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The terrestrial biosphere and atmosphere interact through a series of feedback 5 

loops.  Variability in terrestrial vegetation growth and phenology can modulate fluxes of 6 

water and energy to the atmosphere, and thus affect the climatic conditions that in turn 7 

regulate vegetation dynamics. Here we analyze satellite observations of solar-induced 8 

fluorescence, precipitation, and radiation using a multivariate statistical technique. We 9 

find that biosphere-atmosphere feedbacks are globally widespread and regionally 10 

strong: they explain up to 30% of precipitation and surface radiation variance.  11 

Substantial biosphere-precipitation feedbacks are often found in regions that are 12 

transitional between energy and water limitation, such as semi-arid or monsoonal 13 

regions. Substantial biosphere-radiation feedbacks are often present in several 14 

moderately wet regions and in the Mediterranean, where precipitation and radiation 15 

increase vegetation growth.  Enhancement of latent and sensible heat transfer from 16 

vegetation accompanies this growth, which increases boundary layer height and 17 

convection, affecting cloudiness, and consequently incident surface radiation. Enhanced 18 

evapotranspiration can increase moist convection, leading to increased precipitation. 19 

Earth system models underestimate these precipitation and radiation feedbacks mainly 20 

because they underestimate the biosphere response to radiation and water availability. 21 

We conclude that biosphere-atmosphere feedbacks cluster in specific climatic regions 22 

that help determine the net CO2 balance of the biosphere.  23 

By influencing the partitioning of turbulent fluxes at the surface
1
, soil moisture and 24 

temperature can affect climatic variability
2
. Biospheric variability, in terms of both 25 

phenology and stomatal regulation,  also strongly modulates turbulent fluxes of both water 26 

and energy
3
. Since biospheric variability is regulated by vegetation phenology and root zone 27 

soil moisture, it exhibits longer (e.g. multi-month) memory compared to the more commonly 28 

studied surface soil moisture and temperature state. Therefore, an understanding of 29 



biosphere-atmosphere interactions has the potential to improve seasonal to interannual 30 

climatic predictions
4,5,6

, and improve predictions of vegetation resilience to climate 31 

anomalies
7
. However, global variations in the strength of biosphere-atmosphere feedbacks 32 

remain unknown, in part because of the difficulty of observing biospheric fluxes
8
.  33 

Recent advancements in space-borne observations of solar-induced fluorescence (SIF) 34 

have enabled for the first-time a global proxy for gross primary productivity (GPP) and 35 

vegetation phenology. SIF is a by-product of photosynthesis
9
 related to light-use efficiency 36 

(LUE) and to the fraction of absorbed photosynthetic active radiation (fAPAR)
10

. On a 37 

canopy or regional scale and at a monthly resolution it is nearly proportional to GPP across 38 

various ecosystems. This large-scale correspondence is strongly related to the changes in 39 

canopy structure and phenology on absorbed photosynthetic active radiation, in addition to 40 

the more subtle changes in LUE
11,12,13,14

. SIF is also generally highly correlated with 41 

evapotranspiration (ET)
15

 (Supplementary Fig. 1) and correlates with vegetation-driven 42 

changes in surface albedo. Here, we use SIF as an integrated measure of vegetation 43 

variability, capturing both growth and changes in photosynthetic capacity (Methods).  44 

Previous studies of land-atmosphere interactions have typically relied on correlations 45 

between land and atmospheric variables
16,17,18

. However, these variables seasonally coevolve, 46 

and thus it is difficult to determine whether one variable is causally forcing the other, or if the 47 

two are both driven by separate factors
19,20

. Here, these shortcomings are overcome by 48 

employing a Multivariate Conditional Granger causality (MVGC) statistical technique using 49 

vector autoregressive models (VARs)
21

. This method determines both the strength of the 50 

predictive mechanism between variables and the time scale over which these links occur 51 

(Methods).  52 



MVGC observational data forcings 53 

We apply the MVGC VAR statistical technique to eight years of monthly SIF 54 

measurements from the Global Ozone Monitoring Experiment 2 (GOME-2) sensor
22

. SIF-55 

precipitation interactions are assessed using remote sensing-based estimates from the Global 56 

Precipitation Climatology Project (GPCP)
23

 and SIF-radiation interactions are assessed using 57 

photosynthetic active radiation (PAR) from Clouds and the Earth's Radiant Energy System 58 

(CERES)
24

. We also use surface air temperature reanalysis data from ERA-Interim
25

, as 59 

temperature can independently impact and interact with photosynthetic activity
18

. SIF data is 60 

relatively noisy, and thus spatial averaging is used to smooth it prior to analysis (Methods). It 61 

should be acknowledged that the smoothing could distort results in highly heterogeneous 62 

regions where signals from various biomes may be aggregated. Note that, although the linear 63 

scaling factor between monthly SIF and GPP varies between ecosystems and climates
12

 the 64 

pixel-by-pixel data normalization used here removes the geographical variations of this factor 65 

(Methods). The analysis presented here is independent of the scaling factor. 66 

To identify biosphere-atmosphere coupled feedbacks, we first examine their 67 

directional sub-components, i.e. the atmospheric forcing (atmosphere  biosphere), as 68 

assessed by the response of SIF (GPP) to atmospheric drivers (the fraction of variance in SIF 69 

explained by precipitation and PAR), and the biospheric forcing (biosphere  atmosphere), 70 

as assessed by precipitation and PAR response to SIF (the fraction of variance in 71 

precipitation and PAR explained by SIF) (Fig. 1). An F-test with a null-hypothesis of 0-72 

Granger causality (G-causality) (p-value <0.1) is used. The total feedback strength is then 73 

defined as the product of these two directional components (Fig. 2). The sign of the feedback 74 

is defined as the sign of the first order coefficient of the VAR model from the G-causality 75 

analysis. To ensure the results presented here are robust and independent of the seasonal 76 

cycle (i.e. due to land-atmosphere interactions), a bootstrap test that conserves the seasonal 77 



cycle but breaks the causality by shuffling months from different years is used 78 

