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Regional stability analysis of discrete-time dynamic

output feedback under aperiodic sampling and input

saturation*

João Manoel Gomes da Silva Jr., Isabelle Queinnec, Alexandre

Seuret, Sophie Tarbouriech

Abstract—This paper addresses the problem of regional stability

analysis of a continuous-time plant controlled by a discrete-time dynamic

output feedback control law with saturation constraints under aperiodic

sampling. To cope with the aperiodic sampling problem, the proposed

approach is based on an impulsive system modeling and the use of looped

functionals. A generalized sector-based relation is applied to tackle the

control saturation effects. From these ingredients, conditions to ensure

regional asymptotic stability of the closed-loop system under aperiodic

sampling are derived. Based on these conditions, LMI-based optimization

problems are proposed to compute estimates of the region of attraction

of the closed-loop system or to maximize the bound on the maximal

admissible interval between two successive sampling instants, for which

the regional stability can be ensured with respect to a given set of

admissible states. A numerical example illustrates the application of the

results.

Keywords. Dynamic output feedback, saturating input, sampled-data

systems, aperiodic sampling.

I. INTRODUCTION

Issues regarding the implementation of sampled-data systems and

the effects of sampling on the stability of closed-loop systems have

been intensively studied since the 80’s (see, for instance, [1], [5],

[6], [17], [23], [22]). More recently, mainly motivated by networked

control applications [31], stability of aperiodic sampled-data systems

has benefited from a second wave of theoretical developments. The

results in this context allow to account for aperiodic samplings

in a formal way and basically rely upon four efficient approaches

of modeling. The first one is based on an uncertain discrete-time

model, which is embedded onto a polytopic model from the use of

exponential matrices [7], [8]. A second approach refers to a robust

analysis of continuous or discrete-time systems. The effects of the

aperiodic sampling is embedded into norm bounded uncertainties

and the proposed results are based on region-dividing techniques of

the admissible inter sampling interval [12] or on IQCs and passivity

arguments [20], [24]. Another approach regards the modeling of the

sampling effects considering a particular time-varying delay on the

control signal. This approach, initially proposed in [11] and further

improved in [10] or [21] is based on the use of Lyapunov-Krasovskii

functionals and impulsive systems representation for systems with

time-varying delays. Similarly to [28], a mixed continuous- and

discrete-time approach has been proposed in [26], [27] through the

concept of looped-functionals and adapted to the case of impulsive

systems in [4]. This alternative method authorizes a larger class of

functionals than in the Lyapunov-Krasovskii approach and has some

similarities with the notion of clock-dependent Lyapunov-function,

employed for instance in [2]. The reader may refer to [3] for detailed

comparison between these two approaches. It should however be

highlighted that the aforementioned methods are restricted to state

feedback control laws.
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On the other hand, a large attention has been paid to the stability

analysis and stabilization of systems with input saturation (see, for

example, [19], [29]). In this context, many methods guaranteeing

global or regional (local) asymptotic stability of the closed-loop

systems under saturating control laws have been proposed, either in

the continuous or discrete-time frameworks. Considering the periodic

sampling case, the problem of assessing stability of a continuous-

time plant controlled by a discrete-time dynamic output feedback

control law has been addressed for instance, in [9]. In [18], the

authors extended the design of discrete-time anti-windup loops to

the sampled-data case with a constant period by using the approach

proposed in [5], in order to transpose the problem into a discrete-time

framework.

In the present paper, we are interested in analyzing stability of a

continuous-time plant controlled by a discrete-time dynamic output

feedback control law with saturation constraints under aperiodic

sampling. In this context, to cope with the aperiodic sampling

problem, the proposed approach is based on the impulsive system

modeling as suggested in [13] and on the use of looped functionals.

Furthermore, a generalized sector-based condition is applied to tackle

the control saturation effects. From these ingredients, conditions to

ensure regional asymptotic stability of the closed-loop system under

aperiodic sampling are derived. Based on these conditions, LMI-

based optimization problems are proposed to compute estimates of

the region of attraction of the closed-loop system or to maximize the

bound on the maximal admissible interval between two successive

sampling instants, for which regional stability can be ensured for a

given set of admissible states.

