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The relative importance of intrinsic and extrinsic determinants of animal foraging is often

difficult to quantify. The most southerly breeding mammal, the Weddell seal, remains

in the Antarctic pack-ice year-round. We compared Weddell seals tagged at three

geographically and hydrographically distinct locations in East Antarctica (Prydz Bay,

Terre Adélie, and the Ross Sea) to quantify the role of individual variability and habitat

structure in winter foraging behaviour. Most Weddell seals remained in relatively small

areas close to the coast throughout the winter, but some dispersed widely. Individual

utilisation distributions (UDi, a measure of the total area used by an individual seal)

ranged from 125 to 20,825 km2. This variability was not due to size or sex but may be

due to other intrinsic states for example reproductive condition or personality. The type

of foraging (benthic vs. pelagic) varied from 56.6 ± 14.9% benthic dives in Prydz Bay

through 42.1 ± 9.4% Terre Adélie to only 25.1 ± 8.7% in the Ross Sea reflecting regional

hydrographic structure. The probability of benthic diving was less likely the deeper the

ocean. Ocean topography was also influential at the population level; seals from Terre

Adélie, with its relatively narrow continental shelf, had a core (50%) UD of only 200 km2,

considerably smaller than the Ross Sea (1650 km2) and Prydz Bay (1700 km2). Sea

ice concentration had little influence on the time the seals spent in shallow coastal

waters, but in deeper offshore water they used areas of higher ice concentration.

Marine Protected Areas (MPAs) in the Ross Sea encompass all the observed Weddell

seal habitat, and future MPAs that include the Antarctic continental shelf are likely to

effectively protect key Weddell seal habitat.

Keywords: marine protected areas, Antarctica, marine ecosystems, bathymetry, ecosystem monitoring, Weddell

seals
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INTRODUCTION

Where and how animals forage is fundamental to almost
all aspects of their biology. Animal foraging strategies are
determined by a complex mix of intrinsic (e.g., personality,
sex, age, and reproductive status) and extrinsic (e.g.,
topography/bathymetry, resource availability, habitat) factors
which shape the distribution and availability of prey and
presence of predators (McNamara and Houston, 1986; Stephens
and Krebs, 1986; Daunt et al., 2005; Stephens, 2008; Russell et al.,
2015). The relative importance of these factors varies within and
among species, but how a population or species responds to
change, whether short- or long-term, will depend on a complex
interplay of the relative importance of these factors and the
advantages that they confer. Quantifying the role of intrinsic
and extrinsic factors in determining foraging strategies can be
difficult due to the dynamic nature of individual behaviour and
environmental conditions (Humphreys et al., 2006). One way to
disentangle competing factors is to apply a comparative approach
wherein different demographic classes or geographic regions are
compared (Catry et al., 2009). For example, regional comparisons
of foraging behaviour in Northern fur seals, Callorhinus ursinus,
(Nordstrom et al., 2013), and southern elephant seals, Mirounga
leonina, (Hindell et al., 2016) have revealed habitat partitioning
and distinct individual foraging strategies that differ by sex
and/or location.

In the marine environment, megafauna often exhibit different
foraging behaviours over continental shelves compared to open
ocean environments, with more directed movement in the latter,
presumably a function of its less complex, if not more dynamic,
features (Sequeira et al., 2018). The Southern Ocean is one
of Earth’s most extreme marine environments, and its physical
structure is highly variable seasonally and spatially (Constable
et al., 2003). Coastal bathymetry in the Southern Ocean is
complex, with shallow banks and deep canyons compounding
dynamic and static aspects of the shelf environment, as illustrated
by the inflow of Modified Circumpolar Deep water (mCDW)
onto the shelf and the outflow of Antarctic Bottom water to the
abyssal ocean (Williams et al., 2016). This is further confounded
by the formation and movement of ice (Cavalieri et al., 1999)
which influences primary production and food web dynamics
(Nicol et al., 2000). At the same time, the Southern Ocean is
a highly productive environment that attracts multiple predator
species including migratory (e.g., southern elephant seals, killer
whales, Orcinus orca) and resident species such as Weddell
seals (Leptonychotes weddellii), Adélie (Pygoscelis adeliae), and
emperor (Aptenodytes forsteri) penguins (Hindell et al., 2020).
Although migratory species forage voraciously during spring and
summer, they are excluded from the continental shelf regions
around the Antarctic continent as the winter ice expands by up
to 300% (Cavalieri et al., 1999; Brierley and Thomas, 2002). Of
the resident species, only Weddell seals and Emperor penguins
appear capable of surviving in situ year-round without obligative
dispersal (Burns and Kooyman, 2001). Emperor penguins winter-
over with males fasting while incubating their single egg,
and females dispersing to forage (Kirkwood and Robertson,
1997), but Weddell seals continue to forage under the sea ice

and actively maintain breathing holes throughout the winter
(Kooyman et al., 1981).

