region

i
U diag U                                      (22) 

Incorporating (21) into (2) and replacing ( )P x  with 

( | )m

RSATVG x x , the final functional majorization of the whole cost 

function can be written as: 
                         

2

2
1

( | ) { (( ) ( )}
p

m T m

k k

k

G x x y DBM x Rx Q U Rx


             (23) 

For (23), because it is quadratic and differentiable, minimization 
with respect to x  leads to the following linear system: 



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

                         

( 1)

1

1

( ( ) ( ) (( ) ( ))

( )

p
T T m m

k k

k

p
T
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k

DBM DBM R Q U R x

DBM y

 





 






           (24) 

For (24), the conjugate gradient (CG) algorithm can be used for 
the optimization. In each MM iteration, the regional spatially weighted 

parameter 
region

i
U  is updated. It is also important to mention that the 

MM framework for the RSATV model will lead to the same result as 
the iterative reweighted norm (IRN) algorithm proposed in [48], which 
can also be used to optimize the RSATV model. 
 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

A.  Experiment Setting 

① Experiment Data 
 In our experiments, four simulated datasets and two real 

experiment datasets are used to verify the effectiveness of the 
proposed algorithm. The dynamic range of the six datasets is between 
0 and 255. 

The four original HR images used are, respectively, the 
“cameraman” image, with a size of 200 200 , the “aerial” image, 
with a size of 200 200 , the “Barbara” image, with a size of 
256 256 , and the “house” image, with a size of 256 256 . The 
four original HR images are respectively shown in Fig. 7 (a)–(d). In 
the real data experiments, two datasets are used to verify the proposed 
algorithm. One dataset is the “EIA” image sequence obtained from the 
Multidimensional Signal Processing (MDSP) Research Group of 
UCSC [49], which consists of 16 frames with a size of 90 90 . The 
other dataset is the “surveillance” video sequence, which was also 
provided by the MDSP Research Group of UCSC, and consists of 15 
frames with a size of 66 76 . In order to reduce the computational 
load, we just select the first 10 frames in the two real datasets. The 
well-performing registration approach presented in [50] is used as the 
motion estimation method. 

Fig. 7. The original images used in the simulated experiments: (a) 

the “cameraman” image, (b) the “aerial” image, (c) the “Barbara” 
image, and (d) the “house” image. 

 

② SR Quality Evaluation Index 
In the simulated experiments, we use the peak signal-to-noise ratio 

(PSNR) and the structural similarity (SSIM) index to evaluate the 
simulated reconstruction results. The PSNR is employed to evaluate  
the gray value similarity, and the SSIM index, as proposed by Wang et 
al. [51], [52], is used to evaluate the structural similarity. 
  

③ Parameter Setting 
For the proposed RSATV model, in all the experiments, the 

filtering window size in the median filter process in (9) is set at 7 7 , 

and the mean filter window size in (13) is set at 3 3 . The 

regularization parameter   and the parameter   in (14) are adjusted  
until the best SR results are obtained. In all the experiments, the 

parameter   in (10) is set at 0.05, and the spatial weight parameter 

cluster number n  (see Section III-C) is set at 5. In Section V-C, we 

also present a discussion on the effects of the parameter   and cluster 

number n  on the final SR performance, and give some advice about 

the setting of these parameters. 
 The termination condition of the CG procedure is set at 1e-5, and 

the termination condition of the MM procedure is also set at 1e-5. The 
resolution enhancement factor is set at 2 in all the experiments 
B.Experimental Results 

① Simulated Image Denoising Experiments 
For the degradation model in (1), if we do not consider the 

motion, blurring, and downsampling processes, and just consider the 
additive noise, the model will become: 

                                   y x n                                         (25) 

Then the SR problem is degraded to an image denoising problem, 
and the regularization-based denoising model can be expressed as 
follows: 

          
2

2
ˆ arg min{ ( )}

x

x y x P x                             (26) 

Therefore, the proposed RSATV model is first tested on an 
image denoising problem. To verify its effectiveness, it is compared 
with the TV model in [26], and some other spatially adaptive models, 
including the SATV model in [33], the SCAD model in [37], the ATV 
model in [34], and the PSATV model in equation (11). The “aerial” 
image is selected as the experiment data. In all these methods, the 
regularization parameter is adjusted until the best denoising result is 
obtained. 