Notation. Sn denote the set symmetric matrices of Rn×n. For given

positive scalars 0 < T1 ≤ T2, K is defined as the set of continuous

functions from an interval [0, T ] to Rn, where T is a positive scalar

in [T1,T2]. | · | and ‖ · ‖ stand for the absolute value and the Euclidean

norm, respectively. The notation P > 0 for P ∈ Sn means that P is a

symmetric positive definite matrix. For any positive integer j ≤ n, any

vector x ∈ Rn and any matrix A ∈ Rn×m, Aj , xj refer to the jth line of

matrix A, the jth component of vector x, respectively. For A ∈ Rn×m,

He{A} = A + A′. I and 0 represent the identity and zero matrices of

appropriate dimensions. Co{·} denotes a convex hull. For v ∈ Rm, each

component of the vector-valued saturation function, sat(v), is defined by

sat(v)i = sign(vi)min{u0i, |vi|}, i = 1, . . . ,m, where ±u0i denote

the symmetric limits on the ith component of v.

II. PROBLEM FORMULATION

A. Plant model

Consider the continuous-time linear plant with saturating inputs

described by:
{

ẋp(t) = Apxp(t) +Bpsat(ū(t)),

y(t) = Cpxp(t),
(1)

where xp ∈ R
np , ū ∈ R

m and y ∈ R
p represent the state, the input

and the output vectors of the plant, respectively. Matrices Ap, Bp,

Cp have appropriate dimensions and are supposed to be constant. We

assume that the control inputs are sampled, possibly in an aperiodic

manner, and the value of ū is kept constant (through a zero-order

hold) between two successive sampling instants i.e.:

ū(t) = u(tk), ∀t ∈ [tk, tk+1), (2)

The sequence of increasing positive sampling instants is denoted

by T := {tk}k≥0. It is assumed that T := {tk}k≥0 is such that
⋃

k∈N
[tk, tk+1) = [0, + ∞), so that no Zeno phenomena occurs.

Moreover, we assume that there exist two positive scalars T1 ≤ T2
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such that the difference between two successive sampling instants

Tk = tk+1 − tk satisfies

0 < T1 ≤ Tk ≤ T2, ∀k ∈ N. (3)

Note that the inter sampling time Tk can vary with time, which

allows to model an aperiodic sampling policy. The particular case of

periodic sampling corresponds to Tk = T1 = T2 = δ, ∀k ∈ N.

For output feedback purposes, we consider that the output y(t) is

sampled at the same instants of the control input, i.e. at each sampling

instant tk, the sample y(tk) is generated.

B. Discrete-time dynamic output feedback controller

Considering a digital implementation, we assume that system (1)

is controlled by a linear discrete-time dynamic output feedback

controller, described in state space as follows:

xc(tk+1) = Acxc(tk) +Bcy(tk) + Ecψ(u(tk)),

u(tk) = Ccxc(tk) +Dcy(tk),
(4)

where xc ∈ R
nc , y ∈ R

p and u ∈ R
m are the state, the input and

the output of the controller, respectively. The matrices Ac, Bc, Cc,

Dc, Ec are assumed to be constant and of appropriate dimensions.

ψ(u) is a vector-valued decentralized deadzone nonlinearity defined

as follows:

ψ(u) = sat(u)− u. (5)

The term Ecψ(u) regards a static anti-windup compensation, which

can be appended to the controller to mitigate the saturation effects

on performance and stability [15], [16].

In this case, at each sampling instant, the plant output is sampled

and its value is used to instantaneously update both the controller

state and the control input to be applied to the plant between in the

interval [tk tk+1).
Remark 1: It should be noticed that the method used to design the

controller (4) is out of the scope of the present work. Our main goal

is to provide a method to assess the stability of the sampled-data

closed-loop system defined by the connection between this controller

and the continuous plant (1). On the other hand, it is reasonable

(and relevant from a practical point of view) to assume that (4) has

been designed considering classical techniques based on a periodic

sampling paradigm, i.e. with Tk = δ, ∀k, and then to analyze the

effects on stability of a possibly aperiodic sampling policy with Tk ∈
[T1, T2]. In this case, we can assume for instance that matrices Ac,

Bc, Cc, Dc, Ec, have been designed considering one of the two

approaches below:

1) Discrete-time design. First, an exact discretization of the plant

should be performed. Considering tk+1−tk = δ, ∀k, this leads

to the following discrete-time model:

xp(tk+1) = Ap,dxp(tk) +Bp,dsat(u(tk)),

y(tk) = Cp,dxp(tk)
(6)

with Ap,d = eApδ, Cp,d = Cp, Bp,d =
∫ δ

0
eAp(δ−s)dsBp.

