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Abstract: Imaging based damage detection techniques are increasingly being utilized alongside 

traditional visual inspection methods to provide owners/operators of infrastructure with an efficient 

source of quantitative information for ensuring their continued safe and economic operation. 

However, there exists scope for significant development of improved damage detection algorithms 

that can characterise features of interest in challenging scenes with credibility. This paper presents a 

new Regionally Enhanced Multi-Phase Segmentation (REMPS) technique that is designed to detect a 

broad range of damage forms on the surface of civil infrastructure. The technique is successfully 

applied to a corroding infrastructure component in a harbour facility. REMPS integrates spatial and 

pixel relationships to identify, classify, and quantify the area of damaged regions to a high degree of 

accuracy. The image of interest is pre-processed through a contrast enhancement and colour reduction 

scheme. Features in the image are then identified using a Sobel edge detector, followed by subsequent 

classification using a clustering based filtering technique. Finally, Support Vector Machines (SVM) 

are used to classify pixels which are locally supplemented onto damaged regions to improve their size 

and shape characteristics. The performance of REMPS in different colour spaces is investigated for 

best detection on the basis of Receiver Operating Characteristics (ROC) curves. The superiority of 

REMPS over existing segmentation approaches is demonstrated, in particular when considering High 

Dynamic Range (HDR) imagery. It is shown that REMPS easily extends beyond the application 

presented and may be considered an effective and versatile standalone segmentation technique.  
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1 INTRODUCTION 

Increasingly exorbitant costs associated with maintaining networks of ageing and deteriorating 

structures has led to a greater focus on adopting smarter inspection strategies. Regular inspections of 

the condition of structures are vital to ensure that they remain safe and serviceable. Non-Destructive 

Techniques (NDT) often provide the only method of obtaining information about the health condition 

of a structure. This information can be fed into an Infrastructure Management System (IMS), which 

can help the decision makers to make more effective and informed judgments when allocating 

resources towards the correction of deficiencies and when choosing an appropriate future course of 

action. This aspect has attracted a growing interest in recent years as the importance of life cycle 

optimisation and the related financial benefits continue to be recognised (Sarma and Adeli, 1998; 

Sirca Jr and Adeli, 2005; Schoefs et al., 2009). For a well calibrated IMS, it is important that the input 

information is accurate and comprehensive. This requires selecting the most suitable NDT technique, 

which for a given application is not always readily apparent as a measure of the onsite performance of 

an NDT technique remains a pertinent question in the majority of cases (Schoefs et al., 2012a). The 

best NDT method will largely depend on the damage to be detected and will require an in-depth 

knowledge of the advantages and limitations associated with each option. 

There exist a broad range of NDT techniques available. NDT techniques may be partitioned into 

two categories: non-visual and visual based techniques. Among the non-visual NDT techniques are 

electromagnetic methods, which include magnetic particle (Groves and Connell, 1985), eddy currents 

(Yusa et al., 2006) and magnetic flux leakage techniques (Butcher et al, 2013). These techniques 

provide information about surface and near-surface defects and about the effectiveness of cathodic 

protection systems for metallic structures. Ultrasonic (Iyer et al., 2005) and radiographic methods 

(Correa et al., 2009) can be applied to a wide range of materials and offer capability to detect both 

external and internal defects. Acoustic Emission (Sohn et al., 2008) methods can be used to monitor 

the progression of damage and estimate the corrosion in reinforced concrete structures. Finally, there 

has been growing interest in vibration based techniques such as (Osornio-Rios et al, 2012). Visual 

based techniques offer a good way of detecting anomalies such as corrosion, impact damage and 

surface-breaking defects. Visual based techniques include image based detection techniques which 

have applications in the detection of concrete cracks (Nishikawa et al., 2012), object identification in 

construction sites (Chi and Caldas, 2011), road defect detection from textural pattern recognition 

(Cord and Chambon, 2012) and assessment of underground pipes (Sinha et al., 2003; Iyer and Sinha, 

2006). There are several specialist visual techniques such as remote visual inspection (Nugent and 
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Pellegrino, 1991) and laser based scanners (Park et al., 2007), yet the most common visual based 

approach is standard visual inspections carried out by trained engineers. 

Many structures are assessed using a conventional regime of visual inspections, performed by 

trained inspectors/engineers. These inspections cover a range of detail, from a cursory check for gross 

defects, to a close examination of all surfaces, including the use of special equipment if necessary. 

The damage is usually qualitatively described and archived by the inspector. An attempt to quantify 

the severity of the damage is generally made through the use of a numerical scale which typically 

ranges over a limited number of categories (e.g. 5 levels), leading to a significantly varied degree of 

uncertainty and vagueness. Moreover, the categories are usually fixed for all types of structures 

(national or transnational recommendations, owner experience, etc.) based on the pathology of a 

material even if in some cases the risk analysis calls for a more detailed classification: it leads to 

errors when classifying critical components or structures. Additionally, whilst numerical scales are 

helpful for relative ranking and prioritising, they are not easily integrated into future quantitative 

analyses or experiments and repair options as this level is usually based on qualitative comments 

based on personal expertise. The quality of visual inspections largely depends on the ability of the 

inspectors to observe and objectively record details of defects. The approach is prone to 

considerations such as operator boredom, lapses in concentration, subjectivity, and fatigue, which 

contribute to the variability and reduced accuracy of visual inspections (Agin, 1980; Komorowski and 

Forsyth, 2000; Estes & Frangopol, 2003).  Visual inspections almost always capture photographs to 

include in the inspection report to corroborate the inspector’s comments; however, these photographs 

are rarely exploited to their fullest potential in either a qualitative or a quantitative fashion. Moreover, 

despite the creation of an image archive having an established role in an infrastructure maintenance 

management framework, it has no agreed protocol of collection and subsequent interpretation (Phares 

et al., 2004). Adopting an effective image based damage detection approach can provide accurate 

quantitative information to offset the inherent limitations of conventional visual inspection techniques 

and increase reliability.  