To test the noise robustness of the different algorithms, the 
denoising results with different noise variances (8, 14 and 18, 
respectively) are given. In Fig. 8, the denoising results with a noise 
variance of 18 are shown, and in Table II, the quantitative 
evaluation results under all the different noise conditions are given. 
From Fig. 8, it can be seen the proposed RSATV model gives the 
best denoising results among the five spatially adaptive TV models. 
In the other four models, because the spatial information is all 
extracted with a pixel unit, and the extraction process is deeply 
affected by noise pixels, which results in the spatial constraint 

being uncorrected, the noise in the flat regions is not well suppressed. 
In the high noise intensity condition, in particular, the pixel-based 
spatially adaptive TV model performs even worse than the traditional 
TV model. However, in the RSATV model, because the spatial 
information is filtered, and, meanwhile, the spatial constraint is 
enforced with a region unit with the help of the k-means clustering 
process, the noise in the flat regions is well reduced, and the edge and 
texture information is also well preserved. The better performance of 
the RSATV model can also be seen in the quantitative evaluation 
results in Table I and the difference  

    

(a) (b) (c) (d) 
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(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Fig. 8. A comparison of the denoising results using the different methods: (a) original image, (b) noisy image (noise variance = 18), (c) TV 

[26], (d) SATV [33], (e) SCAD [37], (f) ATV [34], (g) PSATV, and (h) RSATV. 

   

(a) (b) (c) 

 
  

(d) (e) (f) 
 

Fig. 9. The difference images between the denoising results and the ground truth image(intensities 2% linearly stretched): (a) TV, (b) 

SATV, (c) SCAD, (d) ATV, (e) PSATV, and (f) RSATV. 
 
 
image between the denoising results and the ground truth image in Fig. 
9. It can be seen that the RSATV model gives the highest PSNR and 
SSIM values at all the different noise intensities, which illustrates the  
noise robustness of the proposed model. Meanwhile, the difference 
image in Fig. 9 also illustrates that the proposed RSATV gives a better  

 
 
denoising result than the other five spatially adaptive TV models, 
especially in the flat regions. 
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TABLE I A QUANTITATIVE EVALUATION OF THE DENOISING RESULTS IN 

DIFFERENT NOISE CONDITIONS 

Noise 
varian

ce 
 

TV 
[26] 

SAT
V 

[33] 

SCA
D 

[37] 

AT
V 

[34] 

PSAT
V 

RSAT

V 

8 

PSN
R 

31.7
3 

31.7
8 

31.3
3 

31.0
2 

31.67 32.14 

SSI
M 

0.93
6 

0.93
6 

0.94
7 

0.90
1 

0.940 0.964 

14 

PSN
R 

27.9
4 

27.7
7 

26.9
7 

27.2
0 

27.64 28.14 

SSI
M 

0.88
7 

0.89
3 

0.87
9 

0.83
4 

0.870 0.918 

18 

PSN
R 

26.2
9 

25.9
0 

25.2
4 

25.6
4 

25.79 26.46 

SSI
M 

0.84
4 

0.83
5 

0.82
9 

0.80
1 

0.828 0.897 

 
② Simulated Super-Resolution Experiment 

 Next, to assess the relative merits of the proposed methodology, we 
test it on an multi-frame image super-resolution problem. Firstly, it is 
tested on a simulated process. 

In the simulated process, with the degradation model described in 
(1), the HR image is first shifted with sub-pixel displacements of (0,0), 
(0.5,0.5), (0.5,0) and (0,0.5) to produce four images. The image 
sequence is then convolved with a Gaussian-type PSF of 5 5  
window size and unit variance, and downsampled with a factor of 2 in 
both the vertical and horizontal directions. Finally, zero-mean 
Gaussian noise added. We compare the proposed RSATV algorithm 
with the TV regularization in [26], the ATV model in [34], the PSATV 
model in in equation (11), and some other non-TV models used in the 
SR problem, including the Laplacian model in [13], and the BTV 
model in [21]. For the BTV model [21], the experiment parameters 

are: 2, 20,  and  0.8P     . In all the prior models, the 

regularization parameter is adjusted until the best SR result is 
archived. 

The SR results of the four simulated experimental datasets are 
shown in Fig. 10, which presents the SR results of the four HR images 
under noise variance 18. The difference images between the SR image 
and the true HR image are shown in Fig. 11. The quantitative 
evaluation results using the PSNR and SSIM indexes are shown in 
Table II-V. 

