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31(1986) A P L I K A C E M A T E M A T I K Y No. 2, 109-117 

REGIONS OF STABILITY FOR ILL-POSED CONVEX PROGRAMS: 
AN ADDENDUM*) 

SANJO ZLOBEC 

(Received August 21, 1984) 

Summary. The marginal value formula in convex optimization holds in a more restrictive 
region of stability than that recently claimed in the literature. This is due to the fact that there 
are regions of stability where the Lagrangian multiplier function is discontinuous even for linear 
models. 

1. INTRODUCTION 

Consider the convex mathematical model 

(P,e) Minf°(x,0) 
(X) 

s.t. 

f(x,6) ^ 0 , keP = {!,..., m] 

where fl: R" x Rp —> R are continuous functions and fl(-,6):Rn-+R are convex 
for every 6 e Rp, i e {0} u P. The model is studied at some fixed 6 = 6*. 

For every 6, we denote by 

Fy6) = {x e Rn:f(x, 6) ^ 0, keP} the feasible set; 

x(6) an optimal solution; 

F(6) the set of all optimal solutions; 

f(9) = f°(x(6), 6) the optimal value. 

The model (P, 0) is considered as an input-output system with the input 6 and the 
output {F(6),F(6)J(6)}. 

*) Research partly supported by The Natural Sciences and Engineering Council of Canada. 
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Assume that F(9*) 4= 0. Then at 9 = 9* there are chunks of space Rp where con
tinuity of the output is preserved. They are termed regions of stability. We recall 
(see e.g. [10], [11]) 

1.1. Definition. Convex model (P, 9) is stable in a region S cz Rp at 9 = 9* if, 
for some neighbourhood N(6*) of 9*, both 

(i) 9 e N(9*) nS=> F(9) =f= 0 and 
(ii) 9 eN(9*) n S and 9 -> 9* => F[9) is bounded and all its limit (accumulation) 

points are in F(9*). u 

In order to formulate and construct specific regions of stability we denote, for 

a given 9, 

p=(9) = {keP:xe F{9) =>f\x, 9) = 0} 

P<(9) = P\P=(9) 

and 

F=(9) = {xe Rn: f\x, 9) = 0, k e P=(9)} . 

We assume throughout this addendum that 

F(9*) * 0 and bounded . 

Then we recall (e.g. from [5], [10], [11]) that (P, 0) is stable in the following regions 
at 9 = 9*: 

M(9*) = {9: F(9*) cz F[9)} ; 

V(9*) = {9: F=(9*) cz F=(9) and f\x, 9) = 0 Vx e F(9*) , k e F=(fl*), 

k$P=(9)}; 

and in their (occasionally easier to construct) subsets: 

Z±(0*) = {9: F(9*) cz F(0) c F=(0*)} ; 

Z2(9*) = {9: F=(9*) = F=(9) and f\x, 9) S 0 , Vx e F(9*), 

keP<(9)\P<(9*)} ; 

Vx(9*) = {9: F=(9*) cz F=(9) and f*(x, 9) S 0 , Vx e F=(9*), 

keP<(c7)\P<(0*)}; 

W(9*) = {9: F=(9*) cz F=(9) and P=(9*) = P=(9)} ; 

Z(9*) = {9: F=(9*) = F=(9) and f*(x, 9) ^ 0 , Vx e F=(9*), 

keP<
{9)\P<(9*)} . 

These subsets are needed to describe various properties of the convex model. Thus, 
a necessary condition and a sufficient condition for optimality of 9* in input opti-
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mization (see e.g. [6], [7], [8]) are stated over the sets M(6*) and V(6*). For bi-
-convex models these conditions are strengthened, but a necessary condition now 
holds over Vx(0*) while a sufficient condition holds over Zt(0*) n Z2(6*) (see e.g. 
[8]). Continuity of the Lagrangian multiplier function is established in Vx(0*) while 
the function is generally discontinuous in Zt(0*) n Z2(6*) (see [3]), etc. If Slater's 
condition holds, i.e. if 

(1.1) "there exists x such that fk(x, 0*) < 0 , k e P" 

then P=(0*) = 0, F=(6*) = Rn and some of the above sets coincide. In particular, 
when (1.1) holds, one can specify 

V(0*) = Vi(0*) = Z(6*) = Z2(6*) = W(6*) = N(6*), 

a neighbourhood of 0*. Unfortunately, many real life situations (such as multi-
objective decision making problems) are described by mathematical models (P, 0) 
for which Slater's condition does not or cannot hold. When studying such models 
one may have to use one or more regions of stability from the above variety. 
Recently, regions of stability M(9*) and V(6*) have been studied in abstract settings 
(e.g. in [4]). 

