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Influence of Non-Maxwellian Particles on Dust Acoustic Waves in a Dusty Magnetized

Plasma
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Abstract In this paper an investigation into dust acoustic solitary waves (DASWs) in the presence of superthermal
electrons and ions in a magnetized plasma with cold dust grains and trapped electrons is discussed. The dynamic of
both electrons and ions is simulated by the generalized Lorentzian (κ) distribution function (DF). The dust grains are
cold and their dynamics are studied by hydrodynamic equations. The basic set of fluid equations is reduced to modified
Korteweg-de Vries (mKdV) equation using Reductive Perturbation Theory (RPT). Two types of solitary waves, fast
and slow dust acoustic soliton (DAS) exist in this plasma. Calculations reveal that compressive solitary structures are
possibly propagated in the plasma where dust grains are negatively (or positively) charged. The properties of DASs are
also investigated numerically.

PACS numbers: 52.25.Os
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1 Introduction

Most plasmas are characterized by the presence of su-
perthermal particles, possibly generated by turbulent ac-
celeration, external sources, or, as in the case of fusion
devices, nuclear reactions. Understanding the basic phe-
nomena that determine the superthermal particle dynam-
ics is a key challenge to describe a wide range of plasma
system, ranging from magnetically confined plasmas for
fusion to space plasmas.[1−3]

Non-Maxwellian velocity distributions have been ob-
served in many astrophysical and space plasmas. Theo-
retically it has been shown that the velocity distribution
function obeys a power law that is emerged as a natu-
ral consequence of the presence of superthermal radiation
fields in plasma.[4] The observed distribution contains a
plentiful supply of superthermal particles, i.e., particles
that move faster than the thermal speed. These so-called
nonthermal plasmas are found naturally in the magne-
tospheres of Earth, Mercury, Saturn, Uranus, and in the
solar wind.[5−6] The observed distributions of charged par-
ticles have been well fitted with a generalized Lorentzian
(kappa) distribution.[4−7] The important features of kappa

distribution are as follows: (i) At high velocities the distri-
bution obeys an inverse power law. (ii) For all velocities,
in the limit that spectral index approaches to large val-
ues, the DF approaches to the Maxwellian one. In this
sense, the kappa distribution is a generalization of the
Maxwellian distribution. Vasyliunas[8] appears to be the
first who employed the general form of the kappa distribu-
tion and noticed its relation to the Maxwellian distribu-
tion. The kappa distribution was later adopted in various
physical contexts.[6−7,9−10]

The spacecraft measurements of electron energy spec-

tra have been successfully modeled with kappa distri-
bution. Using this distribution, Summers and Trone[10]

have discussed plasma dispersion function theoretically

and found the general properties of a dielectric tensor for
ion and Langmuir waves. Xiao[11] modeled energetic par-

ticles by relativistic kappa-loss-cone distribution function
in plasmas and showed that this distribution obeys the
power law that is valid not only at the lower energies but

also at relativistic energies.

Results from the Voyager 1 and 2 spacecrafts,[12] dur-
ing their encounters with the magnetosphere of Saturn,

it is found that the energy spectra of ions (assumed pro-
tons) is like a Maxwellian at low energies (6 200 keV)
and a power law at high energies (> 200 keV). Krimigis et

al.,[12] used kappa distribution to fit ion spectral observa-
tions in the magnetosphere of Saturn, with typical values

of kappa in range 6–8 and thermal energy KBT approxi-
mately in the range 16–28 keV matching the observations
extremely well, though with a few exceptions.

In recent years, a non-Maxwellian velocity distribu-

tion has found its applications in the field of dusty plasma
that is a rapidly growing field because of its vast vari-

ety of applications in laboratory, space, and astrophys-
ical plasma environments (e.g., the Earth’s ionosphere,
asteroid zones, planetary ring, cometary tails, interstellar

clouds, etc.). There has been a great deal of interest in un-
derstanding different types of collective processes in dusty

plasmas.[13−17] It has been shown both theoretically and
experimentally that the presence of these extremely mas-
sive and highly charged dust grains in a plasma can either

modify the behavior of the usual waves and instabilities or
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introduce new eigenmodes. The most well studied of such
modes is the so-called “dust acoustic wave” (DAW),[18−20]

which arises due to the restoring force provided by the
plasma thermal pressure (electrons and ions), while the
inertia is due to the dust mass.