From the SR results presented in the four figures, it can be seen 
that the proposed RSATV produces a better SR image than the TV 
model and the PSATV model. In the TV SR image, the noise in the flat 
regions of the image is not well suppressed, and some “pseudo-edges” 
are produced. When the noise intensity becomes higher, the 
“pseudo-edges” are more obvious. For the PSATV model, it was 
found that when the noise intensity is low, it can produce a better SR 
result than the TV model. However, when the noise intensity becomes 
higher, the SR result becomes worse, and, in the same way as with the 
TV model, some “pseudo-edges” are produced in the flat regions. The 
reason for this is that the PSATV model constructs the spatial 
information constraint from a pixel level, which causes the noise 
pixels in the flat regions to be falsely identified as edge pixels and 
given a small spatial weight. This causes the noise to be poorly 
suppressed and some “pseudo-edges” are produced. However, with the 
RSATV model, because the spatial information filtering and spatial 

weight clustering processes are added, a more accurate spatial 
constraint is enforced, and a better SR image is produced. The better 
performance can also be seen in the difference image, from which it 
can be seen that the RSATV model SR image is more close to the true 
HR image, especially in the flat regions. 

The better performance of the proposed RSATV model can also 
be seen in the quantitative evaluation results presented in Tables II–V. 
It can be seen that the proposed approach produces the highest PSNR 
and SSIM values among the five models, which is consistent with the 
visual effect of the reconstructed images in Figs. 10 and 11. 
③ Real Data Super-Resolution Experiments 

To verify the performance of the proposed RSATV model on 
real data, in Figs. 12–13, we present the SR results from the two real 
experiment datasets. 

The experimental results for the “EIA” image sequence are 
presented in Figs. 12 and 13. The PSF of the sequence is assumed to be 

Gaussian-type, with a window size of 4 4  and a variance of 1. Of 
the five prior models, in the Laplacian model, the noise in the flat 
regions is not well suppressed, and in the BTV, TV and PSATV 
models, although the noise in the flat regions is suppressed, to some 
extent, some “artifacts” are produced. However, because the spatial 
information constraint is considered from a regional level, our RSATV 
model gives the most promising SR image. In the flat areas, the noise 
is well suppressed, but without losing the edge information, which can 
be clearly seen from the cropped regions presented in Fig. 13. 

The results of the second real data experiment are shown in Figs. 
14 and 15. The PSF of the sequence is assumed to be Gaussian-type, 
with a window size of 5 5  and a variance of 1. From the SR images, 
it can be clearly seen that the proposed RSATV model gives better SR 
results than the other five models. Because the spatial information 
constraint is considered from a regional level, and the spatial 
information filtering and spatial weight clustering processes can 
overcome the effect of the noise, the noise in the flat regions is well 
suppressed and the edge information is better preserved. However, in 
the TV model SR image, because the spatial information constraint is 
not considered, the noise in the flat regions is not well suppressed. In 
the PSATV SR result, because the spatial information constraint is 
considered just based on each pixel, it is more sensitive to noise in the 
flat regions, and a noise pixel is likely to be falsely identified as an 
edge pixel. This leads to the noise in the flat regions being poorly 
suppressed, which can be clearly seen in the cropped regions presented 
in Fig. 15. 
C. Selection of the parameters in the RSATV model 

Parameter   in (10): In (10), the parameter   is used to 

control the spatial information weighted parameter 
i

W  in the SR 

process. If   is too small, the edge region pixels will be given almost 

the same spatial weight as the flat region pixels, and then the spatially 
weighted idea cannot be well realized. Conversely, if it is too large, a 
noise pixel in the flat regions will be given a small weight, and the 
noise cannot be effectively reduced. Therefore, in Tables VI–VIII, the 

effect of the parameter   on the final SR performance is analyzed. In 

all three Tables, it is found that a better SR image can be obtained 

when the parameter   is set at 0.05. Therefore, in this paper, 

parameter   is empirically set to be 0.05 in all the experiments. In 

our future research, we will explore some adaptive methods of 

selecting the optimal value of parameter  . 
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(a) (b) (c) (d) 

Fig. 10. The super-resolution results of the “cameraman” image under a noise variance of 18: (a) the bilinear interpolation result, (b) the 
TV super-resolution image, (c) the PSATV super-resolution image, and (d) the proposed RSATV super-resolution image. 