In the next section we will show, by an example, that the marginal value formula 
does not generally hold on the region of stability Z2(0*\ contrary to the claim made 
in [5, Theorem 4.3]. Moreover, the formula does not work even on the smaller set 
Zi(0*) n Z2(9*). However, we will prove that the formula does hold on the set Z(6*). 

2. THE MARGINAL VALUE FORMULA 

For some 0 e Rp consider the "reduced" Lagrangian 

L<(x, u; 9) = f°(x, 6) + £ uj\x,e) 
keP < (0) 

where P<(6) = P \ P=(0). It is well-known (see e.g. [6]) that x(6) e F=(6) is an opti
mal solution of (P, 6) if, and only if, there exists U(0) = (uk(0)), uk(6) = 0, k e P<(6) 
such that 

(2.1) L<(x(6), u; 6) r£ L<(x(6), U(6); 6) ^ L<(x, U(0); 6) 

for every x e F=(0) and every u e K+(0). (Here q(0) is the cardinality of the set P<(6) 
and Rq^0) is the nonnegative orthant in Rq(6).) 

The marginal value formula will be formulated at an arbitrary but fixed 0 = 0*. 
Since for stable perturbations at 0* we have P<(0*) a P<(0) (see e.g. [5] or [8, 
Theorem 3.1]) the Lagrangian multiplier function 

(2.2) U (6) = (uk(d)), keP^ST) 
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appearing in (2.1) exists and is well-defined. In what follows we will consider the 
function U#(0) rather than U(0) = (uk(6)), k e P<(0). By concentrating only on the 
terms in L< belonging to the index set P<(0*), we can further reduce the Lagrangian to 

L<(x,u;0)EEf°(x,0)-f X ukf
k(x,9). 

keP<(e*) 

Note that L* is used in (2.1) to characterize optimality of x(6*) e F=(0*) for a fixed 0*. 
We will need a guarantee that the "slopes" of certain components of U*(0) are 

finite as 0 -> 0*. This is formalized by requiring a rather weak condition called 
"Property Z(0*)". 

2.1. Definition. Consider the convex model (P, 0) at some 0 = 0*. Assume that 
F(0*) =1= 0 and bounded. We say that the model (P, 9) satisfies Property Z(0*) 
if for every path 

(2.3) 0 e Z(0*), 0 -> 0* such that uk(6) -> uk(6*), k e P<(0*) 

the following limits exist: 

(2.4) l i m ^ - y , keP<(6)nP(x(e*),e*). 
d-+d* 0 * — 0 

deZ(d*) " " 

(Here P(ic(0*), 0*) = {k e P:fk(x(6*), 0*) = 0} is the set of active constraints at 
x(6*) and uk(6*) = 0, k e P<(0) \P<(0*).) 

The existence of at least one path with the property (2.3) is guaranteed by e.g. 
[3, Theorem 3.1]. Note that Property Z(0*) is somewhat stronger than "Property 
U(0*)" used in [8] in that the latter requires that the limits (2.4) exist for at least 
one path (2.3). 

Finally, for a neighbourhood N(0*) of 0*, denote 

B(0*) = { ? ~~ fl* : 0 e Z(0*) n Ni0*), 0 * 0 * 1 , V ; \\\0-0*\\ v y v j j 

and all its limit (accumulation) points, when 0 e Z(0*), 0 -> 0*, by B°(0*). Note 
that B°(0*) is a subset of the unit sphere (possibly a singleton). When Slater's con
dition holds then B(0*) is the unit sphere. 

In addition to convexity of f\% 9) for every 0, we also assume below f\x, •) is 
convex for every x, i e {0} u P. Such models are called bi-convex. The marginal 
value formula follows. 