Thus, based on model (6), known discrete-time results can

be applied to design matrices Ac, Bc, Cc and Ec in order

to stabilize (considering periodic sampling) the closed-loop

system.

2) Controller discretization. First, a continuous-time stabilizing

controller, described by

ẋc(t) = Ācxc(t) + B̄cy(t) + Ēcψ(u(t)),

u(t) = C̄cxc(t) + D̄cy(t),
(7)

is designed considering the continuous-time plant model (1).

Then, assuming a periodic sampling, a discretization of this

controller can be performed using classical Euler or Tustin

approximations. Alternatively, a discrete-time approximation

ensuring that the value of the output of the continuous and

the discrete-time controllers coincide at the sampling instants

tk = kδ can be considered. This leads to a discrete-time

controller as in (4) with:

Ac = eĀcδ, Cc = C̄c, Dc = D̄c

Bc =
∫ δ

0
eĀc(δ−s)dsB̄c, Ec =

∫ δ

0
eĀc(δ−s)dsĒc

(8)

C. Hybrid modeling of the closed-loop system

Considering the controller (4), the state of the plant evolves in

continuous-time while the controller state and the plant input have

discrete-time updates. These behaviors can be cast in the hybrid

dynamical systems framework [13]. From the previous assumptions,

the closed-loop system dynamics can be represented by an impulsive

system described by:










ẋp = Apxp +BpDcCpxm +BpCcxc +Bpψ,

ẋm= 0,

ẋc = 0,

∀t ∈ R\T,











x+
p = xp,

x+
m= xp,

x+
c = Acxc +BcCpxm + Ecψ,

∀t ∈ T,

(9)

where x+ = x(tk+1) and ψ is the deadzone function given by

ψ = sat(Ccxc +DcCpxm)− (Ccxc +DcCpxm)

When t ∈ R\T, the evolution of the plant state follows the first

differential equation. The two other variables, representing the held

values of the plant state and the controller state, remain constant in the

interval [tk, tk+1). Since the plant dynamics evolves continuously,

if t ∈ T the plant state remains at its current value (i.e. x+
p = xp),

while the other variables are impulsively reset. We introduced the

auxiliary variable xm in (9) to represent the memory of the current

sampled value of the plant state. Actually, it couples the continuous

and the discrete-time dynamics through the control signal. Note that

u(tk) = Ccxc(tk) +Dcy(tk) = Ccxc(tk) +DcCpxm(tk).

D. Stability Analysis Problems

Considering the nonlinear closed-loop system (9) we are interested

in analyzing both the influence of the aperiodic sampling and the

control saturation on its asymptotic stability. Since no particular

assumption is assumed regarding the stability of the continuous-time

plant, i.e. matrix Ap is not necessarily Hurwitz, we mainly focus on

the regional stability analysis. Actually, it should be recalled that if

the open-loop system is exponentially unstable, only regional stability

can be ensured in the presence of control saturation [29]. In this

case, the region of attraction of the origin is defined as the set of

all initial states for which the corresponding trajectories converge

asymptotically to the origin. Nevertheless, the exact characterization

of this region is in general not possible. Hence, it is of major interest

the determination of analytical estimates of the region of attraction,

which can be seen as regions of asymptotic stability (RAS) [29].

Hence, we are concerned by the following problems:

P1. Given T1 and T2, such that 0 < T1 ≤ T2, determine an estimate

of the region of attraction of system (9).