(Supplementary Fig. 2) and clearly destroys the feedback.  79 

Globally, precipitation positively explains the highest fraction of biosphere (SIF) 80 

variability in regions that are transitional between wet and dry climates, e.g. semi-arid or 81 

monsoonal (Fig. 1a), consistent with previous studies
7,16

. Many of these regions also have 82 

high fractions of C4 plants
26

, which have higher water use efficiency than C3 species
27

, and 83 

are therefore expected to be more sensitive to water limitations. The impact of the biosphere 84 

on precipitation (Fig. 1b), as assessed by the G-causality of SIF on precipitation, is seen in 85 

seasonally dry regions where increases in GPP, in response to increased soil moisture and 86 

vegetation growth, is linked with higher latent heat flux and reduced sensible heat flux 87 

(Supplementary Fig. 1). Although the impact of SIF on precipitation is less widespread than 88 

that of precipitation on SIF, it is significant in many of the same regions. The feedbacks are 89 

almost always positive because the monthly positive effect of evapotranspiration on moist 90 

convection
 
dominates negative feedback pathways induced by mesoscale surface 91 

heterogeneity
28

 and the effects of changing albedo. The time scales involved in the feedback 92 

mechanisms can vary between regions. The subseasonal signal may represent variability due 93 

to early greening induced by increased water supply or to browning induced by water stress, 94 

while seasonal and interannual signals may indicate changes in vegetation growth regulated 95 

by water availability during cell division. The strongest signals are detected subseasonally in 96 

monsoonal Australia, seasonally in Eastern Asia, and both seasonally and interannually in the 97 

Sahel and Southern African Monsoonal regions (Supplementary Fig. 3). The dominance of 98 

seasonal and interannual time scales in the Sahel, related to biomass variability, is consistent 99 

with previous understanding
6,29

.  100 

PAR has the greatest impact on biosphere fluxes (Fig. 1c) in regions where 101 

photosynthesis and vegetation growth is energy limited such as the high latitudes, humid 102 



regions of the Eastern US, parts of the Mediterranean, and tropical rainforest regions
30,31

. 103 

This agrees with the findings of previous studies showing that net primary production (NPP) 104 

in these regions is driven by radiation
18

. The biosphere exerts control on PAR in the Eastern 105 

US, central Eurasia, African deciduous woodlands as well as in the European Mediterranean 106 

region (Fig. 1d). In these very dry or very wet regions, ecosystems rarely enter the 107 

transitional regime where stomatal closure depends on soil moisture, and increases in SIF are 108 

accompanied by increases in both sensible and latent heat (Supplementary Fig. 1)
32

. The 109 

increased sensible heat flux leads to a deeper boundary layer and reduced cloud cover 110 

(Supplementary Fig. 4), therefore increasing PAR (Fig. 1d). In the Eastern US, the increase in 111 

PAR is mostly attributed to a reduction of low- and mid-level (i.e. congestus) cumulus 112 

clouds, typical of summer conditions in this humid climate (Supplementary Fig. 4). By 113 

contrast, in the European Mediterranean, PAR is most sensitive to mid- and high-level 114 

clouds. In central Eurasia all cloud cover levels negatively impact surface PAR but high-level 115 

clouds are the primary reason for the PAR change. The strongest feedbacks between SIF and 116 

PAR tend to be on a seasonal scale indicating an increase in ecosystem-scale photosynthetic 117 

capacity due to vegetation growth, with exceptions in Madagascar, Australia and central 118 

Eurasia where subseasonal and interannual feedbacks dominate (Supplementary Fig. 3). In all 119 

PAR feedback regions, PAR is also negatively correlated with precipitation (Supplementary 120 

Fig. 4). We note that the European Mediterranean has been highlighted as a hotspot of land-121 

atmosphere coupling in an earlier modeling study, emphasizing the strong coupling between 122 

surface turbulent fluxes and the boundary layer response in the region
33

. While a similar 123 

coupling mechanism may occur in other regions, they do not exhibit a strong response 124 

because other processes (e.g. topography, different land-ocean circulation…) overshadow the 125 

regional impact of the biosphere there. 126 



MVGC observational data coupled feedbacks 127 

The results of the atmospheric and biospheric forcings (Fig. 1) are combined to 128 

determine the total variance explained in the coupled biosphere-atmosphere system (Fig. 2 129 

and Supplementary Fig. 5). Hotspot regions for the precipitation  SIF  precipitation 130 

feedback (Fig. 2a) - which can explain up to 20-30% of the observed precipitation variance - 131 

are concentrated in grasslands and savannas (transitional zones) such as monsoonal regions in 132 

the Sahel, Eastern India and Northern Australia, as well as the African savanna, Madagascar 133 

and the Brazilian savannas. There are other monsoonal regions that despite large shifts in 134 

rainfall during the year are not hotspots either due to a lack of ET response to precipitation
34

, 135 

or a lack of precipitation response to changes in ET
35

. An example of this is the Central Great 136 

Plains in North America (a hotspot per previous modeling-based studies of soil moisture-137 

atmosphere interactions
36

), where soil moisture has been shown to have a weak triggering 138 

effect on precipitation
20,37

. Indeed, summertime precipitation in this area is dominated by 139 

eastward propagating mesoscale convective systems mostly independent of the land 140 

surface
38

.  141 

The PAR  SIF  PAR feedback (Fig. 2b) has hotspots (20-30% of explained 142 

variance) in the humid Eastern United States, Southern Brazil, as well as in the 143 

Mediterranean basin in Europe. By contrast, in the tropical rainforest regions of Africa and 144 