There is limited understanding of the extrinsic factors
influencing Weddell seal distribution and foraging behaviour
during winter. Pioneering investigations showed that an isolated
colony at White Island, Ross Archipelago (78◦8′S 167◦24′E)
foraged by diving to the sea floor, primarily feeding upon benthic
prey (Castellini et al., 1984). Similarly, free-ranging Weddell
seals off Terre Adélie and in Prydz Bay, stayed within 5 km
of breathing holes, moving only as local food became depleted
(Heerah et al., 2016). Heerah et al. (2016) also reported regional
differences, with seals in Prydz Bay travelling up to three times the
distance and spending half the time in hunting mode than seals
off Terre Adélie. Hunting dives at both locations were pelagic,
concentrated in areas of high ice concentration, over areas of
relatively complex bathymetry and favouring water masses such
as Antarctic Surface Water and mCDW (Heerah et al., 2013,
2016). However, other studies from the Ross Sea (Testa, 1994)
and theWeddell Sea (Nachtsheim et al., 2019; Photopoulou et al.,
2020; Labrousse et al., 2021) reported dispersal of several hundred
kilometres, albeit for the most part staying close to or over the
continental shelf.

Intrinsic factors that influence foraging strategies of marine
predators include age, sex, body-size, condition, reproductive
status (Weise et al., 2010; Votier et al., 2017; Salton et al., 2019),
intra-specific competition (Kuhn et al., 2014), and individual
personality traits. Within a dynamic environment, distinct
foraging strategies (e.g., epipelagic, mesopelagic or benthic) may
coexist in a population (Cherel and Hobson, 2007); or be state-
dependent with animals in poorer condition adopting riskier
foraging behaviours (Beltran et al., 2021). Diverse foraging
strategies are likely to arise because within a diverse prey
field, different individuals will have greater foraging success
depending on local conditions, and no single individual strategy
will dominate under all conditions.

Weddell seal movements are constrained during winter by
heavy pack-ice and access to open water to breathe. This
study quantifies factors influencing the distribution and foraging
behaviour of Weddell seals, by for the first time comparing
three geographically discrete locations in Antarctica during
the austral winter. We consider three aspects of Weddell seal
foraging ecology: (i) individual differences in benthic vs. pelagic
foraging and foraging trip characteristics; (ii) the relationship
between winter distribution of individual seals and bathymetry
and sea ice concentration; and (iii) comparing these physical
characteristics with the overall utilisation distributions for each
deployment location.

MATERIALS AND METHODS

Deployment Locations (Refer to
Figures 1, 3)
Prydz Bay (Davis Station)

Prydz Bay is the third largest embayment on the Antarctic coast
and is located in the southern Indian Ocean sector. Prydz Bay is
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FIGURE 1 | Maps of the estimated daily locations (yellow points) of 78 Weddell seals tracked over the winter months in three regions (Prydz Bay, Terre Adélie, and

Ross Sea). The blue background represents the GEBCO19 bathymetry. Recurrent polynyas (from Arrigo and van Dijken, 2003) are outlined in red. The orange line

outlines the existing Ross Sea Marine Protected Area and the light blue line outlines the proposed East Antarctica Marine Protected Area (MPA). The pink dots

indicate the regions accessible to the seals based on simulated tracks.

broadly similar to its larger counterparts in theWeddell and Ross
Seas. The bay is generally 500–600 m deep, but there are areas
that are over 1000 m in depth (1085 m) adjacent to the Amery Ice
Shelf. The bathymetry within Prydz Bay is complex and there are
numerous shallow banks rising to 200 m depth e.g., Fram Bank
and Four Ladies Bank (Nunes Vaz and Lennon, 1996).

Terre Adélie (Dumont d’Urville Station, DDU)

Our study site in Terre Adélie was the only one not situated in
major embayment resulting in a relatively narrow shelf, 120–
130 km wide. There is a complex network of submarine canyons
with the Jussieu and Cuvier canyons connecting the shelf break
and inner-shelf depressions. Within the canyons, there is a
steep corrugated slope with deep-sea channels between 2000 and
3000 m in depth. At the base of the slope is a gentler lower
rise that in areas exceeds 3000 m deep. Over the shelf, shallow
banks of 200 m (Adélie and Mertz Banks) alternate with deep
inner-shelf depressions, some of which are large e.g., the D’Urville
Trough, the George V and Adélie Basins (Koubbi et al., 2010).

Ross Sea (Scott Base)

The Ross Sea continental shelf is extensive, unusually deep
(mean depth 600 m) with a complex bathymetry which includes
numerous deep troughs (up to 1200 m deep) and shallow banks
(less than 200 m). Where the seals were tagged in the south,
the region is dominated by the deep McMurdo Sound (up to

700 m). An important feature of the Ross Sea is the high rates
of tidal current flow that occurs across the region which results
in the resuspension of phytodetritus, in turn providing benthic
suspension feeders with enhanced concentrations of food and
transporting organic matter over large distances. This enhanced
benthic productivity plays an important role in structuring the
ecosystem, including the distribution of larger predator species
such as Weddell seals (Smith et al., 2007).