One basic problem in all of these studies is the elec-
trostatic charging of the grains that results from various
processes. Since, here, the characteristic time scale for
dynamical processes (that for dust motion is of the order
of tens of milliseconds) is much larger than dust charging
time (that is typically of the order of 10−6−10−4 s),[21] the
dust particle charging process can be considered to take
place promptly. Under this condition, the dust charge,
with a good accuracy, could be assumed constant.[14,22−25]

This paper aims to investigate the effect of superther-
mal particles on the nonlinear propagation of dust acous-
tic waves in presence of a uniform external magnetic field.
These waves are evolved into solitary structures when the
effect of nonlinearity and dispersion of the plasma are bal-
anced with each other. Solitary wave is called a soliton
if it retains its shape after collision with another solitary
wave.[26−29] The generalized Lorentzian (κ)-DF is used to
model the existence of superthermal electrons and ions.
This problem has been recently considered by Baluku et

al.[30] in a slightly different formalism, without including
the effect of trapped electrons and magnetic field. Elec-
tron trapping, due to the nonlinear resonant interaction
of the DAS and electrons, is included. The resonant in-
teraction only takes place for those electrons that have a
velocity close to the DAS velocity.

It is shown that the presence of superthermal particles
and trapped electrons has great influence on the nature of
magnetized dust acoustic solitons. Moreover, the depen-
dence of the soliton characteristics on relevant physical
parameters of the problem is studied.

This paper is organized as follows: In the next sec-
tion, the basic equations are presented which describe
the dusty plasma system and governing equations includ-
ing superthermal particles. In Sec. 3, a weakly nonlinear
analysis is carried out and a modified Korteweg-de Vries
(mKdV) equation is derived, in Sec. 4, the numerical re-
sults are discussed. Section 5, gives a discussion for the

case of positive dust. Last section, contains a brief sum-
mary of our investigation of this study.

2 Basic Equation and Formulation

A three component, homogeneous, magnetized dusty
plasma is considered which comprised of a mixture of su-
perthermal positive ions, superthermal electrons, and neg-
atively charged dust particles.

The static magnetic field ~B is applied in the z-
direction, and propagation vector ~k in the (x, z) plane
and the angle between ~k and ~B is θ. For simplicity, it is
assumed all the dust grains have the same charge, equal to
qd = −ezd, with positive zd for negatively charged dust.

Nonlinear dynamics of a low-frequency dust acoustic
solitary wave is governed by the following equations:

∂nd

∂t
+ ∇ · (nd~vd) = 0 , (1)

∂~vd

∂t
+ (~vd.∇) · ~vd =

−zde

md

(

−∇φ +
~vd × ~B

c

)

, (2)

∇2φ = 4πe(ne + zdnd − zini) , (3)

nd, ~vd, md, and zd are the dust density, fluid velocity,
mass, and charge state, respectively. φ is the self consis-
tent electric potential, c is the speed of light, ni and ne

refer to ion and electron density, respectively. The charge
neutrality at equilibrium requires that

n(0)
e + zdn

(0)
d − zin

(0)
i = 0 , (4)

where n
(0)
e , n

(0)
i , and n

(0)
d are the unperturbed electron,

ion, and dust number density, respectively.
In the dynamical systems, some of electrons are at-

tached to the dust particles to form the dust charged par-
ticles, however, some other electrons are bounded back
and forth in the potential well, losing energy continuously,
and as a result, being ultimately trapped electrons. In
this case, the electron density is defined from the Vlasov
equation consisting of free and trapped electrons.[15] The
distribution function of both the free and trapped elec-
trons was proposed by Gurevich[31] and Shamel[32] for
Maxwellian plasma. Accordingly, the following κ DF is
introduced:[14,33−34]

fte(ve‖, ve⊥) =
n0ecκe

vTe

√
2π

[

1 + β
mev

2
e‖ − 2eφ

me(2κe − 3)v2
Te

]−κ δ(ve⊥)