South America there is little response detected for the full feedback loops with either 145 

precipitation or PAR (Fig. 2 and Supplementary Fig. 5) suggesting that other factors (such as 146 

ecosystem characteristics
39

) dominate the variability of the biosphere there. 147 

Although feedbacks between the biosphere and atmosphere are detected in almost all 148 

regions, several 'hotspot families' stand out: 1) regions that are either semi-arid or monsoonal 149 

for the precipitation feedback and 2) humid regions (the Eastern US) and the Mediterranean 150 



for the PAR feedback. No regions exhibit both feedback pathways; one always dominates the 151 

other when it is present.  152 

MVGC ESM analysis 153 

The distribution of feedbacks in the observational record is next used to assess Earth 154 

System Models (ESMs) (Supplementary Table 1). The distributions of feedback strengths for 155 

model and observational results (Fig. 3) summarize the differences between the biosphere-156 

atmosphere feedback detected by each CMIP5 model (Supplementary Figs 6, 7 and 8) and 157 

the observational record. In the model analysis, GPP is used as a proxy for the biosphere in 158 

lieu of SIF. Our results are normalized in terms of explained variance for each pixel so that 159 

the proportionality factor of SIF and GPP does not impact the pixel-wise metric results. To 160 

increase robustness, 50 years of data are used for the model analysis (1956-2005) rather than 161 

the shorter period we are constrained by for the observational analysis
40

.  162 

The median of all ESMs fall below the first quartile of the observational data results 163 

for the precipitation  biosphere  precipitation feedback (Fig. 3a). Models significantly 164 

underestimate the magnitude and the range of both the atmospheric and biospheric forcings 165 

(except for CMCC-CESM) (Supplementary Fig. 6), although underestimation is more severe 166 

in the case of the precipitation  biosphere component. The observational PAR  biosphere 167 

 PAR feedback strength (Fig. 3b) also has a higher median value than that of the ESMs. 168 

Both the precipitation and PAR atmospheric forcings are underestimated because of 169 

photosynthesis misrepresentation in ESMs (Supplementary Fig. 6)
41

. Despite some spatial 170 

similarities between modeled feedbacks and observational results (Supplementary Figs 7 and 171 

8), models systematically underestimate the impact of the biosphere on precipitation, and 172 

noticeably miss the variance explained by observations in monsoonal Australia. On the other 173 

hand, the modeled impact of the biosphere on PAR varies drastically between models and can 174 



be either over- or under-estimated (Supplementary Fig. 6). These inter-model discrepancies 175 

are likely due to the misrepresentation of convection in models, and the challenges of 176 

correctly representing it over land regions
42,43

. Interestingly, in general, ESM errors in 177 

representing the atmospheric forcing on the biosphere are even more severe than errors in 178 

representing the biospheric forcing on the atmosphere. This suggests that better 179 

representations of photosynthesis and water stress sensitivities would have a larger impact on 180 

improving the ESM representation of biosphere-atmosphere feedbacks, than improved 181 

convection representation. 182 

This study provides the first causal observational diagnostic of biosphere-atmosphere 183 

feedbacks on subseasonal to interannual time scales. These feedbacks are strong in semi-arid 184 

and monsoonal regions, which are key in determining whether the yearly global terrestrial 185 

biosphere acts as a net CO2 source or sink
7,16

. As such biosphere-atmosphere feedbacks 186 

regulate interannual hydrology and climate in these regions as well as the global carbon 187 

cycle. Additionally, due to the high percentages of atmospheric variability explained by 188 

vegetation processes, subseasonal and seasonal climate predictions can greatly benefit from 189 

better vegetation characterization in ESMs. In turn this will improve subseasonal to seasonal 190 

climate and hydrologic forecasts, which are crucial for optimizing management decisions 191 

pertaining to food security, water supplies, and disaster management such as droughts and 192 

heat waves.   193 



Main Text References 194 

1. Bateni, S. M. & Entekhabi, D. Relative efficiency of land surface energy balance 195 

components. Water Resour. Res. 48, 1–8 (2012). 196 

2. Koster, R. D., Suarez, M. J. & Heiser, M. Variance and Predictability of Precipitation 197 

at Seasonal-to-Interannual Timescales. J. Hydrometeorol. 1, 26–46 (2000). 198 

3. van den Hurk, B. J. J. M., Viterbo, P. & Los, S. O. Impact of leaf area index 199 

seasonality on the annual land surface evaporation in a global circulation model. J. 200 

Geophys. Res. 108, 5.1-5.7 (2003). 201 

4. Guo, Z., Dirmeyer, P. A., Delsole, T. & Koster, R. D. Rebound in atmospheric 202 

predictability and the role of the land surface. J. Clim. 25, 4744–4749 (2012). 203 

5. Koster, R. D. et al. The Second Phase of the Global Land–Atmosphere Coupling 204 

Experiment: Soil Moisture Contributions to Subseasonal Forecast Skill. J. 205 

Hydrometeorol. 12, 805–822 (2011). 206 

6. Zeng, N., Neelin, J., Lau, K. & Tucker, C. Enhancement of Interdecadal Climate 207 

Variability in the Sahel by Vegetation Interaction. Science 286, 1537–1540 (1999). 208 

7. Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the 209 

global carbon cycle. Nature 509, 600–603 (2014). 210 

8. Koster, R. D. et al. On the nature of soil moisture in land surface models. J. Clim. 22, 211 

4322–4335 (2009). 212 

9. Porcar-Castell, A. et al. Linking chlorophyll a fluorescence to photosynthesis for 213 

remote sensing applications: Mechanisms and challenges. J. Exp. Bot. 65, 4065–4095 214 

(2014). 215 



10. Guanter, L. et al. Global and time-resolved monitoring of crop photosynthesis with 216 

chlorophyll fluorescence. Proc. Natl. Acad. Sci. U. S. A. 111, E1327-33 (2014). 217 