Image based damage detection involves two stages; image acquisition and image analysis. The 

image acquisition stage uses inexpensive and readily available equipment (i.e. a standard digital 

camera), and does not require the inspector to undertake extensive training. Furthermore, advances in 

camera technology mean that rich detailed imagery of damaged components can be acquired. While 

such rich and high-resolution imagery is advantageous, it can lead to increased processing time for 

many tasks in the image analysis stage. This is especially pertinent in cases where large batches must 

be processed. Thus, the image analysis stage should employ powerful yet efficient damage detection 

algorithms. The aim of the image analysis stage is to locate and quantify the area occupied by visible 

mechanical damage (typically larger than 10-4
 m

2
) on the surface of infrastructural elements with 

minimal human supervision.  Physical properties of the identified damage, such as the size and shape 

characteristics, may be easily extracted with knowledge of a real world scale. The quantitative nature 
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of the data obtained from image analysis is important and naturally lends itself to numerous 

applications. It is helpful for developing new damage models, or strengthening existing ones, which 

are used to forecast the rate of propagation of damage as the structure continues to operate.  

Damage detection algorithms may consist of image segmentation followed by subsequent 

classification of the segmented regions, such as (Sinha and Fieguth, 2006). Ideally, the segmentation 

methodology should identify and accurately define all regions of interest in an image whilst 

minimizing the inclusion of extraneous regions. In reality, perfect segmentation is difficult to achieve 

given the inherent chromatic and luminous complexities encountered in natural scenes. Segmentation 

algorithms use either colour information, texture information, or a combination of both, to isolate 

similar regions in an image. The effectiveness of colour based segmentation algorithms and texture 

based segmentation algorithms will vary according to the surface and damage type under 

consideration as certain damages are more separable from the undamaged surface based on either 

their colour or texture attributes.  The main forms of surface damage encountered on ageing 

infrastructural elements (corrosion, leaching, etc.)  are often characterised to a greater extent by the 

change in colour from the undamaged surface than a change in texture. With this in mind, the existing 

texture based segmentation methods for isolating damaged surfaces in the field of NDT such as 

O'Byrne et al, (2013), can be classified as suitable for specific applications where the damaged 

regions have a noticeable different texture than the surroundings.  Additionally, colour based 

segmentation algorithms typically have a superior computational efficiency over texture based 

algorithms given that texture must be calculated by considering a collection of neighbouring pixels 

around each pixel while colour based segmentation techniques typically need only consider each pixel 

intensity value independently. Colour based segmentation algorithms may be grouped into four major 

categories: thresholding, edge detection using gradient information, region growing, and hybrid 

methods (Abdel-Qader et al., 2008). Existing literature contains a variety of these segmentation 

methods applied in the domain of NDT. Many of these methods are designed for a particular 

application such as the detection of weld defects (Alaknanda et al., 2009; Vilar et al., 2009; Yazid et 

al., 2011; Kasban et al. 2011) or pipe deterioration (Peska, 2001; Liu et al 2012), and/or for particular 

image sources such as optical (Yazid et al., 2011), thermal (Abdel-Qader et al., 2008; Liu et al 2012; 

Yishuo and Jer-Wei, 2010; Heriansyah and Abu-Bakar, 2009), ultrasonic (Molero et al., 2012; 

D'Orazio et al., 2008) and radiography (Alaknanda et al., 2009; Vilar et al., 2009; Yazid et al., 2011;  

Kasban et al. 2011). As such, while these techniques may be effective for their designated purposes, 

they are understandably unlikely to perform well when applied to richly detailed, high-resolution 

optical images of a broad range of surface types and damage forms in complex natural scenes. There 

exist very few studies that have developed powerful image processing techniques to cater for the 

detection of damage in challenging circumstances. Thus, the emphasis lies in the development of a 

new technique that can characterise features of interest in natural scenes with credibility (Lu et al., 

1997; Naccari et al., 2005).  
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This paper presents a novel Regionally Enhanced Multi-Phase Segmentation (REMPS) 

technique. REMPS is comprised of three phases; identification, classification and enhancement. The 

first phase generates closed geometries by roughly identifying object boundaries in an image using the 

Sobel edge detector (Abdou and Pratt, 1979). The classification stage retains regions enclosed by a 

boundary that represent a damaged zone by employing a clustering based filtering technique. The 

final phase is dedicated to enhancing the definition of damaged regions by locally supplementing the 

regions with pixels obtained through SVM classification. SVMs have been used in numerous image 

segmentation applications (Song and Civco, 2004). Integrating each of these constituent phases in an 

effective manner creates a powerful and robust detection algorithm. To further improve the detection 

accuracy of REMPS, High Dynamic Range (HDR) imagery is considered. HDR imagery has 

previously been proposed as a protocol in the domain of NDT (Ghosh et al., 2010).  

The following section details the methodology of the proposed technique as well as providing a 

brief overview of HDR. Each stage of the methodology is illustrated on an image of a metallic surface 

suffering from pitting corrosion in coastal conditions. This image is a representative example taken 

from a large set of images featuring various surfaces and damage forms. Section 3 evaluates the 

performance of REMPS in various colour spaces (RGB, HSV, and L*a*b*) to determine the best 

segmentation space. REMPS is also compared with several established detection techniques to reveal 

its noticeable superiority. Section 4 concludes the paper. 