2πve⊥
, |ve‖| 6

√

2eφ

me
,

ffe(ve‖, ve⊥) =
n0ecκe

vTe

√
2π

[

1 +
mev

2
e‖ − 2eφ

me(2κe − 3)v2
Te

]−κ δ(ve⊥)

2πve⊥
, | ve‖| >

√

2eφ

me
, (5)

where ffe, fte are the free and trapped electron velocity DF, respectively. n0e is the equilibrium electron density, me

is an electron mass. ⊥(‖) is the sign denotes the perpendicular (parallel) direction to the ~B. δ is the Dirac delta
function and it is also the indication of temperature anisotropy (i.e. Te‖ ≫ Te⊥).[33,35] By this choice, Te⊥ does not

appear in the formalism. vTe =
√

Te‖/me is the electron thermal velocity. κe is the electron spectral index (κe > 3/2),

cκe
= (1/

√

κe − 3/2)[Γ(κe)/Γ(κe − 1/2)] is the normalization coefficient, Γ is the gamma function. β represents the
ratio of the free to the trapped electron temperatures. β = 0 models the plateau structure and β < 0 models the hole
structure in the electron DF. Note that the above κ distributions are written so that as κ → ∞, their Maxwellian
counterparts are obtained.[32]
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Integrating the DF over the corresponding velocity range, the number density for the electrons is obtained:[14,34]

ne =

∫ ∞

0

2πve⊥dve⊥

[

2

∫ ∞

√
2eφ/me

ffe(ve‖, ve⊥)dve‖ + 2

∫

√
2eφ/me

0

fte(ve‖, ve⊥)dve‖

]

. (6)

In the weak nonlinear range (eφ/Te‖ < 1), the Taylor
expansion of the Eq. (6), derives the electron density, ne,
as a combination of free and trapped electrons as:[34]

ne

n0e
= 1 + ake

eφ

Te‖
− 4

3

(1 − β)√
π

bke

( eφ

Te‖

)3/2

, (7)

where

ake
=

2κe − 1

2κe − 3
, (8)

bke
=

1

(κe − 3/2)3/2

Γ(κe + 1)

Γ(κe − 1/2)
. (9)

In a collisionless plasma, the appearance of superther-
mal ions may have a significant influence on the behavior
of DASWs; therefore, the ion DF can then be determined
as:[24]

fi(vi‖, vi⊥)=
n0icκi

vTi

√
2π

[

1+
miv

2
i‖+ 2zieφ

mi(2κi− 3)v2
Ti

]−κ δ(vi⊥)

2πvi⊥
, (10)

where fi is the ion velocity DF. n0i is the equilibrium ion
density, mi is an ion mass, vTi =

√

Ti‖/mi is the ion ther-
mal velocity. κi is the ion spectral index (κi > 3/2) and
cκi

= (1/
√

κi − 3/2)[Γ(κi)/Γ(κi − 1/2)] is the normaliza-
tion coefficient.

The ion density is obtained by integrating the DF over
the whole velocity range,[35]

ni =

∫ ∞

0

2πvi⊥dvi⊥

∫ ∞

−∞

fi(vi‖, vi⊥)dvi‖ . (11)

ni is expanded for small φ(eφ/Ti‖ < 1) based on the Tay-
lor series and the expression for ion number density in
terms of electrostatic potential is obtained as follows:[24,35]

ni

n0i
= 1 − aki

zieφ

Ti‖
+ bki

(zieφ

Ti‖

)2

, (12)

where,

aki
=

2κi − 1

2κi − 3
, (13)

bki
=

4κ2
i − 1

2(2κi − 3)2
. (14)

3 Fast and Slow Compressive Solitary Waves

In order to study dust acoustic soliton, relevant mKdV
equation is derived for the present plasma model. For
this case, the following normalization is chosen; the lo-
cal electrostatic potential is normalized to Te/ezd, num-
ber density to equilibrium number density n0. Velocity
and space variables are normalized to the dust acous-
tic speed cd = (Te/md)

1/2 and electron Debye length
λDe = (Te/4πe2n0e)

1/2, respectively. Also, time variable
is normalized to λDe/cd.