11. Zhang, Y. et al. Remote Sensing of Environment Consistency between sun-induced 218 

chlorophyll fluorescence and gross primary production of vegetation in North 219 

America. Remote Sens. Environ. 183, 154–169 (2016). 220 

12. Frankenberg, C. et al. New global observations of the terrestrial carbon cycle from 221 

GOSAT: Patterns of plant fluorescence with gross primary productivity. Geophys. Res. 222 

Lett. 38, L17706 (2011). 223 

13. Frankenberg, C., O’Dell, C., Guanter, L. & McDuffie, J. Remote sensing of near-224 

infrared chlorophyll fluorescence from space in scattering atmospheres: Implications 225 

for its retrieval and interferences with atmospheric CO 2 retrievals. Atmos. Meas. 226 

Tech. 5, 2081–2094 (2012). 227 

14. Wood, J. D. et al. Multi-scale analyses reveal robust relationships between gross 228 

primary production and solar induced fluorescence. Geophys. Res. Lett. In Review:, 229 

533–541 (2016). 230 

15. Schlesinger, W. H. & Jasechko, S. Transpiration in the global water cycle. Agric. For. 231 

Meteorol. 189–190, 115–117 (2014). 232 

16. Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and 233 

variability of the land CO2 sink. Science (80-. ). 348, 895–899 (2015). 234 

17. Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and 235 

covariation with climate. Science 329, 834–838 (2010). 236 

18. Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary 237 

production from 1982 to 1999. Science 300, 1560–1563 (2003). 238 



19. Sugihara, G. et al. Detecting causality in complex ecosystems. Science 338, 496–500 239 

(2012). 240 

20. Tuttle, S. & Salvucci, G. Empirical evidence of contrasting soil moisture–precipitation 241 

feedbacks across the United States. 352, 825–828 (2016). 242 

21. Barnett, L. & Seth, A. K. The MVGC multivariate Granger causality toolbox: A new 243 

approach to Granger-causal inference. J. Neurosci. Methods 223, 50–68 (2014). 244 

22. Joiner, J. et al. Global monitoring of terrestrial chlorophyll fluorescence from 245 

moderate spectral resolution near-infrared satellite measurements: methodology, 246 

simulations, and application to GOME-2. Atmos. Meas. Tech. Discuss. 6, 3883–3930 247 

(2013). 248 

23. Pendergrass, A. & N. C. for A. R. S. (Eds). The Climate Data Guide: GPCP 249 

(Monthly): Global Precipitation Climatology Project. 1–2 (2016). Available at: 250 

https://climatedataguide.ucar.edu/climate-data/gpcp-monthly-global-precipitation-251 

climatology-project.  252 

24. Wielicki, B. A. et al. Clouds and the Earth’s Radiant Energy System (CERES): An 253 

Earth Observing System Experiment. Bull. Amer. Meteor. Soc. 77, 853–868 (1996). 254 

25. Dee, D. P. et al. The ERA-Interim reanalysis: Configuration and performance of the 255 

data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011). 256 

26. Still, C. J., Berry, J. A., Collatz, G. J. & DeFries, R. S. Global distribution of C 3 and 257 

C 4 vegetation: Carbon cycle implications. Global Biogeochem. Cycles 17, 6-1-6–14 258 

(2003). 259 

27. Ghannoum, O. C4 photosynthesis and water stress. Ann. Bot. 103, 635–644 (2009). 260 

28. Guillod, Benoit P. (Institute for Atmospheric and Climate Science, Department of 261 



Environmental Systems Science, E. Z., Orlowsky, B., Miralles, D. G., Teuling, A. J. & 262 

Seneviratne, S. I. Reconciling spatial and temporal soil moisture effects on afternoon 263 

rainfall. Nat. Commun. 6, 6443 (2015). 264 

29. Charney, J. G. Dynamics of deserts and drought in the Sahel. Q. J. R. Meteorol. Soc. 265 

101, 193–202 (1975). 266 

30. Anber, U., Gentine, P., Wang, S. & Sobel, A. H. Fog and rain in the Amazon. Proc. 267 

Natl. Acad. Sci. 112, 11473–11477 (2015). 268 

31. Brando, P. M. et al. Seasonal and interannual variability of climate and vegetation 269 

indices across the Amazon. Proc. Natl. Acad. Sci. U. S. A. 107, 14685–90 (2010). 270 

32. Seneviratne, S. I. et al. Investigating soil moisture-climate interactions in a changing 271 

climate: A review. Earth-Science Rev. 99, 125–161 (2010). 272 

33. Seneviratne, S. I., Lüthi, D., Litschi, M. & Schär, C. Land-atmosphere coupling and 273 

climate change in Europe. Nature 443, 205–209 (2006). 274 

34. Dirmeyer, P. A. The terrestrial segment of soil moisture-climate coupling. Geophys. 275 

Res. Lett. 38, L16702 (2011). 276 

35. Koster, R. D. & Suarez, M. J. Impact of Land Surface Initialization on Seasonal 277 

Precipitation and Temperature Prediction. J. Hydrometeorol. 4, 408–423 (2003). 278 

36. Koster, R. D. et al. GLACE: The Global Land – Atmosphere Coupling Experiment. 279 

Part I: Overview. J. Hydrometeorol. 7, 611–625 (2006). 280 

37. Findell, K. L., Gentine, P., Lintner, B. R. & Kerr, C. Probability of afternoon 281 

precipitation in eastern United States and Mexico enhanced by high evaporation. Nat. 282 