Tag Deployment and Data Processing
Weddell seals were equipped with either Satellite-Relayed Data
Loggers (SRDLs) or Conductivity-Temperature-Depth SRDLs
(CTD-SRDLs) manufactured by the Sea Mammal Research Unit,
University of St Andrews (Boehme et al., 2009). Deployments
took place at two sites in East Antarctica: in Prydz Bay near Davis
Station (−68.58◦, 77.97◦, n = 27, years: 2006, 2007, and 2011) and
Terre Adélie near Dumont d’Urville Station, (DDU) (−66.66◦,
140.00◦, n = 22, years: 2006, 2007, 2008, 2009, and 2019) and
one site in the Ross Sea near Scott Base (−77.85◦, 166.76◦,
n = 29, years: 2014, 2016, and 2019). Note that the Prydz Bay and
the Terre Adélie data sets (excluding 2019) formed the basis of
Heerah et al. (2016). Only females were tagged in Prydz Bay and
the Ross Sea, inTerre Adélie both sexes were tagged. The tags were
all deployed following the annual moult in February. The capture,
sedation and tagging procedures followed those described in
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detail elsewhere (Mellish et al., 2010; Heerah et al., 2013; Shero
et al., 2018), with the tags glued directly on the head of the seal.
The tags recorded data on a seal’s diving behaviour as well as
in situ hydrographic conditions. Summaries of these data were
transmitted via the polar-orbiting Argos satellite constellation
whenever seals surfaced to breathe (Harcourt et al., 2019). Only
seals for which the tag transmitted for longer than 50 days were
included in the analyses.

Diving Behaviour and Bathymetry
The dive data underwent an initial quality control to remove
anomalously deep dives. This was done by calculating a lower
edge for the dive duration vs. dive depth scatter plot (using a
quantile regression set at 0.05). Dives that fell below this edge
were deemed to be too deep for that duration (thereby requiring
unrealistic rates of travel) and were flagged for removal. We also
removed dives of less than 5 min duration as these were regarded
as unlikely to be foraging, and dives deeper than−1000m as these
were deeper than the Antarctic continental shelf (Padman et al.,
2010). A location was recorded for each remaining dive by using
a state-space-model with a 2 h time step and interpolating from
the start time of each dive (Jonsen et al., 2020). Each dive was
then allocated a bathymetric depth using GEBCO19 [GEBCO
Compilation Group (GEBCO), 2021].

A scatter plot of bathymetric depth against the maximum dive
depth of each dive indicated that 23.6% of the total 171,201 dives
were more than 20 m deeper than the GEBCO19 bathymetry at
that point (Supplementary Figure 1). The three sources of error
that contribute to this mismatch are (1) errors in dive location
estimates, (2) errors in the tag’s depth sensors and (3) errors in the
bathymetry. These uncertainties were problematic for allocating
individual dives to a behavioural type (e.g., hunting “benthic”
vs. “pelagic” prey). Therefore, we calculated the difference in
depth between the GEBCO19 bathymetry for those dives that
exceeded the bathymetry. We then calculated the 30 percentile
of these differences, as this approximates 1 Standard Error of
a distribution centred on the red line representing equivalence
of a dives depth and estimated bathymetry at that point. This
value was ∼100 m. Assuming that these mismatches were
symmetrical about the 1:1 line in Supplementary Figure 1,
we then categorised any dives that were within 100 m of the
GEBCO bathymetry as “benthic” dives and those that were
>100 m from the bottom as “pelagic” dives. Dives more than
100 m deeper than the bottom was classified as “unknown”
(Supplementary Figure 1).

We compared simple metrics of diving behaviours (maximum
depth and dive duration) for benthic and pelagic dives between
the three study sites using generalised linear mixed models
(GLMMs) with individual seal as a random term and deployment
location as the main effect. We also modelled the probability of
making a benthic dive relative to the bathymetry at the location
of that dive using a logistic GLMM, again with individual seal
as a random term. We then used this model to make spatial
predictions of where seals were likely to make benthic dives
through the entire domain (defined by the extent of seal tracks)
at each deployment location.

Calculation of Utilisation Distributions
UtilisationDistributions are a commonway of quantifying spatial
use by individuals and populations (Laver and Kelly, 2008).
We used a raster-based approach to calculate the utilisation
distributions (UD), in which we recognised two types of
Utilisation Distributions: (i) Individual utilisation distributions
(UDi), that is the total area used by an individual seal and (ii)
Sample utilisation distributions (UDs) representing the spatial
use by the population of seals tagged at each deployment location.
We used a raster with a 5 × 5 km grid cell. This resolution
corresponds to the estimated accuracy (± 5 km) of state-space-
model modelled ARGOS-based elephant seal locations using the
same trackers (Jonsen et al., 2020). The UDs analysis required
three rasters (Supplementary Figure 2); (i) the density (number)
of seals that visited each 5 × 5 km cell, (ii) the mean time spent
by each seal in each cell (i.e., the overall mean of the individual
UDi raster stack) (iii) the product of these two rasters provides
a measure of overall habitat utilisation in terms of seal days per
cell. This value is a close analogue of kernel density analysis but
has the advantage of not imposing a smoother over the data.
With sufficient data this smoothing is unnecessary as we have
an empirical, quantitatively assessed, measure of the degree of
use per cell. To estimate the degree of representativeness of the
sample of seals compared to the actual population of seals at
each location, we calculated the cumulative area occupied by
increasing numbers of seals (Supplementary Figure 3) (Hindell
et al., 2003). Finally, we calculated the percent usage contours by
sorting the UDs values in each cell, taking the cumulative sum,
and using that to identify user defined contours. While there are
many methods for summarising utilisation distributions there is
broad agreement on the use of 50% contours (i.e., enclosing 50%
of locations) to define the core usage areas and 90% to indicate
overall usage (Laver and Kelly, 2008).