2 METHODOLOGY 

An image based damage detection algorithm, REMPS, has been proposed in this paper. The algorithm 

is applied to a Standard Dynamic Range (SDR) image, and the associated HDR image in order to 

investigate whether adopting a HDR protocol would improve the detection accuracy. This section 

provides the background to HDR, outlines each of the three phases of the REMPS process, and 

provides details of the evaluation process used to measure the detection accuracy.  

2.1 High Dynamic Range (HDR) 

HDR imagery is a set of techniques that allow a greater dynamic range of luminance values between 

the brightest and darkest regions of an image than standard digital images. SDR images can typically 

only accommodate a very limited range bracket of the full tonal spectrum in a real world scene. 

Therefore, a dynamic range bracket would have to be chosen in the knowledge that all luminance 

values outside the range would not be represented correctly. The broad principle behind HDR imagery 

is that multiple SDR images of the same scene, each taken at a different exposure, and thus capturing 

a different range bracket of the tonal spectrum, may be merged to form one HDR image that has a 
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wider dynamic range (Reinhard et al., 2008). Combining SDR images can be done using various 

merging algorithms (Naccari et al., 2005; Debevec and Malik, 2008).   

The benefits of adopting HDR imagery as an imaging protocol may be observed in Figure 1 

which presents three SDR images (an underexposed, a normally exposed and an overexposed image) 

and the corresponding HDR image. These images depict a 30-year old corroded steel pile in the tidal 

area in a wharf situated off the French Atlantic Ocean. It may be observed that HDR imagery is 

particularly useful here since the shiny metallic surface gives rise to a natural high dynamic range. 

Generally, scenes which have a wide dynamic range due to the presence of  bright/shadowy patches or 

as a result of glossy surfaces are likely to especially benefit from the adoption of HDR as a protocol. 

[Figure 1 here] 

 

Fig. 1. A High Dynamic Range (HDR) image of corroding steel formed by merging the Normally, Over and 

Under exposed images together 

 

2.2 Regionally Enhanced Multi-Phase Segmentation (REMPS) technique  

The REMPS technique integrates three feature detection methods. A flowchart illustrating the order of 

the feature detection methods is presented in Figure 2. The first method involves the application of the 

Sobel edge detector on a modified image in order to form closed geometries corresponding to objects 

in a scene. Statistical properties are calculated for each of the closed geometries. Statistical based 



O’Byrne, Schoefs, Ghosh & Pakrashi 
  

7 

 

approaches are popular owing to their computationally inexpensive nature and their robustness (Giralt 

et al, 2013; Li et al, 2013). These statistical properties serve as input to a clustering based filtering 

phase which retains closed geometries that have statistical properties characteristic of damaged 

regions whilst discarding closed geometries that have statistical properties characteristic of non-

damaged regions. SVMs are then used to identify potentially damaged pixels adjacent to these filtered 

closed geometries in order to improve the definition of the damaged regions. REMPS attempts to 

utilise the advantages of these three mutually exclusive techniques most effectively.  The low 

complexity of the Sobel edge detector and the clustering based filtering techniques are complimented 

by the strategic application of the high complexity SVMs.  For instance, the robustness and generality 

of the Sobel edge detector serves as a natural precursor to the closed geometry clustering stage. This 

clustering stage performs well at classifying the presence of damage, however, it is only after the 

pixel supplementation stage that the shape and size characteristics of the retained closed geometries 

are sufficiently realised. Finally, a Receiver Operating Characteristic (ROC) based optimisation 

framework may be employed to determine the best input parameters.  Each stage is discussed in the 

following sub-sections.  
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[Figure 2 here] 

 

Fig. 1. REMPS Flowchart 
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2.2.1 Identification 

The first stage of the damage identification process involves the creation of a temporary image which 

undergoes to contrast enhancement and colour reduction operations. These operations help make the 

boundaries of features of interest in a scene more apparent. This is an important step before the 

application of the Sobel operator, as often in natural scenes, the transition from damaged to 

undamaged zones is ambiguous, resulting in an increased likelihood that an edge boundary may be 

undetected. Contrast is amplified through a process known as Histogram Equalization (HE) (Pizer et 

al., 1987; O'Gorman et al, 2008)  whereby the intensity values are uniformly spread over the full 

range of each colour channel in the image [0, 255]. Let A denote an image represented as an M x N x 

CC matrix of pixel intensity values, where M and N are the row and column lengths and CC is the 

number of colour channels. For colour images, there are three colour channels (e.g. RGB images are 

comprised of a Red, Green, and Blue plane). For HE, each colour channel is operated on separately. 

HE is implemented by firstly calculating the discrete probability, pc(i), of pixels having intensity i in 

the c
th
 colour channel of image A : 

,
,( ) for 0 ; ;

i c

c i c

n
p i i L n n

n
= ≤ < ≤

                           (1) 

where n is the total number of pixels in the image and ni,c is the number of occurrences of pixels with 

intensity value i in the c
th
 colour channel; L is the total number of intensity levels in the image A (for 

images defined on a scale of [0, 255],  L = 256). L assumes the same value for all colour channels.    

The Cumulative Distribution Function (CDF), Pc, which provides the accumulated normalized 

histogram for the c
th
 colour plane can be computed as, 

( ) ( )c c

i

P i p
τ

τ
≤

=∑
                          (2) 

With knowledge of the CDF, the general equation for generating the HE image may be written as: 

( ) ( 0)
( ) ( 1)

( ) ( 0)

c c
c b b

c

P i P i
heq i round n n L

M N P i

 − =
= − ≤ × − =                        (3)

 

where ( )cheq i  is the histogram equalized intensity value in the c
th
 colour plane. This equation 

incorporates colour reduction which quantizes the intensity values in each colour channel into nb 

discrete bins. Finally for this preliminary modification stage, a 2D greyscale image, B, of size M x N, 

is formed by averaging the intensity values from each colour channel as per Equation 4. This equation 

also includes a scaling term, 
1

255

−bn
 , for restoring the image's range from [0, nb-1] to the original 

range of [0, 255]. 