Geosci. 4, 434–439 (2011). 283 

38. Storer, R. L., Zhang, G. J. & Song, X. Effects of convective microphysics 284 



parameterization on large-scale cloud hydrological cycle and radiative budget in 285 

tropical and midlatitude convective regions. J. Clim. 28, 9277–9297 (2015). 286 

39. Levine, N. M. et al. Ecosystem heterogeneity determines the ecological resilience of 287 

the Amazon to climate change. Proc. Natl. Acad. Sci. (2015). 288 

doi:10.1073/pnas.1511344112 289 

40. Findell, K. L., Gentine, P., Lintner, B. R. & Guillod, B. P. Data Length Requirements 290 

for Observational Estimates of Land–Atmosphere Coupling Strength. J. 291 

Hydrometeorol. 16, 1615–1635 (2015). 292 

41. Zhou, S., Duursma, R. A., Medlyn, B. E., Kelly, J. W. G. & Prentice, I. C. How should 293 

we model plant responses to drought? An analysis of stomatal and non-stomatal 294 

responses to water stress. Agric. For. Meteorol. 182–183, 204–214 (2013). 295 

42. Bony, S. et al. Clouds, circulation and climate sensitivity. Nat. Geosci. 8, 261–268 296 

(2015). 297 

43. Zhao, M. et al. Uncertainty in model climate sensitivity traced to representations of 298 

cumulus precipitation microphysics. J. Clim. 29, 543–560 (2016). 299 

300 



Corresponding author 301 

Correspondence and requests for materials should be addressed to JKG 302 

(jg3405@columbia.edu). 303 

Acknowledgements  304 

The authors would like to thank Guido Salvucci and Upmanu Lall for discussion on 305 

the Granger causality, Randal Koster for initial discussion of the paper, and Joanna Joiner for 306 

providing GOME-2 data. This project was supported by both a NASA Earth Science and 307 

Space Fellowship as well as a DOE GOAmazon grant.  308 

“We acknowledge the World Climate Research Programme's Working Group on 309 

Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling 310 

groups (listed in Table S1 of this paper) for producing and making available their model 311 

output. For CMIP the U.S. Department of Energy's Program for Climate Model Diagnosis 312 

and Intercomparison provides coordinating support and led development of software 313 

infrastructure in partnership with the Global Organization for Earth System Science Portals.” 314 

Author Contributions 315 

JKG, AGK and PG wrote the main manuscript text. JKG, PG and SHA prepared 316 

figures. SHA processed the CMIP5 simulations. JKG, PG and AGK designed the study. All 317 

authors reviewed and edited the manuscript.  318 

Reprints and permissions 319 

 Reprints and permissions information is available at www.nature.com/reprints.  320 

Competing financial interests 321 

The authors declare no competing financial interests.   322 



Figure Captions 323 

Figure 1. Atmospheric forcings and biospheric forcings. X  Y represents the fraction of 324 

variance of Y explained by X, for the atmospheric forcing (atmosphere  biosphere) (a,c), 325 

and biospheric forcing (biosphere  atmosphere) (b,d). The signs of the fractions in the top 326 

row show whether the atmospheric variable increases (positive) or decreases (negative) the 327 

biosphere flux, while in the bottom row they show whether the biosphere increases or 328 

decreases the atmospheric response. Oceans and regions where SIF partial correlations are 329 

less than 0.1 are shown in white. Pixels without significance are shown in gray (p-value<0.1).  330 

 331 

Fig. 2. Hotspots of terrestrial biosphere-atmosphere feedbacks. The fraction of biosphere-332 

atmosphere coupling variance explained for the full feedback loop: precipitation  SIF  333 

precipitation (a) and PAR  SIF  PAR (b). The sign of the fraction shows whether the 334 

feedback is positive or negative. Oceans and regions where SIF partial correlations are less 335 

than 0.1 are shown in white. Pixels without significance are shown in gray (p-value<0.1). 336 

 337 

Fig. 3. Comparison of observational and Earth System Model results. Boxplots showing 338 

the distributions of significant observational and model results for the fractions of variance 339 

explained for the feedbacks of precipitation  biosphere  precipitation (a) and PAR  340 

biosphere  PAR (b). Boxes are defined by the upper quartile, median and lower quartile of 341 

the data while whiskers are defined by the outliers. Only significant pixels are represented (p-342 

value<0.1).   343 

 344 

  345 



Methods 346 

Datasets 347 

Observational remote sensing data is used for SIF, precipitation, and PAR, while 348 

quasi-observational reanalysis data is used for temperature. GOME-2, version 2.6
22

 (overpass 349 

time of 9:30am) is used for SIF, precipitation data is obtained from version 1.2 of GPCP
23

, 350 

PAR from CERES
24

, and surface air temperature (1000mb) data from ERA-Interim
25

 (see 351 

Data availability). While a longer observational data record would allow further insight into 352 

interannual variability, we are limited by the satellite data record availability.  353 

There is a certain amount of uncertainty inherent to each product that is described in 354 

detail in their data quality summaries. The SIF data is especially noisy (particularly in South 355 

America where there are less frequent measurements due to clouds, specifically in the 356 

rainforest, and noise from the South Atlantic Anomaly)
22

. Thus, in addition to a standard 357 

normalization (described below), SIF data is averaged with the 8 adjacent pixels surrounding 358 

the pixel of interest to smooth the remaining noise. On rare pixels, we note that SIF appears 359 

to cause an increase in both precipitation and PAR (Figs 1b and d) but this effect is attributed 360 

to the use of nine-pixels spatially smoothing of the SIF signal.  361 

The monthly SIF data is calculated from daily measurements (level 2) when the 362 

effective cloud fraction is <30%. It should be noted that effective cloud fraction is not 363 

equivalent to geometric cloud fraction but is instead based on a Lambertian model that 364 

considers cloud reflectance and albedo
44,45,46

. It has been demonstrated that in a typical pixel 365 

with a true cloud fraction of 40% that over 80% of the SIF signal can still be retrieved for 366 

very thick cloud optical thicknesses (up to 10)
47

. The effective cloud fraction is typically 367 

lower than the geometric one.  368 



While cloud filtering could result in a slight bias, it has been shown that altering the 369 

effective cloud fraction threshold between 0 and 50 percent only minimally affects the spatial 370 

and temporal patterns of SIF
22

. Therefore, we expect minimal bias due to the filtering at the 371 

monthly resolution that we consider in our analysis. The one region where the cloud coverage 372 

filtering may reduce G-causality detected is in the wet tropics where there is a higher 373 

prevalence of clouds. It is possible that the PAR SIF PAR feedbacks might be 374 

underestimated in this region because of the cloud contamination. 375 

SIF-GPP relationship 376 

This study uses SIF as a proxy for GPP. SIF is mechanistically linked to GPP
9,48