Individual Utilisation Distributions
Statistics
First, we calculated the area (km2) of each UDi by counting the
number of 5× 5 km cells visited by each seal and compared these
among the three deployment locations using a GLMM which
included deployment duration as a random term to account
for animals with longer durations potentially having larger UD
areas. Seal standard length (m) was included in the model to
account for animal size potentially being an important source of
individual variation in space use (Hindell et al., 2021). We used
length as it was the only morphometric measure common to all
studies. We also compared UDi areas between sexes at DDU,
the only site where males were also instrumented, to ascertain
if there were differences in habitat use and foraging by sex
(Photopoulou et al., 2020).

The Role of Bathymetry and Sea-Ice
Concentration on the Winter Distribution
of Individual Seals
We fit GLMMs relating the number of days that an individual
spent in a 5 × 5 km cell to the bathymetry and ice concentration
in that cell. Ice concentration in a cell varied little over the winter
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months, so we took the mean of the ice concentrations over the
study period in each cell. While this may lose some fine-scale
detail, the Antarctic continental shelf is fully covered by sea-
ice by April (Eayrs et al., 2019) and so inconsequential (study
lasts March–October). Prior to analysis, outliers (1 and 99%
percentiles) for both the response and predictor variables were
trimmed from the data set. Predictor variables were also centred
and scaled to unit variance to facilitate efficient optimisation of
the GLMMs. The distributions of each variable were checked
for normality and the response variable (seal days per cell)
was subsequently log-transformed. Inter-correlation between the
predictor variables were checked with cross-correlation analyses,
comparing Pearson Correlation coefficients. The full model
GLMMs (with individual seal as a random term) were initially
run with and without a spatial autocorrelation term to test
its effect on model performance. We found that the spatial
autocorrelation term did not affect model performance and
so all subsequent analyses were run excluding it. Comparison
of log-likelihoods and corrected Akaike Information Criterion
(AICc) indicated that the model performed best without spatial
autocorrelation, so this was not used in the final model
assessment. Overall model fit was assessed with the conditional
r-squared which provides the variance explained by the entire
model, i.e., both fixed effects and random effects. Finally, we
ranked the full suite of 19 models by AICc to identify the best
performing model (Burnham and Anderson, 2002, 2004).

The Role of Bathymetry and Sea-Ice
Concentration on the Winter Distribution
of the Populations of Weddell Seals
We assessed qualitatively the physical characteristics of the seals’
habitats at the population level by contrasting the distribution
of bathymetry and sea-ice concentrations within three locations,
(i) the core UDs (50%) the overall UDs (90%) and the regions
potentially available to the seals. The UDs derived from observed
locations only provide information about where animals occur,
not about where they could have gone. To estimate potentially
available geographic space, we simulated sets of tracks for each
observed track using the availability R package1 simulating 10
tracks per seal. This yielded simulated tracks with movement
characteristics (distributions of step length and turning angle)
similar to observed tracks, but tracks were random and
independent of environmental effects. These simulated tracks
provide an estimate of the geographic space that each animal
could have occupied (given its movement characteristics and
track length) if it had no habitat preferences (Raymond et al.,
2014; Hindell et al., 2020). We compared the ice concentration
on July 30 (averaged for all years of the study) as this was the time
when ice extent was nearing its maximum, and when most tags
were still transmitting.

Analyses were conducted in R 4.0.2 (R Core Team, 2021).
FoieGras was used to filter the seal tracks (Jonsen et al.,
2020). Descriptive statistics presented as mean (X) and standard
deviation (±s.d) unless indicated. All models were Generalised

1https://github.com/AustralianAntarcticDivision/availability

Linear Mixed Effects Models in the R package LME4. The models
were assessed by ranking candidate models using AICc, and
evidence ratios calculated for each model comparison to provide
a2n indication of the importance relative to the top model
(Burnham and Anderson, 2004).

RESULTS

Overview of Seal Distributions
Tags transmitted for 150.1 ± 72 days (mean ± s.d. Table 1

and Supplementary Figure 3) and this did not vary between
sites (Supplementary Table 1a). Seals from all three deployment
locations occurred almost exclusively on the Antarctic continental
shelf (seafloor>−1000m) with seals staying within 200 km of the
central point of their distribution (Figure 1). This central point
was not where they were tagged, because they were tagged when
aggregated to moult. Post-moult, the animals moved to other
areas as the sea-ice grew. The seals then remained relatively local
with individuals moving on average 138.2 ± 117.8 km from that
central point. This differed among the three deployment locations;
seals tagged in the Ross Sea travelled further than seals in Prydz
Bay (mean maximum distance = 178.0 ± 147.3 km compared to
Prydz Bay mean max = 151.0 ± 89.1 km) and Terre Adélie (mean
max = 70.5 ± 70.4 km) (Table 1).

Diving Behaviour

All seals made at least some benthic dives. Nearly 50% of dives
were pelagic, 40% benthic and 12% unknown. Seals apportioned
dives differently between deployment locations, with 60% benthic
dives in Prydz Bay, 42% in Terre Adélie and 25% in the Ross
Sea (Table 2).