 
Parameter   in (14): In (14), the spatial weight of the flat region 

j
  is multiplied with a parameter   to ensure that a large 

regularization strength is enforced and the noise is well suppressed. 
The setting of this parameter will affect the final SR performance. If it 
is too large, the SR result will be blurred, and, conversely, if it is too 
small, the noise cannot be suppressed well. Therefore, in this part, to 
analyze the effect of the parameter   on the SR performance, using 

the “cameraman” image as an example, we plot the changes in the 
PSNR values using different   values (from 1–10) under different 
noise intensities, which is shown in Fig. 16. From the plot, it can be  

 

seen that when the noise intensity is low, a small   value should be 

used, and with the increase in the noise intensity, a large   value is 

more suitable. From our test on the four simulated datasets, it is more 

appropriate to set the parameter   to 1000
2 , where 

2  is the 

additive noise variance, which is normalized to 0–1. For example, for 
the noise variances of 8, 11, 14, 16 and 18, which are respectively 
about 0.001, 0.002, 0.003, 0.004 and 0.005 when normalized to 0–1, 
the appropriate   values are 1, 2, 3, 4 and 5, respectively. This is just 

an empirical example of the selection of the parameter  , and from 

our experiments, it was found that a manual adjustment of the 
parameter is also possible and does not consume much time. We 
advise that, in most cases, the optimal value of this parameter will be  
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(a) (b) (c) 

Fig. 11. The difference images between the SR results in Fig. 10 and the true HR image in Fig.7 (intensities 2% linearly stretched): (a) the 

TV super-resolution image (b) the PSATV super-resolution image, and (c) the proposed RSATV super-resolution image.
 
between 1 to 10. We will pay more attention to the adaptive setting of 
this parameter in our future research. 
 
The cluster number n in Section III-C: In Section III-C, the k-means 
clustering method is adopted to construct the spatial weight from a 
regional perspective. In the k-means process, the cluster number n  is 

an important parameter. Therefore, in this part, we present an analysis 
about the effect of the cluster number n  on the final SR result. In Fig. 

17, the change of the PSNR values with different cluster numbers of 
n  (from 3–10) under different noise In conditions is plotted.  

 
In Fig.18, the change of the clustering results with different cluster 
numbers with the noise variance of 18 is also presented. 

From the analysis, it can be seen that in low noise conditions, the 
change of the cluster number from 3 to 10 produces little effect on the 
SR result, while with an increasing noise intensity, the PSNR value 
changes a little, but it is not so obvious. In our experiments, the cluster 
number is empirically set to be 5 in all cases. In addition, it can be seen 
from Fig.18 that the structure information of the image should also be 
considered in the selection. For a simple structure image (such as the 
“house” image), the cluster number should be low, and for a complex 
structure image (for example, the “Barbara” image), the cluster 
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number should be a little higher. In our future research, we will 
explore some adaptive methods of selecting the cluster number. 
TABLE II. THE QUANTITATIVE EVALUATION RESULTS USING THE PSNR 

AND SSIM INDEXES OF THE “cameraman” IMAGE EXPERIMENT 

Nois
e 

vari
ance 

Evalu
ation 
index 

Laplaci
an[13] 

BTV
[21] 

TV[
26] 

ATV
[34] 

PSA
TV 

RS

AT

V 

8 
PSNR 26.61 

27.8
9 

28.
378 

28.3
5 

28.5
9 

28.8

7 

SSIM 0.717 
0.80

7 
0.9
03 

0.84
2 

0.90
753 

0.91

1 

11 
PSNR 25.36 

26.3
8 

27.
08 

26.8
3 

27.4
5 

27.7

8 

SSIM 0.677 
0.82

1 
0.8
76 

0.78
9 

0.87
2 

0.88

7 

14 
PSNR 24.56 

25.5
5 

26.
38 

26.0
4 

26.6
7 

26.9

3 

SSIM 0.674 
0.78

6 
0.8
55 

0.74
8 

0.85
2 

0.86

8 

16 
PSNR 24.11 

24.9
7 

25.
67 

25.4
6 

26.0
1 

26.2

8 

SSIM 0.635 
0.76

5 
0.8
37 

0.74
0 

0.83
8 

0.85

3 

18 
PSNR 23.70 

24.5
5 

25.
56 

24.9
8 

25.6
2 

25.8

5 

SSIM 0.635 
0.74

3 
0.8
04 

0.73
5 

0.80
8 

0.84

5 
 
TABLE III. THE QUANTITATIVE EVALUATION RESULTS USING THE PSNR 

AND SSIM INDEXES OF THE “aerial ” IMAGE EXPERIMENT 

Nois
e 

vari
ance 

Evalu
ation 
index 

Laplaci
an[13] 

BTV
[21] 

TV[
26] 

ATV
[34] 