P2. Given a set of admissible initial states X0, maximize the length

of the interval [T1, T2] of admissible inter sampling times Tk,

for which asymptotic stability of system (9) is ensured for any

initial condition in X0.
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III. PRELIMINARIES

A. Looped-functional approach

In order to tackle problems P1 and P2, instead of considering the

classical hybrid framework to study mixed continuous and discrete

dynamics as defined in [13], we use an alternative direction by

adapting the technique based on a looped functional as developed in

[4]. This approach relies on the characterization of the trajectories

of system (9) in a lifted domain [30], [4], [26]. The idea is to

view the entire state-trajectory as a sequence of lifted state function

χk(τ ) ∈ K, χk : [0, Tk] → ℜn, with [0, Tk] ⊂ [0, T2] and the

vector χk(τ ) ∈ R
n, with n = 2np + nc, being defined as follows:

χk(τ ) =





χp,k(τ )
χm,k(τ )
χc,k(τ )



 =





xp(tk + τ )
xm(tk + τ )
xc(tk + τ )





with χk(0) = lim
s→t

+

k





xp(s)
xm(s)
xc(s)



 .

(10)

Then, by using (10), the hybrid closed-loop system (9) can be

alternatively represented as follows:







































































χ̇p,k(τ ) = Apχp,k(τ ) +BpDcCpχm,k(τ )

+BpCcχc,k(τ ) +Bpψk(τ ),

χ̇m,k(τ ) = 0,

χ̇c,k(τ ) = 0,

χp,k+1(0) = χp,k(Tk),

χm,k+1(0) = χp,k(Tk),

χc,k+1(0) = Acχc,k(Tk) +BcCpχm,k(Tk)

+Ecψk(Tk),

(11)

Note that, since χ̇m,k(τ ) = 0 and χ̇c,k(τ ) = 0, it follows that

ψ̇k(τ ) = 0, i.e. ψk(τ ) = ψk(0) = ψ(Ccχc,k(0) + DcCpχm,k(0)),
for all τ ∈ [0, Tk]. Moreover χm,k(Tk) = χm,k(0) and χc,k(Tk) =
χc,k(0).

Based on the lifted function χk, we recall the following result,

which is the basis of the looped-functional approach to assess

asymptotic stability of system (9).

Lemma 1: [4] Consider system (9) and let 0 < T1 ≤ T2, be two

positive scalars and V : Rn → R
+ be a function for which there

exist real scalars 0 < µ1 < µ2 such that

∀χ ∈ R
n
, µ1||χ||

2 ≤ V (χ) ≤ µ2||χ||
2
. (12)

Then, the two following statements are equivalent.

(i) For all k ∈ N, Tk ∈ [T1, T2], the forward difference of the

function V satisfies

∆V (k) := V (χk+1(0))− V (χk(0)) < 0;

(ii) There exists a continuous functional V0 : [0, T2] × K → R,

which satisfies, for all z ∈ K and ∀Tk ∈ [T1, T2],

V0(Tk, z) = V0(0, z) (13)

and such that, for all k ∈ N, Tk ∈ [T1, T2] and τ ∈ [0, Tk],

Ẇ(τ, χk) =
Λk

Tk

+
d

dτ
[V (χk(τ )) + V0(τ, χk)] < 0, (14)

with Λk = V (χk+1(0))− V (χk(Tk)).

Moreover, if one of these two statements holds, then system (9)

is asymptotically stable for all Tk ∈ [T1, T2] .

Note that from this result it suffices to analyze the behavior of the

system in the interval [0, Tk] to assess asymptotic stability of the

closed-loop system (9). Moreover, differently from other approaches

based on Lyapunov functionals, an important feature of the present

approach is that V0 is not required to be positive.

B. Generalized sector condition

Based on the variables used to compute the control signal, let us

define χ̄k =

[

χm,k

χc,k

]

. From this definition it follows that ψk(0) =

ψk(Kχ̄k(0)) with K = [DcCp Cc].

Thus, the effects of the saturation nonlinearity can be considered

through a generalized sector condition, that applies to deadzone

nonlinearities, which is summarized in the next lemma.