Benthic dives were deeper than pelagic dives (Table 2). The
mean ± s.e. depth of a benthic dive was deepest in the Ross Sea
(216 ± 40.0 m), followed by Prydz Bay at 205 ± 67.9 m and Terre
Adélie at 122 ± 36.6 m (Table 2). For pelagic dives, the deepest
were in the Ross Sea (148 ± 27.4 m) followed by Prydz Bay

TABLE 1 | Summary statistics (mean ± s.d.) of tracking data from Weddell seals

and three deployment locations during the winter months.

Deployment Location

Prydz

Bay

(n = 27)

Terre

Adélie

(n = 22)

Ross

Sea

(n = 29)

Overall (all sites)

(n = 78)

Mean

deployment

duration (days)

152 ± 14.1 142 ± 13.8 154 ± 14.4 150.1 ± 8.2

Maximum

duration (days)

267 261 261 267

Mean

maximum

distance (km)

151.0 ± 16.6 70.5 ± 15.0 178.0 ± 27.4 138.2 ± 13.3

Maximum

distance (km)

354.4 272.6 586.0 586.0

Maximum distance is the maximum distance from the central point of their

distribution (see section “Materials and Methods” for full description).
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(86.9± 23.7m) and the shallowest in Terre Adélie (64.9± 18.9m)
(Table 2). The proportion of dives classified as unknown varied
with Prydz Bay and Terre Adélie low (7.2 and 8.5%, respectively),
but in the Ross Sea 18.1% were classified as unknown, reflecting
the poorer understanding of its bathymetry.

The probability of a seal making a benthic dive decreased with
increasing ocean depth (Supplementary Table 1g), but varied
among the regions (Figure 2A and Supplementary Table 1g).
In Prydz Bay and the Ross Sea, benthic dives were highly likely
(probability = 0.75) at ocean depths of around −250 m, while the
0.75 likelihood was approximately −125 m in Terre Adélie.

Utilisation Distributions
Individual Utilisation Distributions

Individual Utilisation Distributions (UDis) varied among
individuals and locations (Figure 2B), but individual size (seal
length) was not influential (Supplementary Table 1e). The
median area of the UDi for seals in Terre Adélie was 825 km2,
less than 1/3 of the 3150 km2 in Prydz Bay and 3625 km2 in the
Ross Sea. There were no differences in the size of the UDis for
male and female seals in Terre Adélie (Supplementary Table 1d).
Consequently, we did not discriminate male and female seals in
subsequent analyses.

TABLE 2 | Benthic Habitat: the role of benthic habitat on Weddell seal

distribution and behaviour.

Deployment Location

Prydz Bay Terre Adélie Ross Sea

Dive Depths (m) Mean depth-

pelagic ± s.e.

86.9 ± 23.7 64.9 ± 18.9 148 ± 27.4

Mean depth-

benthic ± s.e.

205 ± 67.9 122 ± 35.2 216 ± 40.0

Mean percentage

benthic dives

56.6 ± 14.9 42.1 ± 9.44 25.1 ± 8.7

Percentage

time in Benthic

Habitat

(≥−250 m)

Mean ± se 51.3 ± 19.3 75 ± 12.7 21.4 ± 10.7

Maximum 100 99.9 75.9

Minimum 5.22 18.8 0.596

n 27 22 29

Core Utilisation

Distribution

Total area of core

UD (km2)

1600 200 1475

Area of core UD

benthic habitat

(km2)

1200 175 525

% of core UD

benthic habitat

75 85 36

(a) Dive depths of benthic and pelagic dives. Dive depth data are the fitted values

from the GLMMs comparing dive depth (benthic) and dive depth (pelagic) among

the three locations. (b) Percentage time that individuals spent in likely benthic

habitat (defined as waters less than −250 m) illustrated with; mean, maximum

and minimum. (c) Summary of the relative importance of benthic habitat in the

core utilisation distribution (50% UD) including; total area of the core UD, total

area of benthic habitat within the core, and percentage of the core UD that is

benthic habitat.

FIGURE 2 | (A) The predicted probability of a dive being benthic with respect

to bathymetry, based on a binomial GLMM. Shaded areas represent 95%

confidence intervals. (B) Frequency distribution (bars) and density (curves) of

the area of individual Utilisation Distributions of Weddell seals from three

regions in Antarctica. The arrows indicate the median areas for each of the

locations. (C) Predicted values of seal days per cell from the best model using

location, bathymetry and sea-ice concentration (day∼location + bathymetry,

ice, bathymetry:location, bathymetry:ice). The figure illustrates the interaction

between bathymetry and sea-ice concentration. In this case values were

predicted for high (87%) medium (69%), and low (52%) ice concentrations

(intervals set by the R package ggeffects).

The Role of Bathymetry and Sea-Ice
Concentration on the Winter Distribution
of Individual Seals
The best model relating the number of seal days per 5 × 5 km
pixel included location, bathymetry, ice concentration and
the interactions of deployment location with bathymetry and
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FIGURE 3 | The sample Utilisation Distributions for Weddell seals at each location. These represent the number seal days per 5 × 5 km pixel and were calculated as

the product of the mean of the individual UDs (mean days per pixel) and the total number of seals that used each pixel. The yellow areas enclose the cells in which

50% of all seal days occurred (which we regard as the core UD for each population) and the red polygons enclose the cells in which 90% of all seal days occurred.