To simplify the analysis, a new axis ζ in the (x, z)
plane is defined and θ is the angle between two axes ζ

and z. Then the one-dimensional wave propagating along
the ζ-axis is considered. Therefore, the complete set of
equations is

∂nd

∂t
+ sin θ

∂(ndvdx)

∂ζ
+ cos θ

∂(ndvdz)

∂ζ
= 0 , (15)

∂vdx

∂t
+ vdx sin θ

∂vdx

∂ζ
+ vdz cos θ

∂vdx

∂ζ

= sin θ
∂φ

∂ζ
− µρ1/2vdy , (16)

∂vdz

∂t
+ vdx sin θ

∂vdz

∂ζ
+ vdz cos θ

∂vdz

∂ζ
= cos θ

∂φ

∂ζ
, (17)

∂vdy

∂t
+ vdx sin θ

∂vdy

∂ζ
+ vdz cos θ

∂vdy

∂ζ
= µρ1/2vdx , (18)

∂2φ

∂ζ2
= ρ(nd − 1) + (ake

+ D)φ − Aφ3/2 − Eφ2 , (19)

where,

A =
4

3

(1 − β)√
π

bκe

z
1/2
d

, (20)

D = zi

(

1 +
ρ

zd

)

σaκi
, (21)

E = bκi
σ2 z2

i

zd

(

1 +
ρ

zd

)

. (22)

Here,

ρ =
z2

dn0d

n0e
, σ =

Te

Ti
,

µ =
ωBd

ωpd
· ωpd =

(4πz2
de2n0d

md

)1/2

is the dust plasma period and ωBd = zdeB/mdc is the
dust cyclotron frequency.

In the unperturbed initial state,
∑

qjn0j = 0, and
with ρ = z2

dn0d/n0e the relation zin0i/n0e = ρ/zd + 1, is
obtained where zin0i/n0e > 1 for negatively charged dust
particles.

Now reductive perturbation theory (RPT) is used to
analyze DASWs with small but finite amplitude in the
present plasma, for which the following stretched coordi-
nates are introduced:[13,15,23,34]

ξ = ε1/4(ζ − λνt) , (23)

τ = ε3/4t , (24)

where λν(ν = f, s) is the unknown phase velocity while it
will be determined later. The RPT requires the expansion
of dependent quantities. Accordingly, nd, vd, and φ are
introduced in power series based on ε, as follows:

nd = 1 + εn1 + ε3/2n2 + · · · , (25)

v = εv1 + ε3/2v2 + · · · , (26)
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φ = εφ1 + ε3/2φ2 + · · · , (27)

where ε is the small parameter.
To obtain the proper µ in the presence of roughly pa-

rameters of dusty plasmas, such as md = 3 × 10−11 kg
and c = 3 × 108 m/s, µ = B/10−3√n0d. In plasmas
which the magnetic field (B) is weak and the density of
dust grains (n0d) is dense, µ ≪ 1 (B/

√
n0d ≪ 10−3) so,

O(µ) = ε3/4. Besides, in plasmas with strong magnetic
field (B) and the density of dust particles (n0d) is rare,
µ ≫ 1 (B/

√
n0d ≫ 10−3) and therefore O(µ) = ε−1/4.[34]

Now substituting Eqs. (23)–(27) into Eqs. (15)–(19),
the following mKdV equation for µ ≪ 1 is obtained