Lemma 2: [15], [29] Consider K,G ∈ R
m×(np+nc) and define the

set S = {χ̄ ∈ R
np+nc ; |(Kj − Gj)χ̄| ≤ u0j , j = 1, . . . ,m}. If

χ̄ ∈ S , then the deadzone nonlinearity ψ(Kχ̄), satisfies the following

condition:

ψ(Kχ̄)′U(ψ(Kχ̄) +Gχ̄) ≤ 0, (15)

for any diagonal positive definite matrix U ∈ R
m×m.

IV. MAIN RESULT

Based on the two previous Lemmas, the following theorem is

stated. It provides conditions to determine an ellipsoidal RAS for

system (9) under aperiodic sampling.

Theorem 1: For given positive scalars 0 < T1 ≤ T2, assume

that there exist symmetric positive definite matrices P,R, symmetric

matrices X , S1, a diagonal positive definite matrix U , matrices G,

V , S2 and N of appropriate dimensions and a positive scalar α, that

satisfy, for i = 1, 2, j = 1, · · · ,m

Ψ1(Ti) =

[

Π1 + Ti(Π3 +Π4) TiN

TiN
′ −TiR

]

< 0, (16)

Ψ2(Ti) = Π1 + Ti(Π2 −Π3 +Π4) < 0, (17)

[

P + VMf +M ′
fV

′ [0 Kj −Gj ]
′

[0 Kj −Gj ] αu2
0j

]

> 0, (18)

with

Π1 = M ′
+PM+ −M ′

−PM− +Π10

−He

{

M ′
5UM5 +M ′

5UG

[

M3

M4

]}

,

Π10 = M ′
12S1M12 + He{M ′

12S2M2 +NM12},
Π2 = M ′

cRMc + He{M ′
c(S1M12 + S2M2)},

Π3 =

[

M2

M5

]′

X

[

M2

M5

]

,

Π4 = He











Mc

0
0





′

P





M1

M3

M4











,

(19)

where

M1 =
[

I 0 0 0 0
]

, M2 =
[

0 I 0 0 0
]

,

M3 =
[

0 0 I 0 0
]

, M4 =
[

0 0 0 I 0
]

,

M5 =
[

0 0 0 0 I
]

, M12 =M1 −M2,

M+=





0 I 0 0 0
0 I 0 0 0
0 0 BcCp Ac Ec



 , M− =





0 I 0 0 0
0 0 I 0 0
0 0 0 I 0



 ,

Mf =
[

I −I 0
]

,Mc =
[

Ap 0 BpDcCp BpCc Bp

]

,
(20)
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Then, if χ0(0) ∈ E(P,α) =
{

χ ∈ ℜn ; χ′Pχ ≤ α−1
}

, then for

any aperiodic sampling satisfying (3), χk(0) → 0 as k → ∞, i.e.

E(P,α) is a RAS for the closed-loop system (9).

Proof. Let a quadratic Lyapunov function candidate be defined,

for any χ in R
n, by V (χ) = χ′Pχ, where P ∈ S

n, P > 0. Thus,

the function V satisfies (12). Consider now a functional V0 defined

for any τ ∈ [0, Tk], as follows:

V0(τ, χk) = τ
Tk

(χp,k(τ )−χp,k(Tk))
′S1(χp,k(τ )−χp,k(Tk))

+ 2 τ
Tk

(χp,k(τ )− χp,k(Tk))
′S2χp,k(Tk)

+ (Tk−τ)
Tk

τ

[

χp,k(Tk)
ψk(0)

]′

X

[

χp,k(Tk)
ψk(0)

]

− τ
Tk

∫ Tk

τ
χ̇′
p,k(θ)Rχ̇p,k(θ)dθ,

with S1 ∈ S
np , S2 ∈ R

np×np , X ∈ S
np+m, R ∈ S

np such that

R > 0. Since V0(τ, χk) is equal to zero at τ = 0 and τ = Tk, it

satisfies condition (13). Moreover, it is continuous at all sampling

instants and differentiable over [0, Tk).
Then, from Lemma 1, if we prove that W(τ, χk) defined from

V (χk) and V0(τ, χk) above, is such that Ẇ(τ, χk) < 0 along the

trajectories of system (9), we can conclude that ∆V (k) < 0, which

ensures that the trajectories converge asymptotically to the origin.