The black dotted lines indicate 50 km bands from the centre of the overall distribution (defined as the most commonly used 5 × 5 km pixel). The white contours

represent the –1000 and –500 m bathymetric contours.

bathymetry with ice concentration, an AICc value of 12538.1
and an AICc weight of 0.996 (Supplementary Table 1f). When
considering main effects, bathymetry was best of the single term
models with an AICc of 12670.7, followed by ice concentration
(12776.0) and then location (12784.3). The null model had
an AICc of 12794.9. Intensity of use of a cell was negatively
related to bathymetry with the areas of most intensive use in
shallowest waters, and this was most pronounced in Terre Adélie
(Figure 2C). However, when considering the interaction terms,
the intensity of use was slightly higher in high ice concentration
over deep water (Figure 2C).

The Role of Bathymetry and Sea-Ice
Concentration on the Winter Distribution
of the Populations of Weddell Seals
Our sample sizes, while not large enough to capture the
estimated maximum area used by a theoretical population of
seals (Supplementary Figure 4), did cover more than 85% of the
estimated asymptote. In Prydz Bay, the Gompertz model fitted to
the saturation curve had an asymptote of 58335 km2, of which our
26 seals occupied (91.8%). In Terre Adélie the 22 seals occupied
86.7% of the estimated 21185 km2, and in the Ross Sea the 28 seals
occupied 91.0% of the estimated 66724 km2.

The core (50%) population UDs were in shallow waters within
200 km of the central pixel (Figure 3) at all locations. In Prydz
Bay, the core UDs extended northward along the coast, largely
contained within the −500 m bathymetric contour. The seals in

Terre Adélie had the smallest coreUDs mostly within 50 km of the
central point and also within the −500 m bathymetric contour.
The core UDs for seals in the Ross Sea was concentrated on the
western edge of McMurdo Sound extending 50 km north of Ross
Island. In Prydz Bay the core 50% UDs with an area of 1700 km2

occupied 12.6% of the overall 90% UDs of the sample of seals at
that site. In Terre Adélie the core UD (200 km2) occupied 10% of
the overall 90%UDs, and in the Ross Sea (core = 1650 km2) 11.1%
of the 90% UDs.

The bathymetry available to the seals differed from those in
the overall and core UDs, indicating a strong preference for
shelf waters, with randomised tracks venturing off continental
shelf break, with mean values deeper than −1000 m for seals
from Prydz Bay and Terre Adélie (Figure 4 and Supplementary

Table 2). Seals from the Ross Sea showed a different pattern,
with available habitat almost exclusively contained to shelf. The
bathymetry within the core UDs also differed from the overall
(90%) UDs (Figure 4 and Supplementary Table 2). At all three
locations, the core areas were in considerably shallower water
than the overall area (Supplementary Table 2), reflecting the
coastal positions of the core UDs. In the Ross Sea overall UDs

had the deepest bathymetry (mean = −608 ± 147 m) followed by
Prydz Bay (−370± 112m) and thenTerre Adélie (−262± 118m)
reflecting the topographic characteristics of the locations. Ice
characteristics varied between available, core and overall areas
(Figure 4 and Supplementary Table 2). Ice concentrations
were consistently higher within regions available to the seals
(Figure 4) compared to regions they actually used. Further, ice
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FIGURE 4 | Frequency distributions (expressed as densities) of the bathymetry (m) and ice concentrations (%) on July 30 comparing (i) the region potentially available

to the seals (see Methods), (ii) the full sample Utilisation Distributions (UDs) and (iii) the core UDs.

concentration was slightly lower in core UDs than overall UDs,
although the differences were relatively minor, being largest in
the Ross Sea (85.0 ± 3.7 [90%] compared to 79.4 ± 2.2 [50%]).

The area of shallow water where benthic foraging was most
likely [i.e., ≥−250 m (Figure 2A)] constituted 85% of the core
UD in Terre Adélie, 85% in Prydz Bay and only 36% in the Ross
Sea (Table 2).

DISCUSSION

By comparing data from three different regions, we found that
Weddell seal foraging behaviour during the winter months is
strongly influenced by extrinsic factors, but individual variability
still plays a key role. Of the extrinsic factors, bathymetry played
the most important role in determining the distribution and
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foraging behaviour of Weddell seals. The seals made on average
more pelagic dives than benthic dives, and benthic foraging
behaviour was more likely in shallower waters less than −250 m.
Off Terre Adélie and in Prydz Bay individual seals spent 60% of
their time in waters less than −250 m, making predominantly
benthic dives. By contrast, seals in the Ross Sea spent less time
in benthic habitats, and we attribute this to the relatively small
area of benthic habitat within their core area dominated by
the deep McMurdo Sound. However, individual variation in
foraging behaviour persisted at each site, reflecting differences in
intrinsic factors. Some individuals remained very local, foraging
predominantly on the benthos throughout the winter, while
others moved further afield, foraging more pelagically.

A potential limitation in this study is that bathymetry is
poorly known in remote regions like the Southern Ocean (Millan
et al., 2020). The Weddell seal dive data reflects this inaccuracy
with 24% of the dives recorded being deeper than the ocean
floor provided by GEBCO19. To account for this potential
source of error, we designated foraging behaviours conservatively.
Many studies have reported that seal dive depths recorded by
SRDLs and CTD-SRDLs are accurate (Boehme et al., 2009;
Costa et al., 2010; Padman et al., 2010; Roquet et al., 2014)
and the locations of diving seals have at least a relatively well-
derived error component (Jonsen et al., 2020). Given the paucity
of direct ship-borne measurement for many of these areas of
the Southern Ocean, integrating seal dive depths with those
collected by more traditional means may help to constrain and
therefore improve the confidence of many bathymetry models
(Padman et al., 2010).