1

255 1
( ) ( )

1

CC

c

cb

b i round heq i
n CC =

 
=  − 

∑                                                       
                (4)
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where ( )b i is the corrected intensity value in image B . The function of the rounding operator is to 

ensure that the intensity values in image B remain discrete integers.  

A value of 14 was used for nb for each application of REMPS on the sample images shown 

throughout this paper. This value was chosen as it was experimentally found to offer a sufficient 

number of distinct bins and provide suitable grouping of perceptually similar pixels within each bin. 

The nb parameter be optimised through a Receiver Operating Characteristic (ROC) based optimisation 

framework/trial and error approach. Initial detection of features of interest may now be carried by 

applying an edge detector to the modified image.  

The Sobel operator edge detector works by calculating approximations of the first derivatives of 

an image in horizontal and vertical directions respectively (Abdou and Pratt, 1979). Denoting Ghorz 

and Gvert as the two masks which give the horizontal and vertical derivative approximations at each 

point as  

1 0 1 1 2 1

2 0 2 0 0 0

1 0 1 1 2 1

horz vertG B and G B

− + − − −   
   = − + ∗ = ∗   
− + + + +      

                              (5) 

where the asterisk denotes the 2-dimensional convolution operation. A padding with a thickness of 

one pixel may be applied around the border of image B during the convolution process thereby 

enabling the computation to be performed at the image extremities. The intensity values in the 

padding assume the value of the neighbouring pixel in the original image. At each point in the image, 

the resulting gradient approximations can be combined to give the gradient magnitude, using 

2 2
horz vertG G G= +           (6) 

A large value of G represents a sharp change in image intensity which in turn is indicative of an edge 

boundary. Since the preliminary histogram equalization and colour reduction steps prevent the 

occurrence of weak edges, all non-zero values of G may be taken as being representative of an edge. 

The detected boundaries for the HDR image are shown in Figure 3. The region enclosed by the 

boundary is denoted by Rj where j is the index of the region (j=1,…,J).  

http://en.wikipedia.org/wiki/Convolution�


O’Byrne, Schoefs, Ghosh & Pakrashi 
  

11 

 

[Figure 3 here] 

 

Fig. 3. Detected closed geometries following pre-processing and application of the Sobel operator 

It may be observed from Figure 3 that many closed geometries detected by the Sobel operator are of a 

negligible size which tend to represent spurious regions rather than damaged regions. For 

computational parsimony and classification accuracy purposes, closed geometries below a certain size 

are not considered for future analysis. The chosen threshold area can be viewed as the minimum 

defect size, below which regions are considered to present an insignificant degree of damage.  It may 

be convenient to represent the threshold area as a function of the overall image size. For instance, it 

could be specified that closed geometries less than 1% of the total image area should be discarded. A 

priori knowledge of the damage type and its relationship to the decision process (repair, detailed 

inspection etc.) may be used as a factor in choosing the threshold area. The remaining closed 

geometries are classified by means of a clustering technique. 

2.2.2 Clustering based Filtering 

Given a set of closed geometries (Rj = R1 , R2,..., RJ), the clustering algorithm aims to partition the J 

observations into two sets S = {S1, S2} such that the Euclidean distance between the centroid of Rj and 

the centroid of the set which it is assigned to is minimized.  S1 corresponds to the cluster representing 

damaged regions while S2 represents the undamaged cluster. 
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The centroid of each closed geometry is given by the point 1 2 3 1 2 3( , , , , , ) jk k kµ µ µ   where u1-3 is 

the mean, and k1-3 is the kurtosis, of the pixel distribution for each of the three colour channels within 

the j
th
 closed geometry. The mean of each colour channel for each region is computed by : 

, , ,
1

1 R j

j

n

c j t c j j
tR

i R
n

µ
=

 
= ∈  

 
∑           (7) 

while the kurtosis is given by: 

4
, , , ,

1

1
( )

R j

j

n

c j t c j c j j
R t

k i R
n

µ
=

 
 = − ∈
 
 
∑          (8) 

where , ,t c ji denotes the intensity value for the pixel with index t within the j
th
 region for the c

th
 colour 

channel, while 
jRn  denotes the total number of pixels in the j

th
 region. The properties of mean and 

kurtosis were chosen as they were found to sufficiently describe the pixel distribution of each closed 

geometry. Representing a closed geometry solely based on the mean is susceptible to error as closed 

geometries with disparate pixel distributions may yield similar values. Introducing kurtosis offsets this 

issue and creates a more well-rounded description of each closed geometry. Its amplitude independent 

nature means that it is less effected by variations in contrast levels between images within a batch, 

ensuring that training data selected in one (or more) image(s) remains applicable to other images in 

the batch. Furthermore, it was experimentally found to provide a good description of damaged 

regions. A scatter plot of the mean and kurtosis values for the numbered regions in Figure 3 is 

illustrated in Figure 4b. The centroid of the j
th
 closed geometry, Rj, is given by . 