From Lemma 2, if χ̄k(0) ∈ S , it follows that

Ws(χk, ψk) := 2ψ′
k(0)U

(

ψk(0) +G

[

χm,k(0)
χc,k(0)

])

≤ 0, (21)

for any diagonal positive definite matrix U . Therefore we can

combine (21) and (14) to relax the condition Ẇ(τ, χk) < 0 in a

regional context. With this aim, we define

Ẇg(τ, χk) :=
Λk

Tk

+ V̇ (χk(τ )) + V̇0(τ, χk)−
Ws(χk, ψk)

Tk

. (22)

Then, if Ẇg(τ, χk) < 0, it follows that Ẇ(τ, χk) < 0 provided

that χ̄k(0) ∈ S . In order to obtain an upper bound on the functional

Ẇg(τ, χk), we define the extended vector

ζk(τ ) = [χp,k(τ )
′
χp,k(Tk)

′
χm,k(0)

′
χc,k(0)

′
ψk(0)

′]′,

and we compute each term of Ẇg(τ, χk) separately. Let us first focus

on Λk = V (χk+1(0)) − V (χk(Tk)). From the definition of V (χk)
and matrices M+ and M− in (20), it follows that

Λk = ζk(τ )
′ [M ′

+PM+ −M ′
−PM−] ζk(τ ). (23)

To compute the second term of Ẇg , V̇ (χk(τ )), note that

χm,k(τ ) = χm,k(0), χc,k(τ ) = χc,k(0) and ψk(τ ) = ψk(0). Hence,

considering the auxiliary matrices defined in (20), we get

dV (χk(τ ))

dτ
= ζk(τ )

′



He











Mc

0
0





′

P





M1

M3

M4













 ζk(τ ).

Similarly, the sector condition, Ws, can be re-written as follows:

Ws = ζk(τ )
′

[

He

{

M ′
5U

(

M5 +G

[

M3

M4

])}]

ζk(τ ). (24)

Let us finally consider the third component of Ẇg , i.e. V̇0(τ, χk).
Considering the derivative of V0 with respect to τ and using the

matrices Π10, Π2 and Π3 defined in (19), it follows that

V̇0(τ, χk) ≤ 1
Tk
ζk(τ )

′ [Π10 + τΠ2 + (Tk − 2τ )Π3

+(Tk − τ )NR−1N ′
]

ζk(τ ),
(25)

where the upper bound has been obtained by noting that, for any

matrix N in R
(3np+nc+m)×np and any symmetric positive definite

matrix R ∈ R
np×np , the following inequality holds [27]:

−
∫ Tk

τ
χ̇p,k(θ)

′Rχ̇p,k(θ)dθ ≤ 2ζk(τ )
′N(χp,k(τ )− χp,k(Tk))

+(Tk − τ )ζk(τ )
′NR−1N ′ζk(τ ).

Hence, combining the previous expressions, it follows that

Ẇg(τ, χk) ≤
1
Tk
ζk(τ )

′[Π1 + τΠ2 + TkΠ4

+(Tk − τ )NR−1N ′ + (Tk − 2τ )Π3]ζk(τ ),
(26)

with Π1, Π2, Π3 and Π4 as defined in (19). A sufficient condition

to ensure that Ẇg < 0 consists in guaranteeing that

Π1 + τΠ2 + (Tk − 2τ )Π3 + TkΠ4

+(Tk − τ )NR−1N ′ < 0.
(27)

Note now that the inequality (27) is affine with respect to the

variable τ in [0, Tk]. Then, by convexity, it suffices to ensure that

(27) is negative for τ = 0 and τ = Tk (see [21] for more details).

Thus Ẇg < 0 if both inequalities

Π1 + Tk(Π3 +Π4 +NR−1N ′) < 0,

Π1 + Tk(Π2 − Π3 +Π4) < 0,

are satisfied. Applying the same argument on Tk for the interval

[T1, T2] and by using the Schur’s complement, conditions Ψ1(Ti) <
0 and Ψ2(Ti) < 0, for i = 1, 2, given in (16) and (17), are obtained.