, 377 

through both light use efficiency and fAPAR
49

, and has been shown to have a near-linear 378 

relationship with GPP at both canopy and ecosystem scales
11,12,50,51,46,52

. While the hourly 379 

leaf-level relationship between SIF and GPP has been estimated as curvilinear (SIF continues 380 

to increase after the maximum rate of photosynthesis has been reached)
11

, the relationship at 381 

larger and longer time scales (e.g., monthly) becomes linear likely due to the effects of 382 

averaging across a canopy of leaves representing varying light conditions
11

.  383 

The linearity between SIF and GPP has been observed across biomes using a variety 384 

of datasets, including flux tower validation
46,52

. As is shown in Supplementary Fig. 1, SIF 385 

correlates strongly with monthly global GPP estimates from Fluxnet-MTE in regions outside 386 

of the wet tropics. The SIF-GPP correlation is lower in the wet tropics as the machine 387 

learning upscaling approach of the Fluxnet-MTE GPP product has the greatest uncertainty in 388 

these regions, as there are few(er) eddy covariance towers there that are used for training
53,54

. 389 

Additionally, tropical forest GPP exhibits minimal seasonality
55

, and thus the lower 390 

correlation can be attributed to the fitting of noise (R
2
 by construction will be small). It has 391 

nonetheless been shown that the minimal seasonality in SIF observed in the Amazon 392 



correctly corresponds to the seasonality of carbon dioxide
56

 and MODIS near-infrared 393 

reflectance related to photosynthesis
55

. As a result, SIF has been used as a proxy for GPP 394 

interannual variability
11

.  395 

The linear scaling factor between SIF and GPP varies spatially. Yet, when we 396 

normalize the data prior to running the G-Causality, the differing slope values should not 397 

impact results since we look at each pixel (location/ecosystem) separately.  398 

Conditional MVGC 399 

We base our analysis on Multivariate Granger causality, using a MVGC MATLAB 400 

toolbox
21

, which allows for time and frequency domain MVGC analysis of time series data. 401 

The method fits multivariate VAR models to time series. Conditional MVGC compares VAR 402 

models with and without (potentially causal) variables. For example, if the addition of past 403 

values of precipitation improves the quality of the VAR model prediction for SIF (that uses 404 

the autoregressive histories of other variables: SIF, PAR and temperature), then precipitation 405 

is considered to have a G-causal influence
57

. If there is no significant information gained 406 

(based on an F-test with a null-hypothesis of no G-causality), then the variables are 407 

considered not to have a causal link.  408 

Prior to applying the MVGC technique, the data obtained are aggregated to 1-degree 409 

by 1-degree monthly data. Monthly data are used to reduce random noise in the original SIF 410 

daily data and to achieve consistency with the monthly-aggregated resolution of Coupled 411 

Model Intercomparison Project Phase 5 (CMIP5) model data. For each dataset, the long-term 412 

mean value is subtracted from each pixel and it is normalized by its long-term standard 413 

deviation. After normalization, SIF data is averaged with the 8 adjacent pixels surrounding 414 

the pixel of interest to smooth the remaining noise inherent in the SIF data from GOME-2. 415 

Single missing monthly values (approximately 4% of the pixels per month) are interpolated 416 



using temporal splines. Prior to performing the normalization and running the MVGC 417 

analysis, partial correlations are calculated between non-normalized SIF and atmospheric 418 

variables, and if the absolute correlation falls below a value of 0.1, the atmospheric variable 419 

is considered non-significant for that pixel and is not included in the analysis. Although 420 

results of the analysis are not shown for surface air temperature (temperature at 1000mb), it is 421 

used in the analysis, to account for its influence when determining the feedbacks involving 422 

precipitation, PAR and SIF. For example, by including temperature in the analysis we 423 

guarantee that the G-causality between PAR and SIF is not instead a reflection of the effects 424 

of temperature (or related to vapor pressure deficit), which can be correlated with PAR. For 425 

all analyses, we use a conservative p-value calculation given the high auto-correlation in the 426 

variables of interest, which reduces the degrees of freedom in the number of samples.  427 

Note that we intentionally do not remove the seasonal cycle in pre-processing. Small 428 

stochastic amplitude and phase modulations of the seasonality (e.g. large monthly cloud 429 

cover or colder than usual temperatures in a particular year) induce non-additive widening of 430 

the amplitude and phase spectra so that subtracting the climatology artificially reduces 431 

specific frequencies and phases, potentially removing part of the causal signal. This risk is 432 

amplified by the relatively short remote sensing record used, which could lead to an 433 

imperfect definition of the climatological seasonal cycle. Indeed, where the seasonal signal 434 

amplitude and phase have a causal effect we want to capture this (such as the rainfall impact 435 

on vegetation green-up and SIF in monsoonal regions). Because the VAR models can capture 436 

seasonal periodicity, the MVGC analysis is not affected by the risk of false attribution of 437 

causality due to simple lagged seasonality, as is further demonstrates in the examples below.  438 