∂φ1

∂τ
+

ρ1/2

2(ake
+ D)3/2

∂3φ1

∂ξ3

+
3ρ1/2A

4(ake
+ D)3/2

φ
1/2
1

∂φ1

∂ξ
= 0 , (28)

where λf , the phase velocity, is given as:

λf =

√

ρ

ake
+ D

. (29)

By the same analysis, an mKdV equation is obtained
for µ ≫ 1 as follows:

∂φ1

∂τ
+

ρ1/2 cos θ

2(ake
+ D)3/2

∂3φ1

∂ξ3

+
3ρ1/2A cos θ

4(ake
+ D)3/2

φ
1/2
1

∂φ1

∂ξ
= 0 . (30)

Also, λs, the phase velocity for µ ≫ 1, is obtained as:

λs =

√

ρ

ake
+ D

cos θ . (31)

The phase velocities λf and λs are called as the fast
and slow waves respectively, because λf > λs.

The stationary solution of Eq. (28) is obtained by as-
suming φ = φf (ξ − ufτ), where uf is the constant soliton
velocity in the moving frame (the frame which moves with
λf =

√

ρ/(ake
+ D)). Then, by assuming the appropriate

boundary condition, namely φf → 0, ∂φf/∂ξ → 0 and
∂2φf/∂ξ2 → 0, as |ξ − ufτ | → ∞, one obtains

φf = φfmsech4

[

√

∣

∣

∣

(1 − β)bκe

15z
1/2
d

√
π

∣

∣

∣

√

φfm(ξ − ufτ)

]

, (32)

uf =
2ρ1/2

3(ake
+ D)3/2

(1 − β)bκe

z
1/2
d

√
π

√

φfm , (33)

∆f = 2
(
∣

∣

∣

15z
1/2
d

√
π

(1 − β)bκe

∣

∣

∣

1√
φfm

)1/2

cosh−1
√

2 , (34)

where φfm is the maximum amplitude and ∆f is the width
at half maximum of soliton. In laboratory frame the soli-
ton velocity is

uf,lab = uf + λf . (35)

The nonlinear evolution of the slow ion-acoustic fol-
lows Eq. (30). The stationary solution of equation is sim-
ilarly obtained by assuming φ = φs(ξ − usτ ), where us

is the constant soliton velocity in the moving frame (here
the frame moves with λs =

√

ρ/(ake
+ D) cos θ). After

considering the suitable boundary conditions of φs → 0,
∂φs/∂ξ → 0, and ∂2φs/∂ξ2 → 0, as |ξ − ufτ | → ∞, the
following is obtained:

φs = φsmsech4

[

√

∣

∣

∣

(1 − β)bκe

15z
1/2
d

√
π

∣

∣

∣

√

φsm(ξ − usτ)

]

, (36)

us =
2ρ1/2

3(ake
+ D)3/2

(1 − β)bκe

z
1/2
d

√
π

cos θ
√

φsm , (37)

∆s = 2

(

∣

∣

∣

15z
1/2
d

√
π

(1 − β)bκe

∣

∣

∣

1√
φsm

)1/2

cosh−1
√

2 , (38)

where φsm is the maximum amplitude and ∆s is the width
at half maximum of soliton. The soliton velocity in the
laboratory frame is

us,lab = us + λs . (39)

4 Numerical Result and Discussion

The nonlinear term in mKdV equation is in charge of
the steepening effect. Form Fig. 1, the nonlinear term is a
decreasing function of κ. It means, for smaller population
of superthermal particles (larger κ), the nonlinear term is
smaller. Therefore, it is expected that DASs move slower
in the moving frame which moves with λf . On the other
hand, dispersive coefficient in mKdV equation is in charge
of broadening effect. This coefficient is an increasing func-
tion of κ. So that by increasing of superthermal particles
(smaller κ), dispersive coefficient decreases. As a result,
the width of DASs should be smaller.[34−35]

Fig. 1 Nonlinear and dispersive coefficient of mKdV
equation versus κe = κi = κ with µ = 10−3, zd = 10,
ρ = zd, zi = 1, and β = −0.5 for fast mode.