2.2. Theorem. Consider the bi-convex model (P, 6) at 0 = 0*. Let F(0*) 4= 0 
and bounded. Suppose that the saddle point (x(9*), u(6*)) in (2.1) is unique for 
0 = 0* and that Property Z(0*) holds. Also suppose that the Lagrangian multiplier 
function U*(0) is unique for every 0 e Z(6*) n N(0*), where N(0*) is a neighbour
hood of 0*. /ffl'(x, •), i e {0} u P<(0*) are differentiable in Z{0*) n N(0*), and if 
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the derivatives [f\x, 0)]0, i e {0} u P<(0*) are continuous functions in x at x(0*) 
for 0 = 0*, then for every fixed path 0 e Z(0*), 0 - ^ 0 * such that 

1 v ~ * 1 = hm 
9eZ(0*) 0 — 0* i 

Q-+6* " " 

for some I e B°(0*), we have 

(2.5) Mm #*> ffi> = ([L< (x(9*), fl,0-); 0%m„ I) . 
0eZ(0*) 0 — 0* 

0->0* " " 

Proof. The proof has two parts: first we prove the result for the case when the 
objective function f°(ic(0*), •) is strictly convex and then we use Tihonov's regulariza-
tion (e.g. [2], [5]) to prove it for a general convex function. For the strictly convex 
case, it is easy to show (see e.g. the proof of [8, Lemma 4.4] that 

(2.6) ([K(x(e% u[e*); 0)]'e, 0 - 0*) > J\0) - J(0*) + s(0) 

for every 0 e Vi(0*), 0 #= 0* and sufficiently close to 0*, where 

e(0) = LK(xK0*), uv0*); 0) - LK(x(0*), u(0); 0 ) . 

(Here we have used the fact that, under the assumptions of the theorem, U#(0) is 
a continuous function, see [3, Corollary 3.2].) 

Since Z(0*) c Vx(6*), the formula (2.6) also holds for 0 e Z(0*), 0 * 0* and close 
to 0*. On the other hand, using Lemma 4.2 from [5], we have 

f(0) - f(0*) ^ f\x(0), 0) + £ uj\x(0), 0) - L%(x, a(6*); 0*) 
keP<(6) 

for every x e F=(0*) and every u e Rq+e\ 
Now specify u = (uk) as follows: 

u^(0*) if keP<(0*) 
0 if keP<{6)\P<(0*) 

and x = x(9). (The former is possible since, as noted earlier, P<(0*) c P<(0); 
the latter is possible since x(Q) e F(0) c F=(0) = F=(0*).) This gives 

(2.7) j\0) - j\0*) :> Ll(x(0), u(0*); 0) - Lt(x(6), uv0*); 0*) > 

> ([L%(x(0), u{0*); 0 ) ] ; ^ # 5 0 - 0*) 

by strict convexity of L^ = L*(0) and the gradient inequality. The difference 
j \ 0 ) - f(0*) is thus bounded by (2.6) and (2.7). Now divide by ||0 - 0*|| > 0 and 
set 0 -> 0* such that 

0 — 0* 
l im

 y * = i e B°(6*) . 
0€Z(0*) 0 — 0*11 
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First we note that 

lim _ ! ® _ = 0 
06Z(0*) 0 - 0 * 
0-+0* " " 

by the Property Z(0*), see e.g. [8] . Therefore the limits on the bounds coincide, i.e. 

lim (\Ll(x(6*), <0*); 0 ] , , 
9EZ<e*)V 0 - 0 * 
e->e* 

= lim ([LI (x(0), u(6*); 0)]'g=et ,-£-=-£-
06Z(0*)\ 0 — 0* 
0-^0* " " 

= ([E:(x(0*), «(0*); 0)] ;= 9 . , /) 

by the continuous differentiability of a differentiable convex function and uniqueness 
of x(0*). This proves (2.5). 

In order to prove the formula for a convex objective function, we consider the 
"regularized" problem 

Min F°(x, 0, e) = f°(x, 0) + e||0||2 

(TP, e) (x) 

s.t. 
ffc(x,0) = O, keF 

where e > 0. Now F°(x, •, e) is strictly convex and therefore 

(2.8) lim *M ' g g ! l l ) = ([Ll(x(6*, e), uy9*, s); 0; s)%^, 1) 
0eZ(0*) 0 — 0* 
0-^0* " " 

with / as before. Here 

LZ(x(0*, e), <0*, e); 0; e) = 

= f°(x(0*, e), 0) + e||0||2 + X wfc(0*, s)f\x(e\ e), 0) , 
fceP<(0*) 

F(0, e) is the optimal value of (TP, 9) and (x(0*, e), u(0*, e)) is a saddle point. Since 
the feasible set of (TP, 0) does not depend on e, under the assumptions of the theorem 
e -> 0 implies (x(0*, e), u(0*, e)) -> (x(0*), u(0*)). Therefore (2.8) gives (2.5). u 

The example below (adjusted from [3]) shows that the marginal value formula 
does not generally work on the region of stability Zx(0*) n Z2(0*) even for bi-linear 
models. 