PSA
TV 

RS

AT

V 

8 
PSNR 28.49 

26.7
6 

28.
65 

28.6
8 

28.7
9 

29.0

2 

SSIM 0.874 
0.86

6 
0.9
32 

0.91
0 

0.93
3 

0.93

6 

11 
PSNR 26.70 

25.6
1 

27.
16 

27.0
1 

27.2
6 

27.4

9 

SSIM 0.817 
0.86

0 
0.9
01 

0.86
3 

0.90
3 

0.91

4 

14 
PSNR 25.86 

24.7
1 

26.
24 

26.1
7 

26.4
2 

26.5

5 

SSIM 0.808 
0.83

4 
0.8
81 

0.84
7 

0.88
4 

0.90

3 

16 
PSNR 25.21 

24.0
7 

25.
37 

25.4
7 

25.6
3 

25.8

1 

SSIM 0.781 
0.80

8 
0.8
63 

0.82
7 

0.85
8 

0.89

1 

18 
PSNR 24.61 

23.6
1 

24.
85 

25.0
4 

25.1
9 

25.2

2 

SSIM 0.772 
0.78

4 
0.8
47 

0.81
4 

0.84
4 

0.85

7 
 

TABLE IV. THE QUANTITATIVE EVALUATION RESULTS USING THE PSNR 

AND SSIM INDEXES OF THE “Barbara” IMAGE EXPERIMENT 

Nois
e 

vari
ance 

Evalu
ation 
index 

Laplaci
an[13] 

BTV
[21] 

TV[
26] 

ATV
[34] 

PSA
TV 

RS

AT

V 

8 
PSNR 29.97 

28.1
7 

30.
32 

30.1
7 

30.3
5 

30.5

9 

SSIM 0.826 
0.80

4 
0.8
80 

0.86
8 

0.89
0 

0.89

6 

11 
PSNR 28.22 

26.8
2 

28.
65 

28.2
7 

28.6
6 

28.8

3 

SSIM 0.777 
0.77

3 
0.8
34 

0.79
9 

0.84
2 

0.85

5 

14 
PSNR 27.13 

25.9
3 

27.
65 

27.2
3 

27.6
8 

27.9

3 

SSIM 0.754 
0.72

8 
0.8
05 

0.78
3 

0.81
1 

0.82

4 

16 
PSNR 26.47 

25.4
0 

26.
96 

26.5
3 

26.9
9 

27.1

9 

SSIM 0.716 
0.70

3 
0.7
83 

0.74
7 

0.79
1 

0.79

9 

18 
PSNR 25.89 

24.8
7 

26.
54 

26.0
4 

26.5
0 

26.7

3 

SSIM 0.701 
0.67

2 
0.7
53 

0.72
6 

0.75
7 

0.77

9 
 
TABLE V. THE QUANTITATIVE EVALUATION RESULTS USING THE PSNR 

AND SSIM INDEXES OF THE “house” IMAGE EXPERIMENT 

Nois
e 

varia
nce 

Evalu
ation 
index 

Laplaci
an[13] 

BTV
[21] 

TV[
26] 

ATV
[34] 

PSA
TV 

RSA

TV 

8 
PSNR 30.78 

30.7
3 

32.0
1 

31.65 
32.0

8 
32.1

8 

SSIM 0.800 
0.80

9 
0.83

7 
0.821 

0.83
9 

0.83

9 

11 
PSNR 29.41 

29.6
8 

30.8
8 

30.32 
30.9

0 
31.0

6 

SSIM 0.725 
0.78

6 
0.81

1 
0.781 

0.81
4 

0.81

7 

14 
PSNR 28.63 

28.9
9 

30.1
0 

29.42 
30.1

8 
30.2

1 

SSIM 0.714 
0.76

6 
0.79

4 
0.748 

0.79
7 

0.79

9 

16 
PSNR 28.00 

28.4
3 

29.6
3 

28.81 
29.5

5 
29.6

8 

SSIM 0.712 
0.75

0 
0.77

9 
0.720 

0.78
3 

0.78

3 

18 
PSNR 27.60 

28.0
5 

29.1
9 

28.37 
29.0

8 
29.2

3 

SSIM 0.689 
0.73

8 
0.77

5 
0.706 

0.77
0 

0.77

9 
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(a) (b) (c) 

   
(d) (e) (f) 

  
(g) (h) 

Fig. 12. Reconstruction results of the “EIA” image sequence: (a) LR image, (b) bilinear interpolation, (c) bicubic interpolation, (d) 