As soliton formation depends on the balance of steep-
ening and broadening effects, the above explanations are
base of our physical expectations.

Figures 2–4 depict the fast soliton velocity versus β for
the different parameters of plasma.

Figure 2(a) depicts the soliton velocity versus β in the
moving frame. Recall, the frame velocity in the case of fast
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mode is λf =
√

ρ/(ake
+ D). As it is seen from the figure,

the soliton velocity is increased by increasing the popula-
tion of superthermal particles. It means that for smaller
κ, the soliton velocity is decreased. However, the results in
the laboratory frame differ. The reason of this difference
is because of the perturbative nature of the model which
is used to obtain mKdV equation. In this method, since
the higher orders of ε have lower effects the velocity of the
moving frame is obtained from a lower order of ε. There-

fore, the velocity of the moving frame is much larger than
the soliton velocity in the moving frame. So the moving
frame velocity plays a significant role. As it is seen from
Fig. 2(b), the phase velocity (equal to the moving frame
velocity) is a decreasing function of the superthermal par-
ticles population (smaller phase velocity for smaller κ).
Therefore, it is expected that the soliton velocity, in the
laboratory frame, is also a decreasing function of the su-
perthermal particles population.[34]

Fig. 2 The fast mode with µ = 10−3 and φfm = 0.1 for zd = 10, ρ = zd, zi = 1, and σ = 1. (a) The normalized
soliton velocity in the moving frame versus β; (b) The phase velocity versus β for κe = κi = κ.

Fig. 3 The normalized soliton velocity of the fast mode with µ = 10−3 and φfm = 0.1 in the laboratory frame
versus β. The solid line is drawn for zd = 10, ρ = zd, zi = 1, and σ = 1. The other lines indicate the influences of
changing different parameters such as zd, ρ and zi on the soliton velocity. (a) Maxwellian particles (κe = κi = 50);
(b) Non Maxwellian particles (κe = κi = 2).

Due to the above discussion, Fig. 3 shows the obtained
results of the laboratory frame for soliton velocity. The
dependency of the soliton velocity on the trapped electron
population does not change because the electron trapping
is a nonlinear effect and does not have any counterpart
from the lower order.[34]

As it is seen from Fig. 3, obviously in the labora-
tory frame, the soliton velocity is a decreasing function

of population of superthermal particles. That means, for
smaller κ, the soliton velocity is smaller. On the other
hand, by increasing the population of trapped electrons
(more negative β), DASs propagate with larger velocity.
The enhanced velocity of solitary structures for larger con-
centration of trapped electrons is due to the exchange of
energy between these low temperature electrons and the
DAWs. It appears that the wave picks up the energy from
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trapped electrons and propagates at larger velocity and,
hence, evolves into a solitary structure of higher ampli-
tude, when the concentration of trapped electrons is larger
in the plasma.[13]

From these two figures (Figs. 3(a) and 3(b)), one can
deduce that for larger number of charge ions (zi = 2)
the soliton velocity decreases and also for larger number
of charge dust grains (zd = 2) the soliton velocity in-
creases. In agreement with the physical prediction (based
on Eqs. (21) and (33)), the changes of number of charge
on ions (zi) and the ratio of the electron to the ion tem-
perature (σ) have the same influence on the behavior of
DASWs.

On the other hand, Fig. 3 exhibits the effect of ρ on
soliton velocity. It is found from figure that soliton ve-
locity for ρ = (1/2)zd (the total negative charge of dust
grains is half of the total negative charge of electrons) is
smaller than ρ = zd (the total negative charge of electrons
and dust grains are equal).

Figure 4 shows that the appearance of superthermal
ions deeply modifies the nonlinear features of DASs. These
results are the same for slow DASs, too. Therefore, it has
been forgone showing them.