2.3. Example . Consider the model 

Minf0 = x 

s.t. 

f1 = - 0 x = 0 

f2 = -0 - x S 0 
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around 0* = 0. 
Here 

f[0,co) if 0 ^ 0 
f W = \0 if 0 < O . 

For 0 _̂  0 we have the following situation: 

P < ( 0 ) _ { { 2 } if 0 = 0 
F W {{1,2} if 0 > O 

while E=(0) = (—oo, oo) for every 0 ^ 0 . Further, 

Z,(0*) = Z2(0*) = Zj(0*) n Z2(0*) = [0, oo) . 

In order to apply the marginal value formula (2.5) for 0 > 0, 0 -* 0*, we find that 

L%(x, u; 0) = j°(x, <?) + I «*A*, 0) = ^ + "2(-^ - ^) • 
/ceP<(6>*) 

Since x(0*) = 0 and u2(0*) = 1, this gives 

L$(x(9*), <0*); 0) - - 0 

and 

[_:(£(»*), uv0*); 0)];_,* = - 1 . 

On the other hand, since 

0 - 0 * _ 

for every 0 > 0, we find that 1=1. Therefore the right-hand side in the marginal 
value formula (2.5) is 

([Lt(x(0*),u;6*);9)]'9=et,l)= - 1 . 

But jc(0) = 0 andj(0) = 0 for every 0 ^ 0 . This implies 

H J W - / ( « * ) - p . 
e>o |0 - 0*1 
0-+O ' ' 

We have obtained a contradiction. 

Conclusion. The marginal value formula does not generally work for the set 
Z.(0*) n Z2(0*). 

Comment. The failure of the marginal value formula on the set Z2(0*) is caused 
here by discontinuity of the Lagrange multiplier function. Indeed, in the above 
example we find that 

. fa. fl if 0 = 0 
u ^ = \0 if 0 > o -
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Without the continuity one cannot arrive at the relation (2.6). The uniqueness 
assumptions in Theorem 2.2 can be omitted; the marginal value formula then 
assumes a minimax form (see [1] and [5]). • 

The formula (2.5) is an important tool in input optimization. If the inner product 
in (2.5) is negative for some path 0 e Z(6*); 0 -+ 6* then, locally along this path, 
f(0) < /(#*). This generates a new 0 = 0NEW that "improves" the model from 
(P, 9*) to (P, 6NEW). The paths are chosen in computable subsets of the stable region 
Z(0*). This leads to "optimal realizations" of mathematical models (see [8], [9]). 
When Slater's condition is satisfied ,then B°(fl*) is the unit sphere, Z(0*) - N(0*), 
Property Z(#*) holds for differ en ti able functions, and the marginal value formula 
holds in a neighbourhood of 0* (see [1]). 

Acknowledgment. The author is indebted to the referee for his careful reading of 
the manuscript and for his comments and also to Mr. J. Semple for his remarks. 
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Souhrn 

OBLASTI STABILITY PRO NEKOREKTNE FORMULOVANE PROBLEMY 
KONVEXNIHO PROGRAMOVANI: DODATEK 

SANJO ZLOBEC 

Formule pro marginalni hodnotu v konvexni optimalizaci plati v uzsi oblasti nez bylo uvedeno 
puvodnS v literature. To plyne ze skutecnosti, ze existuji oblasti stability, ve kterych Lagrangeuv 
multiplikator je nespojitou fund i pro linearni modely. 
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Р е з ю м е 

ОБЛАСТИ УСТОЙЧИВОСТИ ДЛЯ НЕКОРРЕКТНЫХ ВЫПУКЛЫХ ПРОГРАММ: 
ДОБАВЛЕНИЕ 

8АШО 5^ОВЕС 

Формула для маргинального значения в выпуклой оптимизации верна в более ограничен
ной области устойчивости, чем недавно утверждалось в литературе. Причиной тому является 
существование областей устойчивости, в которых мультипликатор Лагранжа является раз
рывной функцией даже для линейных моделей. 
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