The centroids of the damaged and undamaged clusters are obtained from the training data. The 

training data is comprised of two closed geometries which are representative of a damaged and 

undamaged zone. These regions must be manually selected. In the illustrated example, the region 

labelled "R1" in Figure 3 was used as the damaged training data while the background was chosen as 

the undamaged region (labelled "R7"). The cluster centroid for the damaged cluster, S1, is thus given 

by the vector , while the centroid of the undamaged cluster, S2, is given by 

.
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[Figure 4 here] 

 

Fig. 4. Scatter plot of mean and kurtosis values for each closed geometry in the (a) SDR and (b) HDR 

images 

Figure 4 illustrates the difference between the range of μ and k values in the SDR and HDR 

images. It may be observed from the HDR image scatter plot (Figure 4b) that there is a greater degree 

of separation, according to μ, between the background and the other closed geometries in comparison 

to the SDR image scatter plot (Figure 4a). Additionally, the scatter points for the HDR image are 

more dispersed, according to k, which should, in theory, facilitate clustering by reducing the 

likelihood of ambiguous closed geometries that lie on the decision boundary.  

Rj is assigned to the set which minimises the Euclidean distance between the observation centroid 

and cluster centroid as: 

2 2

1 , , , ,

2

, if 

, otherwise

j m damaged m j m undamaged m
m m

j

S R R R R

R

S

 − ≤ −∈



∑ ∑
    (9) 

where m = 1,2,...,6 denotes the index of the elements in Rj. 

 

 Once the closed geometries have been grouped into their respective clusters, it is necessary to 

enhance their size and shape characteristics.  

2.2.3 Enhancement 

Following the region based clustering stage, there still exists many damaged pixels around the 

periphery of the region that remain undetected Performing SVM in the neighbourhood of these 

regions and then locally supplementing the closed geometries with the SVM pixels produces better 
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defined features of interest. This is conveyed by comparing the closed geometry R1 before and after 

the local application of SVM classified pixels (Fig. 5a and 5b respectively).  

 

 

Fig. 5. Close-up of R1, (a) Before local enhancement, and (b) Detected pixels from SVM classification 

SVMs are used to classify pixels as being either damaged or undamaged based on the intensity values 

for each colour channel. SVM is a supervised learning classifier based on statistical learning theory. 

The linear SVM is used for linearly separable data using a (f-1) dimensional hyperplane in f 

dimensional feature space (Vapnik, 1995; Boser et al. 1992; Cortes and Vapnik, 1995; Cristianni and 

Shawe-Taylor, 2000). This hyperplane is called a maximum-margin hyperplane which ensures 

maximized distance from the hyperplane to the nearest data points on either side in a transformed 

space. The linear kernel function is the dot product between the data points and the normal vector to 

the hyper-plane. The kernel function concept is used to simplify the identification of the hyperplane 

by transforming the feature space into a high dimensional space. The hyperplane found in the high 

dimensional feature space corresponds to a decision boundary in the input space. 

In SVM the classifier hyperplane is generated based on training datasets. The same damaged and 

undamaged regions used in the clustering stage are used as the training data. Given a training dataset 

of l points in the form { }
1

( , )
l

h h h
u v

= where h denotes the h
th
 vector in the dataset, uh is a real f-

dimensional input vector containing the mean and kurtosis values associated with each region

and vh is an instance label vector { }( 1, 1 )
l

h
v ∈ − ; for this study, a value of +1 indicates 

presence of damage and -1 indicated absence of damage. To identify the maximum-margin 

hyperplane in the feature space, the SVM requires the solution of the following optimization problem: 
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The function φ maps the training vectors hu  into a higher dimensional space. The vector w is the 

weight vector which is normal to the hyperplane, e is the bias, ξ is the misclassification error and C is 

the cost or penalty parameter related to ξ. The solution to the problem is given by:  

, , ,α 1 1 1

1
min ( , )

2

l l l

h q h x y h x y c h
h q h

v v K u uα α α
= = =

 
−  

 
∑ ∑ ∑
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With Constraints:  
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∑
          (12) 

Where K is the kernel function αh and αq are the Lagrange multipliers, vx,y is a label vector

{ },( 1, 1 )
x y

v ∈ −  for the input point ux,y,c. The linear kernel has been used here,  

, , , ,( , ) T
h x y c h x y cK u u u u=           (13) 

There is one preselected parameter value for the SVM, namely the cost parameter C, which may be 

optimised in a similar fashion to the nb parameter from the colour reduction stage using an ROC based 

optimisation framework/trial and error approach.  

The enhancement process firstly examines pixels that are immediately adjacent to each retained 

region, Rj. A pixel is considered to be adjacent to a region if it shares an edge or corner with any pixel 

on the periphery of that region. SVM classification is applied to these adjacent pixels utilising their 

original intensity values ( , ,x y ca ) to classify each of these pixels as representing damaged surface or 

not. Pixels which are classified using SVMs as representing damage become a member of the region, 

Rj. Pixels in immediate vicinity of the newly identified member pixels of Rj are further subjected to 

classification using SVMs. This process is repeated until there are no more adjacent damaged pixels 

that can be added to a region. For computational parsimony, no individual pixel is subjected to 

classification using SVMs more than once in the entire region enhancement step. 

 

2.3 Performance measures of REMPS 

The performance of the REMPS technique is evaluated through the use of performance points in the 

ROC space. The ROC space allows for a convenient means of characterising and comparing the 

performance of NDT methods in various conditions (Rouhan and Schoefs, 2003) and has been 

recently expanded to image detection (Pakrashi et al., 2010). For any NDT, the Detection Rate (DR) 

along with the accompanying Misclassification Rate (MCR), or alternatively known as Probability of 

Detection (PoD) and Probability of False Alarm (PFA) in the field of probability space and decision 

theory, are determined by comparing the corroded regions detected with a visually segmented image. 