Figures 5(a) and 5(b) show the behavior of dust acous-
tic soliton width respect to β. As it is seen from Eqs. (34)
and (38), the width is independent of θ. Therefore, by

assuming the same amplitude for both the fast and slow
modes, the width can be demonstrated on the same curve.
Here φfm = φsm = 0.1. The results can be interpreted in
the following manner. By increasing the population of
trapped electrons (more negative β) and decreasing the
number of charge dust grains (zd), the width of soliton
has a decreasing behavior.

Fig. 4 The normalized soliton velocity of the fast mode
with µ = 10−3 and φfm = 0.1 in the laboratory frame
versus β for zd = 10, ρ = zd, zi = 1, σ = 1, and different
κ.

Fig. 5 The normalized soliton width vs. β for different κe and φfm = φsm = 0.1. (a) zd = 10; (b) zd = 20.

5 Dust Acoustic Solitons with Positive Dust

Grains

What makes dusty plasmas interesting and technolog-

ically important is the fact that the dust particles ac-

quire an electric charge in the plasma, typically a neg-

ative charge but Fortov[36] has shown that they can be

positively charged through three mechanisms which are

photoemission in presence of a flux of ultraviolet (UV),

thermionic emission induced by radiative heating and sec-

ondary emission of electrons from the surface of the dust

grains. Recently, positively charged dust grains are found

in space plasma environments[37−38] and it is seen that

these positively charged grains also play significant role.

So, the effect of positive dust in the present plasma will

be investigated now.

Using the same analysis, an mKdV equation for fast

mode is obtained as follows:

∂φ1

∂τ
+

ρ1/2

2(ake
+ D′)3/2

∂3φ1

∂ξ3
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+
3ρ1/2A

4(ake
+ D′)3/2

φ
1/2
1

∂φ1

∂ξ
= 0 , (40)

and for slow mode

∂φ1

∂τ
+

ρ1/2 cos θ

2(ake
+ D′)3/2

∂3φ1

∂ξ3

+
3ρ1/2A cos θ

4(ake
+ D′)3/2

φ
1/2
1

∂φ1

∂ξ
= 0 , (41)

where
D′ = zi

(

1 − ρ

zd

)

σaκi
, (42)

respectively, where ρ < zd, with ρ = z2
dn0d/n0e as before.

Fig. 6 The normalized soliton velocity of the fast mode
with µ = 10−3 and φfm = 0.1 in the laboratory frame
versus β for zd = 10, zi = 1, σ = 1, and ρ = 0.5zd

(positive dust).

It is obvious from Eqs. (28) and (40) that the presence

of positive dust introduces a small correction to mKdV

equation. It only changes parameter D, that this param-

eter determines the soliton velocity.

Figure 6 depicts the soliton velocity of the fast mode

with µ = 10−3 and φfm = 0.1 in the laboratory frame

versus β for zd = 10, zi = 1, σ = 1 and ρ = 0.5zd (in

this case, charge neutrality makes the total charge of ions

half of the total charge of electrons). It is shown that the
soliton velocity increases in the presence of the dust grains

which have been positively charged.

6 Summery

An mKdV equation for the nonlinear propagation dust

acoustic waves has been derived. A magnetized plasma

with superthermal electrons and ions is considered while
dust grains are assumed cold. Moreover, by applying the

standard RPT, trapped electrons are investigated. The

DF of superthermal electrons and ions was modeled by

kappa distribution. Such a plasma is found to support
two types of nonlinear DAWs (fast and slow).

The effect of different parameters on behavior of dust

acoustic solitary waves is investigated. The DASs are

found to attain higher velocity (or amplitude) when the
dust grains and trapped electrons are more in number; the

same is the case with smaller population of superthermal

electrons and ions. Also, they become slower when the

number of charge on ions and the ratio of the electron to
the ion temperature increase.

The results of this study also reveal that the dust

acoustic soliton becomes slimmer when the population of

trapped and superthermal electrons is more in number.
Also, the effect of charge on dust grains is to enhance the

width of these structures.
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