Consider now matrix inequality (18). From Schur’s complement, it

follows that:

χk(0)
′(P + VMf +M ′

fV

−
[

0
(Kj−Gj )

′

]

α−1u−2
0j

[

0
(Kj−Gj)

′

]′

)χk(0) > 0
(28)

Since χm,k(0) = χp,k(0), it follows that Mfχk(0) = 0. Thus,

from (28), if χk(0) ∈ E(P,α), then χ̄k(0) ∈ S . Hence, provided

(16) and (17) are verified, it follows that Ẇ(τ, χk) < 0 and, from

Lemma 1, it follows that the state trajectory converges asymptotically

to the origin. ♦

Remark 2: Considering the particular choice of G = K, it follows

that the sector condition (15) is globally valid, i.e. it is valid ∀χ̄k(0) ∈
R

np+nc . In this case, the satisfaction of conditions (16) and (17)

ensures the global asymptotic stability of the origin of the closed-

loop system under the aperiodic sampling (see more details in [14]).

V. OPTIMIZATION PROBLEMS

In this section, we propose some optimization schemes based on

the conditions of Theorem 1 to provide solutions to problems P1 and

P2 stated in Section II.

A. Optimization of the estimate of the domain of attraction (P1)

Since the conditions of Theorem 1 guarantee that E(P,α) is a

RAS, an estimate of the actual region of attraction can be obtained

by maximizing E(P,α) considering some size criterion [29]. In this

case, given T1 and T2, a solution to P1 can be obtained from the

following optimization problem:

min trace(P ) + α

subject to (16), (17), (18)
(29)

It should be noticed that relations (16) and (17) are nonlinear

due to the product between variables G and U . However, since

U is a diagonal matrix with dimension equal to the number of

inputs, the solution to problem (29) can be computed by iteratively

solving convex LMI problems over a grid on the elements of U .

For instance, in the mono-input case U reduces to a positive scalar

and a line search algorithm can be applied. Another option may be

to encapsulate the LMI optimization step in some overall nonlinear

optimization procedure (such as the one implemented by fminsearch

Matlab function).
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B. Optimization of the allowable sampling interval (P2)

The idea is to enlarge the interval [T1, T2] for which regional

stability is guaranteed for a given set of admissible initial conditions

X0 under an aperiodic sampling policy with Tk ∈ [T1, T2]. In this

case, assuming that the discrete-time controller (4) has been computed

from a nominal periodic sampling period δ, we can consider T1 =
δ − µ and T2 = δ + µ, and the following optimization problem can

be formulated:

max µ

subject to (16), (17), (18),X0 ⊆ E(P, α)
(30)

The condition X0 ⊆ E(P,α) can be easily expressed as an LMI

constraint if X0 is described either by an ellipsoid or by a polytope.

Hence, this problem can be solved by iteratively increasing µ and

testing LMI conditions.

VI. NUMERICAL EXAMPLE

Let us consider the model of an unstable continuous-time balancing

pointer system, expressed as in (1) with the following matrices:

Ap =

[

−0 1
1 0

]

, Bp =

[

0
−1

]

, Cp =
[

1 1
]

with the saturation level u0 = 5. Note that since Ap is not Hurwitz,

in view of the saturation constraint, only local asymptotic stability

for the closed-loop system with discrete-time (or continuous-time)

control can be guaranteed. We consider a stabilizing continuous-time

dynamic controller (7), whose matrices are given by ([29], p.312):

Āc = 0, B̄c = 10, C̄c = 1, D̄c = 2, Ēc = 0. (31)

Next, we illustrate the application of our results under different

perspectives of analysis.

A. Influence of δ

Consider a discretized version of the controller obtained from (8).

Let us first consider the influence of the discretization period δ. With

this aim, we apply the conditions of Theorem 1 considering a periodic

sampling, i.e. Tk = δ = T1 = T2, ∀k. It follows that no solution for

these conditions can be found for δ larger than 0.08s.