Foraging Behaviour
Weddell seal foraging occurs in a mix of habitat types (benthic,
epipelagic, and mesopelagic) and they have a catholic diet taking
benthic fish, crustaceans and cephalopods as well as mesopelagic
prey such as Pleurogramma spp. (Supplementary Table 3). The
likelihood of benthic foraging increased in shallower water. To
reach the benthos in these areas, seals traverse the entire water
column rather than stopping to feed in the pelagic zone, either
because the mesopelagic prey are not there or because the seals
get a greater energetic return from benthic prey. Harcourt et al.
(2007) found that males that dived deeply during the breeding
season in McMurdo Sound lost weight at a slower rate than
those remaining shallow. This suggests that deeper prey resources
are especially profitable or at least predictable (Photopoulou
et al., 2020). Making diet inference based simply on predator
dive behaviour is potentially confounded by the knowledge
that some key prey species such as silverfish and toothfish
can occupy multiple habitats (O’Driscoll et al., 2011). Feeding
studies and acoustic observations of silverfish are consistent
with a predominantly pelagic niche (Pinkerton, 2017; O’Driscoll
et al., 2018), but adult silverfish are sometimes found close to
the bottom over the Ross Sea shelf (O’Driscoll et al., 2011).
In contrast, toothfish over the Ross Sea shelf are likely to be
predominantly demersal (Pinkerton et al., 2016), but pelagically
feeding in McMurdo Sound (Ainley et al., 2013).

As seals venture into deeper water, the benefits of benthic
foraging are likely to decline due to the energetic trade-offs. These

are associated with deeper diving, such as reduced time available
in the foraging zone, greater cost of transport to and from deeper
depths (Thompson and Fedak, 2001; Williams et al., 2004),
physiologic costs associated with exceeding the aerobic dive limit
or even potentially cardiac anomalies (Williams et al., 2015). This
may explain why the seals in all three regions used predominantly
shallower habitats in accordance with their relative availability.

Regional Variation in Habitat Use Is Explained by Site

Variability Not Inherent Population Level Behavioural

Differences

Across the three sites dive behaviour differed due to regional
differences in bathymetry. For example, off Terre Adélie there was
more shallow benthic diving than in Prydz Bay or the Ross Sea. In
the Ross Sea Weddell seals foraged more pelagically, presumably
because water is deeper in McMurdo Sound. Overall, the seals
in all three regions remained close to the continental land mass
in areas of heavy ice concentration (75–85% in core areas) over
relatively shallow waters (<200 m). This corroborates previous
observations of Weddell seal distributions and their preference
for relatively shallow water areas (Stirling, 1969) in areas of dense
ice (Lake et al., 2005; Boehme et al., 2016; Heerah et al., 2016;
Nachtsheim et al., 2019). We observed differences between sites
in the areas used by the seals, most likely due to the differences
in physical habitats. Prydz Bay and Terre Adélie seals were close
to regions where productive circumpolar deep water may reduce
their need to forage further afield. In the Ross Sea, the seals
were further from areas of influx of circumpolar deep water, with
bathymetry influencing the advection of circumpolar deep water
(Williams et al., 2016).

A recent study in the Weddell Sea observed differences in
diving behaviour between males and females (Photopoulou et al.,
2020), but we did not, which is possibly due to the similar body
size of the males and females we studied. Photopoulou et al.
(2020) reported that maleWeddell seals spent more time in high-
salinity shelf water masses at depth, benthically diving, while
females ventured off the continental shelf and visited warmer,
shallower water masses while undertaking a mix of benthic
and pelagic dives. Our sample did not include sub-adults or
juveniles, age classes which have very different distributions in
other Southern Ocean pinnipeds (e.g., elephant seals, Hindell
et al., 2021). Burns et al. (1999) reported that some weaned
Weddell seal pups from McMurdo Sound in the southern Ross
Sea dispersed widely, others did not, but all stayed relatively close
to the Antarctic coastline.