The visually segmented image is created by a human operator who manually identifies damage in an 
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image. It acts as the control as it is assumed it shows the true extent of damage. The visually 

segmented image only needs to be created when it is wished to gauge the performance levels of the 

technique under scrutiny.  The DR and MCR are represented as a percentage between 0% and 100%. 

Each (MCR,DR) pair formed a coordinate in the ROC space. The DR and MCR are defined as: 

c

Card(E)
DR

n
≈  with  { }1gE = g ;γ∈ℑ =        (14) 

Card(F)
MCR

n
≈  with  { }1gF = g ;γ∈ℑ = −        (15) 

where Card(.) indicates the cardinal of a particular set,  { }1, ...= ,nℑ . nc denotes the number of 

damaged pixels and γg is an instance label vector { }( 1, 1 )
g

γ ∈ − , where 1
g

γ =  corresponds to correctly 

identified damaged pixels and 1
g

γ = −  corresponds to incorrectly detected pixels and undetected 

damaged pixels. F gathers situations of incorrectly detected pixels and undetected damaged pixels 

while E gathers the correctly detected ones. A box counting approach (O'Byrne et al., 2011) was 

employed to calculate nc for each image in each colour space.  

There are a few measures for comparing segmentation performance (Hui et al., 2008). In this 

paper, a measure of the performance is obtained through the use of the α-δ method (Baroth et al., 

2011; Schoefs et al., 2012b). This method relies on calculating the angle, α, and the Euclidean 

distance, δ, between the best performance point, defined as an ideal NDT with 100% detection and 

0% misclassification rates and represented in the ROC space with coordinates (0,1) and the 

considered point to give a measure of the performance of the considered point. As this paper does not 

deal with risk analysis where the shape to the ROC acts as a key factor, only the delta, δ, parameter is 

required as a measure of performance. A low value for δ is indicative of a strong performance. 

3 EVALUATION OF REMPS 

This section presents the results obtained by REMPS when applied to the SDR (normally-exposed) 

and HDR images of pitting corrosion (Figure 1). The performance is investigated for several colour 

spaces. These colour spaces are introduced in the first subsection. A comparison of the results for 

each colour space is provided in the second subsection, while the final subsection compares the 

performance of REMPS with established detection techniques.  

3.1 HSV and L*a*b colour spaces 

Two additional colour spaces were considered in order to determine whether this could improve the 

accuracy of detection, namely the HSV and L*a*b* spaces. HSV (Hue, Saturation, Value) is one of 

several variations of colour spaces characterised by the factors in the parenthesis. It is often used in 
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computer vision and image analysis for feature detection or image segmentation as the hue component 

is believed to be especially useful for separating objects with different colours (Vapnik, 1995). Often, 

detection algorithms applied to colour images are extensions to algorithms designed for greyscale 

images whereby each of the three colour channels is separately passed through the same algorithm. It 

is important, therefore, that the features of interest can be distinguished by the colour dimensions 

used. Because the red, green and blue components in an RGB image are all correlated with the same 

amount of light hitting the object, and therefore with each other, image descriptions in terms of these 

components can make object discrimination difficult. Descriptions in terms of hue-saturation-

brightness are often more relevant due to this separation of chromatic and achromatic information. 

The HDR image of pitting corrosion is shown in the HSV colour space in Figure 6b. 

The L*a*b* colour space also offers some interesting benefits over the RGB space, especially in 

cases where the colour of damaged zones is perceptually close to the colour of the undamaged 

surface. The L*a*b* space consists of a luminosity layer L*, and chromaticity layers a* and b*. The 

L* component is similar to the V component HSV space. It closely matches the human perception of 

lightness. Being able to isolate the lightness layer is helpful for making accurate colour balance 

corrections which is useful when environmental conditions such as lighting levels cannot be 

controlled (O'Byrne et al, 2013). The colour information is stored in the a* and b* layers. The a* 

component indicates where the colour lies on the red-green axis, while the b* component indicates 

where the colour lies on the blue-yellow axis. The L*a*b* space attempts to reflect a uniform change 

in perceived colour with a corresponding uniform change in the L*, a*, and b* components. The HDR 

image in the L*a*b* colour space is shown in Figure 6c. 

3.2 Comparison of colour spaces 

Different colour spaces encode and numerically represent colour in various ways. Consequently, some 

colour spaces are more receptive to certain segmentation techniques than others. REMPS is applied to 

the SDR and HDR images in the RGB, HSV and L*a*b* colour spaces to explore whether a 

particular colour space responds well to the proposed technique. The detected regions for the HDR 

image in each colour space are shown in Figure 6. The performance of REMPS for the SDR and HDR 

images in each colour space are quantified in Table 1 and the associated performance points are 

plotted in the ROC space in Figure 7.  

http://en.wikipedia.org/wiki/Computer_vision�
http://en.wikipedia.org/wiki/Image_analysis�
http://en.wikipedia.org/wiki/Feature_detection_(computer_vision)�
http://en.wikipedia.org/wiki/Segmentation_(image_processing)�
http://en.wikipedia.org/wiki/Grayscale�
http://en.wikipedia.org/wiki/Feature_(computer_vision)�
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[Figure 6 here] 

 

Fig. 6. HDR Image of Pitting Corrosion. (a) Image in RGB space, (b) Image in HSV space, (c) Image in 

L*a*b* space, (d) Detected Regions in RGB, (e) Detected Regions in HSV, (f) Detected Regions in L*a*b*. 

 

Table 1 

Detection accuracy for the SDR and HDR image of pitting corrosion for each colour space. 