B. Robustness with respect to aperiodic sampling

Consider the discretized version of the controller obtained from

(8) with δ = 0.02s, which is given by:

Ac = 1; Bc = 0.2; Cc = 1; Dc = 2. (32)

We evaluate now what happens under aperiodic sampling. For

this we consider an allowable intersampling interval Tk ∈ [T1, T2]
centered at δ, i.e. T1 = δ−µ and T2 = δ+µ. Considering Problem

P1, the influence of µ on the size of the obtained RAS is shown in

Figure 1. Note that, as expected, the larger is µ (i.e. the larger is the

admissible interval [T1, T2]), the smaller tends to be the region of

stability E(P,α). Moreover, the larger region is obtained with µ = 0,

which corresponds to the periodic sampling case. Regarding Problem

P2, conditions (16), (17), (18) become unfeasible when µ becomes

larger than ±24%δ.
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Fig. 1. Influence of the interval [T1,T2] with T1 = δ−µ and T2 = δ+µ on
the ellipsoidal regions of stability in the system plane (xc = 0) considering
δ = 0.02 and the following cases: µ = 0 (dashed-dotted line), µ = 10%δ
(dotted line), µ = 20%δ (solid line) and µ = 24%δ (dashed green line).
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Fig. 2. Ellipsoidal regions of stability in the system plane (xc = 0). Influence
of a periodic sampling T (T1 = T2 = T ) when the controller is discretized
with δ = 0.02. Cases with T = δ = 0.02 (dashed-dotted line), T = 0.01
(dotted line), T = 0.1 (solid line) and T = 0.29 (solid line). The continuous-
time case is plotted in dashed green line.

C. Robust periodic implementation

Consider now the dynamic discrete-time controller with the ma-

trices given in (32), but that the actual periodic sampling period is

different from δ = 0.02s. In other words, we consider T1 = T2 =
T 6= 0.02. It can be observed that conditions (16), (17) and (18)

remain feasible when reducing the sampling T much below 0.02,

although the size of the stability domain is significantly degraded.

Actually this domain shrinks as T decreases from 0.02. On the other

hand, when T is increased above the value of 0.02, the problem

remains feasible until T = 0.29. This is illustrated in Figure 2

where it can be observed the influence of the sampling period T on

the size of the stability domain. For comparison purposes, the RAS

obtained (from the application of Proposition 3.1 in [29]) considering

the continuous-time implementation of the controller is also depicted

in the figure.

An interesting aspect of this evaluation is that, with T = T1 =
T2 larger than δ, initial conditions not belonging to the region of

attraction corresponding to the continuous-time closed-loop system

(i.e. obtained from the connection between (1) and (7) with ū(t) =
u(t)) belong to the region of attraction obtained with the discrete-

time implementation of the controller. This is illustrated in Figure 3,
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Fig. 3. Time response of the closed-loop system. Left-hand side: with
discretized controller given by matrices in (32) and implemented with a
periodic sampling T = 0.1. Right-hand side: with the continuous-time
controller given by matrices in (31).

which compares the time evolution of the closed-loop system with the

discrete-time controller (32) implemented with T = 0.1 and that one

with the PI continuous-time controller (31), for the initial condition

xp(0) = [−3.3
0 ] and xc(0) = 0. In fact, this initial condition belongs

to the RAS obtained for the discrete-time controller, but does not

belong to the one associated to the continuous-time implementation.

VII. CONCLUSION

This paper provided theoretical conditions for the stability analysis

of a closed-loop system composed of a linear continuous-time plant

connected to a sampled-data dynamic output feedback controller

through a saturating input. A hybrid model for the closed-loop

system has been proposed. Then, considering a looped functional

approach, conditions for assessing the regional asymptotic stability

of the origin for the closed-loop system under aperiodic sampling

have been derived in the form of matrix inequalities. From these

conditions, LMI-based optimization problems have been proposed

to compute estimates of the region of attraction of the origin for

the hybrid nonlinear closed-loop system, as well as to maximize the

interval of admissible inter sampling time for which the regional

asymptotic stability of the closed-loop system can be ensured under

aperiodic sampling.

The extension of the approach for the synthesis of stabilizing

controllers taking into account the possibility of aperiodic sampling

is an open issue. In this case, from the hybrid nature of the system,

it is not possible to apply transformations like the ones proposed for

instance in [25] and other works to convexify the problem. Hence,

to find convex (or quasi-convex) conditions to address this problem

can be seen as a challenge and is the subject of ongoing work.
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