Laplacian regularization, (e) BTV regularization, (f) TV regularization, (g) PSATV regularization, and (h) RSATV regularization. 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) 
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Fig. 13. Detail regions cropped from Fig. 12: (a) LR image, (b) bilinear interpolation, (c) bicubic interpolation, (d) Laplacian 

regularization, (e) BTV regularization, (f) TV regularization, (g) PSATV regularization, and (h) RSATV regularization. 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) 

Fig. 14. Reconstruction results of the “surveillance” video sequence: (a) LR image, (b) bilinear interpolation, (c) bicubic interpolation, (d) 

Laplacian regularization, (e) BTV regularization, (f) TV regularization, (g) PSATV regularization, and (h) RSATV regularization. 

 

   
(a) (b) (c) 

   
(d) (e) (f) 
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(g) (h) 

Fig 15. Detail regions cropped from Fig. 14: (a) LR image, (b) bilinear interpolation, (c) bicubic interpolation, (d) Laplacian 

regularization, (e) BTV regularization, (f) TV regularization, (g) PSATV regularization, and (h) RSATV regularization. 
 

TABLE VI. THE CHANGE OF PSNR VALUES WITH DIFFERENT VALUES OF   

UNDER DIFFERENT NOISE VARIANCES WITH THE “CAMERAMAN” IMAGE 

   

Nois
e 

0.00
1 

0.00
5 

0.01 0.05 0.1 0.5 1 

8 
28.1

3 
28.5

1 
28.5

1 
28.8

7 

28.7
7 

28.2
7 

28.
20 

14 
26.1

0 
26.6

7 
26.7

4 
26.9

3 

26.1
1 

25.6
5 

25.
51 

18 
25.1

9 
25.3

7 
25.2

3 
25.8

5 

25.3
7 

24.2
2 

24.
12 

TABLE VII. THE CHANGE OF PSNR VALUES WITH DIFFERENT VALUES OF 

  UNDER DIFFERENT NOISE VARIANCES WITH THE “AERIAL” IMAGE 


 

Nois
e 

0.00
1 

0.00
5 

0.01 0.05 0.1 0.5 1 

8 
28.6

7 
28.6

1 
28.8

8 
29.0

2 

28.5
5 

28.4
0 

28.4
9 

14 
26.1

4 
26.4

6 
26.2

6 
26.5

5 

25.6
7 

25.0
4 

24.9
9 

18 
23.5

2 
24.9

9 
25.0

4 
25.2

2 

24.8
5 

24.5
5 

24.3
0 

 
TABLE VIII. THE CHANGE OF PSNR VALUES WITH DIFFERENT VALUES 

OF   UNDER DIFFERENT NOISE VARIANCES WITH THE “BARBARA” 

IMAGE 

   

Noise 
0.001 0.005 0.01 0.05 0.1 0.5 1 

8 29.95 30.14 30.41 30.59 30.41 30.08 29.85 
14 26.97 27.14 27.46 27.93 27.65 26.44 26.25 
18 25.56 25.29 26.19 26.73 26.63 25.35 25.15 
 

 
Fig. 16. Change in the SR performance with different  values  

under different noise variances. 
VI CONCLUSION 

The traditional spatially adaptive total variation model has the 
shortcoming of being sensitive to noise, and it performs poorly in high 
noise intensity conditions. To overcome this, in this paper, we propose 
a regional spatially adaptive total variation (RSATV) super-resolution 
algorithm with spatial information filtering and clustering. The spatial  

information is first extracted for each pixel, and then the spatial 
information filtering process and spatial weight clustering process are 
added. With these two processes, the regularization strength of the 
total variation model is adjusted for each region with different spatial 
properties, rather than for each pixel, as in the traditional spatially 
adaptive TV model. The simulated and real data experiments 
presented in Section V show that the proposed RSATV model can 
better suppress the noise in the flat regions of an image, without losing 
the edge and detail information. 

In our future research, we will focus on adaptive parameter 
selection for the method, and we will also investigate the use of more 
efficient optimization algorithms to accelerate the solution speed of 
the RSATV model, such as the FISTA and MFISTA algorithms 
detailed in [53]–[55], Furthermore, some noise-robust spatial feature 
indicators, such as steering weights [56], will also be considered, to 
further improve the spatial weight construction process of the 
proposed algorithm. 
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Fig. 17. The effect of the cluster number n  on the SR performance: (a) noise variance = 8, (b) noise variance = 14, and (c) noise variance = 18. 
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