After normalization of the data and checking that partial correlations between SIF and 439 

the other variables fall above 0.1, the Akaike information criterion is calculated and defines 440 

the best model order up to the maximum model order, specified as 6 months 441 



(‘tsdata_to_infocrit.m’ function in the MVGC MATLAB toolbox). The best actual model 442 

order used displays the memory of the biosphere-atmosphere interactions (Supplementary 443 

Fig. 9): model orders of 1 correspond to regions where memory in the system is short and 444 

causal influence between the atmosphere and biosphere is weak. Using the calculated model 445 

order, an ordinary least-square regression is used to determine the multivariate-VAR model 446 

coefficients (‘tsdata_to_var.m’). The autocovariance function is created 447 

(‘var_to_autocov.m’), and from this we calculate the time domain pair-wise conditional 448 

causalities (‘autocov_to_pwcgc.m’). To test time-domain significance, we calculate the p-449 

values, which are compared to our chosen p-value of less than 0.1 (‘mvgc_pval.m’). An F-450 

test with a null-hypothesis of no G-causality is used and only significant pixels are displayed 451 

in figures. To perform the analysis in the frequency domain and identify subseasonal (<3 452 

months), seasonal (3 to 12 months) and interannual (>1 year) feedbacks, we calculate the 453 

spectral-conditional G-causality (‘autocov_to_spwcgc.m’) (Supplementary Fig. 3).  454 

We check that the G-causality in the frequency domain integrates to the time domain 455 

by integrating the frequency results (‘smvgc_to_mvgc.m’) and then subtracting the output 456 

from the time domain result. Checks are performed throughout the process so that the 457 

analysis is automatically exited should there be a failed calculation.  458 

A sample first order VAR model to explain the variability of SIF is displayed in 459 

equation 1 with A, P, T and sig representing the VAR coefficient matrix, precipitation, 460 

temperature, and significance (1 for significant, 0 for insignificant at p< 0.1) accordingly. 461 

(ݐ)ܨܫܵ = (௧ିଵ)ܨܫܵ	(ௌூி)ܣ + ௢௡	௉)ܣ ௌூி) ܲ(௧ିଵ) ௉)݃݅ݏ ௢௡ ௌூி)+ +(ௌூி	௢௡	௉஺ோ)݃݅ݏ	(௧ିଵ)ܴܣܲ	(ௌூி	௢௡	௉஺ோ)ܣ 	(ௌூி	௢௡	்)ܣ (ܶ௧ିଵ)	݃݅ݏ(்	௢௡	ௌூி) +  ߝ

(1)



With the addition of the auto-regressive histories of each variable, the VAR model 462 

captures the original SIF data more accurately. We acknowledge that other factors not 463 

included in this analysis can affect SIF variability (such as naturally and anthropogenically 464 

caused disturbances), and is one of the reasons (along with sensor noise) that we cannot 465 

predict 100% of the variable variance, even with our full VAR model.  466 

Synthetic Bootstrap Tests 467 

To demonstrate the effectiveness of this method, we perform several additional tests 468 

of the conditional MVGC on synthetic data where causal links can be specified. In the first 469 

three test scenarios PAR and precipitation (P) time series are assumed to be sinusoidal with 470 

amplitude modulation – AM – and frequency modulation – FM –, as well as additive noise 471 

(equations 2 and 3). We define two similar test cases except that one has a causal link 472 

(equation 4) while the other does not (non-causal) (equation 5). We assume that the noise is 473 

normally distributed (and thus have a white noise/flat spectrum in the frequency domain). To 474 

test the frequency response, PAR is assumed to have a yearly frequency 475 

 (equation 2)
 
while precipitation is assumed to have twice-yearly 476 

frequency  (i.e. two wet/dry seasons per year) (equation 3).  477 

 
(2)

,

 
(3)

with , , , , ,  i.i.d. normally distributed with unit variance N(0,1). 478 

In the causal case, SIF is defined as a lagged version of precipitation and radiation 479 

(with t in months) (equation 4): 480 
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(4) 

with  i.i.d. normally distributed with unit variance N(0,1). We use 50 years of 481 

synthetic data and one realization for the test.  482 

The conditional G-causality finds that only radiation and precipitation are causing SIF 483 

and not the converse (Supplementary Fig. 10). In addition, the magnitude of radiation on SIF 484 

is four times stronger than the one of precipitation on SIF, as expected based on the time 485 

series generated (equation 4).  486 

To emphasize that these results are not spurious, we perform a second, similar test but 487 

with a non-causal time series (equation 5). This non-casual SIF time series is not induced by 488 

PAR nor precipitation. It is statistically similar to the causal scenario, composed of lagged 489 

sinusoids with similar frequencies to PAR and precipitation, but without a causal mechanism. 490 

For the precipitation and radiation time series we allow for both amplitude and frequency 491 

modulations so that both amplitude and phase are stochastic (similar to radiation and 492 

precipitation monthly time series).  493 

.

 

(5)

The conditional MVGC analysis of this non-causal time series shows no significant G-494 

causality, as expected (Supplementary Fig. 10). 495 

In the third test we bootstrap every month of equations 2-4 across years, clearly 496 

destroying the causality in the time series (as the same month from another year is used) 497 

while preserving the climatology (and seasonal cycle). As seen in Supplementary Figure 10, 498 

SIF = 20(1+ 0.25at

SIF )sin 1+
1

24
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the test again finds no causality in the time series, further confirming the quality of the 499 

method and its applicability for our type of time series. 500 

In a fourth and final synthetic data analysis, we test whether we can detect a causal 501 

full-feedback loop. We repeat the original causal test (equation 4), switching the original 502 

equation for PAR (equation 2) for one that also includes SIF as a driver (equation 6).   503 

								ܴܣܲ = ܴܣܲ + 0.4 ܨܫܵ var(ܴܲܣ)/var(ܵܨܫ). (6) 