Individual Variability
In this study there was a high degree of inter-individual variation
in winter foraging behaviour. Some individuals were notably
sedentary, did not move far from tagging location and had
small home ranges. Others had large home ranges, travelled
several hundred kilometres, and made more pelagic dives. These
differences may be due to divergent behavioural traits among
individual seals (Toscano et al., 2016; Troxell-Smith and Mella,
2017). Individual behavioural traits under-pins differences in
foraging behaviour in other species (Patrick et al., 2014; Toscano
et al., 2016; Krüger et al., 2019; DiNuzzo and Griffen, 2020;
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Steinhoff et al., 2020), and distinct, stable foraging strategies
have been identified in many pinnipeds [e.g., Australian sea
lions, Neophoca cinerea (Lowther et al., 2011); Galapagos sea
lions, Zalophus wollebaeki (Villegas-Amtmann et al., 2008)],
consistent with individual traits (Schwarz et al., 2021). In
dynamic environments, multiple foraging strategies within a
population may reduce resource competition (Lewis et al., 2006;
Baylis et al., 2015). We found no relationship between home
range area and seal size. In northern elephant seals, Mirounga
angustirostris, body condition influences foraging behaviour, with
animals in poor condition adopting riskier foraging strategies
(Beltran et al., 2021) but, post-tagging we have no information
on individual condition on our animals. Development of in situ
proxies of condition (e.g., buoyancy) in Weddell seals similar to
those well established in elephant seals (Biuw et al., 2003) could
help to resolve whether these differences result from intrinsic
strategies or arise from variance in foraging success. Finally, pre-
and post-tagging reproductive status may both be important.
The majority of these animals were females and at the time
of tagging some would have just weaned their pup from the
preceding breeding season, while others were not reproductive
that season. Animals that skip breeding have different energetic
demands as they have avoided the high cost incurred by birthing
and lactation, where females lose about 30% of their body mass
(Wheatley et al., 2006; Shero et al., 2015). Females that skipped
breeding are in much better condition and so may have the
luxury of adopting a safer foraging strategy as with fat northern
elephant seals (Beltran et al., 2021). Conversely, not all females
are pregnant each year. Pregnancy incurs increased energetic
demands which translates to increased winter foraging effort
(Shero et al., 2018), and this may well influence space use.

Our results differ from studies of Weddell seal distributions
in the Weddell Sea (Boehme et al., 2016; Nachtsheim et al.,
2019; Photopoulou et al., 2020; Labrousse et al., 2021), where
tracked individuals showed diverse and wide-rangingmovements
including moving off the Antarctic continental shelf. In those
studies, seals were often captured from ships some distance from
the coast and later in the winter. In our study, all seals were
captured just after their annual moult (∼2–3 months after the
breeding season) at or near their breeding sites on coastal fast
ice. We hypothesise that the seals tagged offshore in the Weddell
Sea may contain a higher proportion of those individuals that
are predisposed to make longer excursions, and so represent a
different sample from those tagged near their breeding areas.
Supportive evidence arises from Nachtsheim et al. (2019) who
were forced to tag four of their six animals in a sheltered inlet
due to bad weather. They found that the four Weddell seals they
tagged on the fast ice stayed close to their colony, while the two
tagged on the pack ice ventured further afield.

Bathymetry and ice concentration were important
determinants of Weddell seal distribution. Sea-ice concentration
on the continental shelf in east Antarctica is dynamic both
within and among years (Massom et al., 2013), but in most years
ice concentration reaches a maximum in late winter, around
August (Eayrs et al., 2019), while still exhibiting considerable
spatial variation due to recurrent coastal polynyas (Arrigo et al.,
2015). These seals did not concentrate in polynyas, but instead

those individuals that made excursions beyond the core areas
moved into areas of relatively high ice concentrations (80% plus).
Inhabiting high sea-ice concentration areas may improve access
to prey or reduce the risk of attack by predators such as killer
whales (Lauriano et al., 2020). Similarly, sedentary individuals
remaining in the fast ice may reduce predation risk.

Implications
Antarctica and the surrounding Southern Ocean, like many
regions across the globe, are changing in response to changes in
climate (Rogers et al., 2020) and anthropogenic activities such as
increased exploitation (e.g., fisheries), and these can profoundly
affect endemic biota (Bestley et al., 2020). To quantify how these
broad scale changes affect individuals and animal populations
requires information on animal distribution and behaviour,
and the structure and dynamics of the physical environment
(Hindell et al., 2020). Quantifying movement and habitat use
by predators for conservation and management strategies is
particularly pertinent given the recent designation of the Ross Sea
region Marine Protected Area (MPA), and the ongoing debate
for new MPAs in east Antarctica and elsewhere in the Southern
Ocean (Hays et al., 2019; Hindell et al., 2020). It is especially
important in the management context to develop policies that
protect the endemic biota over the long-term while regulating
the human behaviours like fishing within the broader framework
of a changing climate, over which it is much harder to effect
change (Hays et al., 2019; Hindell et al., 2020). In the Southern
Ocean, animal conservation and fisheries regulation is generally
managed by the Commission for the Conservation of Antarctic
Marine Living Resources (CCAMLR) under an ecosystem-based
management approach which includes establishing a network
of MPAs in the Southern Ocean. Information on where, when
and how animals use their habitats is critical for the design and
evaluation of these MPAs.

CONCLUSION

We found that Weddell seals in the Eastern Antarctic are
relatively sedentary, preferring to forage in shallow water on
the continental shelf. We detected regional differences in the
proportion of benthic and foraging dives that accord with the
available habitat. Within populations, we identified significant
individual variability, ranging from little dispersal, and foraging
within a relatively small core area, to individuals that ventured
further afield, diving pelagically when in deeper waters but
keeping to areas of high ice concentration. All the animals tagged
in the Ross Sea remained within the boundaries of the Ross
Sea MPA. The proposed MPAs in East Antarctica, Weddell Sea
and Western Antarctic Peninsula also encompass potential core
Weddell seal habitat (LaRue et al., 2019; Teschke et al., 2020).
However, none of the areas used by seals in Prydz Bay are inside
any current or proposedMPAs and this is obviously an important
region to consider. This study suggests that protecting shelf areas
will protect Weddell seals within that prescribed area, but local
populations outside MPA’s will only indirectly benefit.
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