Colour 

Space 

SDR Image  HDR Image 

DR MCR δ  DR MCR δ 

RGB 84% 8% 0.18 
 

85% 7% 0.17 

HSV 85% 7% 0.17 
 

84% 5% 0.17 

L*a*b* 76% 5% 0.24 
 

85% 5% 0.16 

 

[Figure 7 here] 
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Fig. 7. ROC curves depicting the performance of REMPS algorithm in various colour spaces. 

It may be observed from the relatively compact nature of performance points in Figure 7 that the 

accuracy of REMPS is not heavily reliant on the colour space. Despite this, some interesting findings 

emerged. The HDR image typically offered a superior performance over the SDR image. Overall, it 

was the HDR image in the L*a*b* space that achieved the best performance while, conversely, the 

SDR image in L*a*b* was the worst performer by noticeable margin.  This suggests that adopting a 

HDR protocol is especially relevant when operating on images in the L*a*b* space.  

The performance order of the colour spaces might be somewhat expected given the visual 

appearance of the HDR image in each colour space (Figure 6a-6c). It may be noted that damaged 

regions in L*a*b* appear relatively homogenous and are readily discernible against the background. 

The damaged regions in the HSV colour space on the other hand are composed of several colours 

making object detection more difficult. The RGB space is slightly more effective than the other 

spaces at locating the presence of damage while the HSV and L*a*b* spaces perform well at defining 

the shape and size of damaged regions. 

The success of REMPS is influenced to varying extents by the performance of each phase in a 

given colour space. While there is a heavy reliance on the ability of the Sobel edge detection phase to 
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isolate damaged regions, it is the clustering stage which has the greatest influence. This stage 

determines whether clusters should be retained or discarded so it can have a significant impact on 

both the misclassification and detection rate. Conversely, the SVM stage has a relatively minor effect 

on the detection accuracy as it is largely confined to a role as a supplementary tool to enhance already 

detected regions. Thus, colour spaces that do not respond well to the edge detection stage and 

particularly the clustering stage are greatly handicapped. 

 

3.3 Comparison with Traditional Colour based Techniques 

In this section, REMPS is compared with established detection techniques, such as Otsu’s Method 

(Otsu, 1979), Chan-Vese Method (Chan and Vese, 2001), Delaunay Triangulation (Cheddad et al., 

2008), Region Growing (Adams and Bischof, 1994), and Graph-Based Segmentation (Felzenszwalb 

and Huttenlocher, 2004). The comparison serves to highlight the effectiveness of REMPS in relation 

to the other segmentation techniques. The regions detected using these techniques on the HDR image 

are shown in Figure 8, and their respective performances are quantified in Table 2 for both the SDR 

and HDR images, as well as being graphically illustrated by means of performance points in the ROC 

space in Figure 9.  

The performance of colour based segmentation techniques is affected by whether the technique is 

contextual or non-contextual. Non-contextual techniques (e.g. thresholding) do not take into account 

any spatial relationships between pixels in an image, but rather segment pixels at a global level on the 

basis of some attribute, e.g. colour intensity. Contextual techniques (e.g. REMPS or region growing 

techniques) on the other hand do consider spatial relationships. If a contextual relationship is an 

important factor for segmenting a particular image, than non-contextual techniques will have limited 

success compared to techniques which exploit the contextual relationship. Adopting the αδ method 

allowed for an clear comparison between various (DR,MCR) pairs. Analysis of the δ parameter in 

Table 2 reveals that all of the established techniques performed noticeably better when applied to the 

SDR image rather than the HDR image. In some cases, such as for the Region Growing technique 

(Figure 8d), the SDR image offered an appreciably improved performance suggesting that the 

increased local contrast associated with HDR has an adverse effect . This may be observed from the 

ROC space in Figure 9 which illustrates the relatively separate nature of the two performance points 

associated with the technique. However, an exception to this trend emerged in the case of REMPS, 

whereby the performance was slightly enhanced when HDR imagery was considered as an imaging 

protocol. 

The performance levels obtained from each technique varied markedly. The Chan-Vese method 

(Figure 8b) and Delaunay Triangulation (Figure 8c) performed quite well when applied to the SDR 

image, whilst Otsu's Method (Figure 8e) performed reasonably well on both the SDR and HDR 
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images despite its simple and non-contextual nature. The Graph Cutting technique (Figure 8f) on the 

other hand produced poor results, as demonstrated by the performance points in the ROC space lying 

closer to the line of chance than the best performance point (Figure 9). Overall, the REMPS achieved 

the best detection results, especially when performed on the HDR image. 

[Figure 8 here] 

 

Fig. 8. Detected Regions from: (a) REMPS, (b) Chan-Vese Method, (c) Delaunay Triangulation, (d) Region 

Growing, (e) Otsu's Method, (f) Graph-Based Segmentation. 

 

Table 2 

Comparison of techniques. 

Segmentation 

Technique 

Normally Exposed Image  HDR Image 

DR MCR δ  DR MCR δ 

REMPS 84% 8% 0.18  85% 7% 0.17 

Chen-Vese 93% 18% 0.19  95% 22% 0.23 

Delaunay 

Triangulation 
86% 14% 0.20  85% 14% 0.20 

Region 

Growing 
89% 17% 0.21  95% 35% 0.36 

Otsu's Method 86% 14% 0.20  90% 20% 0.22 

Graph Cutting 78% 39% 0.45  76% 41% 0.47 
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[Figure 9 here] 

 

Fig. 9. Comparison of detection techniques through the use of performance points in the ROC space. 
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REMPS was also applied to a standard image in a non-structural scene, significantly disparate 

from the corroded example presented in this paper, to showcase its flexibility. A visual comparison 

with some of the detection techniques previously mentioned is presented in Figure 10, which further 

illustrates the potential of REMPS and underlines its credentials as a high performing standalone 

technique beyond damage identification applications. 