As expected, in addition to the causality detected previously in the causal test of precipitation 504 

and PAR on SIF, we also detect significant causality of SIF on PAR (Supplementary Fig. 10).  505 

Observational Bootstrap Test 506 

To further test the assumption that the observed causation of the biosphere on the 507 

atmosphere is not an artifact of the seasonal cycle, we perform a bootstrap analysis with 100-508 

realizations at the global scale. Observational data is sampled by randomly swapping the 509 

same months across years for each variable: that is the seasonality is preserved while the 510 

causal link from month to month is destroyed. As expected, very few pixels showed any G-511 

causality (Supplementary Fig. 2): only 6.2% of the SIF  precipitation results, and 6.9% of 512 

the SIF  PAR results were found to be significant at the 95% confidence level (had more 513 

than 5/100 realizations per pixel with significant results based on an F-distribution with a p-514 

value < 0.1). The resulting averaged pair-wise conditional G-causality shows almost no 515 

signal, with a peak of less than 0.05 compared to 0.3 for the original dataset (Supplementary 516 

Fig. 2). In addition, the resulting geographical patterns reflect mostly random noise. This 517 

further emphasizes the physical nature of our assessed causation between the biosphere and 518 

the atmosphere.  519 

Vector Autoregressive Models 520 



The VAR models obtained from the G-causality analysis are used to quantify the 521 

fraction of variance in the biosphere explained by the atmosphere and vice versa. We tested 522 

for normality and homoscedasticity of the residuals during the VAR fits and excluded pixels 523 

that did not meet these criteria (3-6% of pixels depending on the feedback). Using the VAR 524 

coefficients generated by the analysis (to account for cross variations), VAR models are 525 

created for each atmospheric variable with and without the inclusion of SIF. VAR models are 526 

also created for SIF with and without the inclusion of each atmospheric variable. The 527 

fractions of observed SIF variance explained by each atmospheric component is computed 528 

(equation 7): 529 

௑݂→ௌூி 					 = var(ܵܨܫ஺ோ	୤୧୲	୵୧୲୦	ଡ଼) − var(ܵܨܫ஺ோ ୤୧୲ ୵୧୲୦୭୳୲ ଡ଼)var(ܵܨܫ)  
(7) 

 530 

as well as the fraction of each atmospheric variable observed variance explained by SIF 531 

(equation 8) (Fig. 1): 532 

ௌ݂ூி→௒ 								 = var( ஺ܻோ	୤୧୲	୵୧୲୦	ୗ୍୊) − var( ஺ܻோ ୤୧୲ ୵୧୲୦୭୳୲ ୗ୍୊)var(ܻ)  
(8) 

These are combined to obtain the full feedback fractions (equation 9) (Fig. 2 and 533 

Supplementary Fig. 5): 534 

௑݂→ௌூ→௒ 					 =					୴ୟ୰(ௌூிಲೃ	౜౟౪	౭౟౪౞	౔)ି୴ୟ୰(ௌூிಲೃ	౜౟౪	౭౟౪౞౥౫౪	౔)୴ୟ୰(ௌூி) 	×
								୴ୟ୰(௒ಲೃ	౜౟౪	౭౟౪౞	౏౅ూ)ି୴ୟ୰(௒ಲೃ	౜౟౪	౭౟౪౞౥౫౪	౏౅ూ)୴ୟ୰(௒)

(9) 

The feedback is defined as positive or negative by taking the VAR model first order 535 

coefficients, which is then compared with the VAR model coefficient with the greatest 536 

absolute magnitude as further verification. The leading order coefficient of the AR model 537 



could be used in lieu of the first order one but given the rapid decay of the autocorrelation 538 

function and the reduced VAR model order (typically less than 2, Supplementary Fig. 9) we 539 

use the sign of the first order coefficient. The two estimates of the sign differ in limited 540 

regions. 541 

CMIP5 Model Simulations 542 

For the Earth System models from the CMIP5 collection (Supplementary Table 1), 543 

the same analysis used for the observational data is applied. Only those models that included 544 

GPP data are used. The time period of 1956-2005 is used to obtain statistics that are robust 545 

across interannual variability
40

. The true feedback strengths have likely not changed 546 

significantly from this earlier, longer time period and the period used for the observational 547 

analysis, but we acknowledge that land-use and land-cover changes can affect the feedback 548 

metrics (but are also model dependent). One realization of the historical run was used for 549 

each model
58

.  550 

VAR models are created based on coefficients calculated in the MVGC analysis for 551 

each ESM, and the fraction of variance explained in biosphere-atmosphere coupling from 552 

each variable is calculated using equations 5-7. 553 

Code availability 554 

The code used as the basis for the study can be accessed from 555 

http://www.sussex.ac.uk/sackler/mvgc/. 556 

Data availability 557 

All data supporting the findings of this study are freely available from the following 558 

locations: 559 

• GOME-2 SIF: https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME_F/ 560 



• GPCP precipitation:  561 

http://iridl.ldeo.columbia.edu/SOURCES/.NASA/.GPCP/.V1DD/.V1p2/ 562 

• CERES PAR: https://ceres-tool.larc.nasa.gov/ord-tool/jsp/SYN1degSelection.jsp 563 

• CERES cloud coverage:  564 

https://ceres-tool.larc.nasa.gov/ord-tool/jsp/ISCCP-D2Selection.jsp 565 

• ERA-Interim temperature and boundary layer height: 566 

http://apps.ecmwf.int/datasets/data/interim-full-mnth/levtype=sfc/ 567 

• Fluxnet-MTE surface flux and GPP data:  568 

https://www.bgc-jena.mpg.de/geodb/projects/Data.php 569 

• CMIP5 model data: https://pcmdi.llnl.gov/ 570 

Additional intermediate datasets produced as part of the study can be made available 571 

upon request.   572 
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