[Figure 10 here] 

 

Fig. 10. (a) Original Image, Detected Regions from: (b) REMPS, (c) Chan-Vese Method, (d) Delaunay Triangulation, 

(e) Region Growing, and (f) Otsu's Method. 

It may be observed from Figure 8 and Figure 10 that the detected regions from REMPS produce 

a much ‘cleaner’ image of detected regions that is not contaminated by speckles of spurious regions 

which is a feature of all the other techniques. Having a ‘cleaner’ image is important for many post-

processing applications such as calculating the propagation rate for damaged regions. For such an 

application, labelling and numbering of damaged regions may be a necessary prerequisite which 

would be inhibited by the presence of the many small and insignificant spurious regions.  

3.4 Comparison with a Texture Analysis Based Technique for Damage Detection 

Image processing based techniques include colour intensity based methods and texture analysis 

based methods. Naturally, the techniques in each group are suited to different applications, depending 

largely on whether the damaged regions are more separable from the background based on colour or 

on texture. This section assesses the performance of REMPS alongside a texture analysis based 

technique (O’Byrne et al, 2013) previously proposed in the domain of NDT, in order to give an 

indication of the performance levels that can be expected when a range of damage forms and surfaces 
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are under consideration. This should enable the end user to better decide on which approach is most 

appropriate to for their needs.  

Both methods are applied to four different images shown which feature various damage forms, 

lighting conditions, viewing angles, resolutions etc. These images are shown in Figure 9, along with 

the regions detected using REMPS and texture analysis approach. 

[Figure 11 here] 

 

Fig. 11. Top Row: Original Images Featuring Damage: (1) Pitting Corrosion, (2) Marine Growth, (2) 

Corroded Metal, and (4) Exposed Deck. Middle Row: Regions Detected using REMPS. Bottom Row: Regions 

Detected using Texture Analysis. 
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As with the main illustrated example presented in this paper, the performance of REMPS and the 

Texture Analysis technique was measured by firstly visually segmenting each of these images based 

on expert opinion. The visually segmented image was then compared with the detected regions 

outputted from each technique. The DR, MCR and corresponding δ were calculated as per the process 

outlined in Section 2.3. These values are summarized in Table 3. 

Table 3 

Comparison of REMPS Technique and a Texture Analysis Technique. 

Sample Image 
REMPS  Texture Analysis 

DR MCR δ  DR MCR δ 

(1) Pitting Corrosion 84% 8% 0.18 
 

78% 32% 0.39 

(2) Marine Growth 64% 8% 0.37 
 

64% 29% 0.46 

(3) Corroded Metal 90% 3% 0.11 
 

96% 24% 0.24 

(4) Exposed Deck 93% 10% 0.12 
 

52% 10% 0.49 

 

It may be noted from these results that REMPS was quite successful for the majority of cases 

with the exception of the marine growth image. The poorer detection results for this image may be 

explained by the fact that the damaged regions throughout the image were not characterized by one 

single colour. Instead they took on numerous contrasting shades which often overlapped with the non-

damaged background. Generally however, REMPS proved effective at locating the presence of 

damage as well as accurately defining the shape and size of damaged regions.  

The texture based method was effective at locating the presence of damage as may be observed 

from Figure 11, however it did not perform as well as REMPS at defining the extent of damage which 

resulted in poor DR, MCR and δ values in Table 3. Many small spurious regions were detected unlike 

REMPS which produced a ‘cleaner’ and more homogenous detection. 

These results demonstrate the applicability of REMPS for a wide range of damage forms, and 

show that it offers an improvement over the texture analysis based damage detection approach for the 

presented scenarios. 

4.0 CONCLUSION 

Various forms of NDT techniques have been employed to assess civil infrastructure since the advent 

of SHM, however it is only with the relatively recent introduction of computer based systems that 

quantitative information on the health status of structural components can be obtained on-site. There 
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is thus an emphasis on devising sophisticated damage detection techniques that can effectively 

capitalise on the ever increasing level of computational efficiency. Image based approaches offer an 

efficient way of acquiring information on the presence and extent of visible damages on the surface of 

infrastructural elements. As the image acquisition can be carried out by personnel with minimal 

training, this approach removes the need for expertise at all stages of the inspection process. This 

paper has presented an image analysis based damage detection technique, REMPS, which is intended 

to supplement and strengthen existing visual inspection methods by providing a quick and convenient 

source of quantitative information. The development of REMPS was necessitated by a lack of 

sophisticated image based damage detection techniques that can be applied to a broad range of surface 

types, damage forms, and lighting conditions that are typically encountered in infrastructures. The 

specific application presented in this paper demonstrates the immediate success of the method as an 

NDT tool to assist visual inspections where an improved detection directly influences the owner of 

infrastructure systems during a decision-making process.  

REMPS adopts a multi-phase segmentation methodology which incorporates features from three 

standard image processing and data analysis techniques. Since these techniques are well-known and 

described in the literature, REMPS may be easily replicated and implemented. A key benefit of 

REMPS is its ability to produce better defined and more homogenous regions of interest without 

being affected by isolated extraneous pixels. REMPS achieves this cleaner segmentation by efficiently 

integrating pixel and spatial relationships. The αδ method was used to measure performance. The 

presented results indicate that improvements can be made to the detection accuracy by segmenting in 

the L*a*b* colour space and adopting a HDR protocol. Furthermore, the credentials of REMPS as a 

standalone segmentation technique are underlined as it is shown that REMPS outperforms several 

established detection techniques for various scenes. 
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