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Let X have a multivariate normal distribution. Slepian (1962) proved that the upper
and lower orthants (x ̂  c) and (x ̂  c) have the property that their probabilities are nonde-
creasing in each py. This easily implies, in the bivariate case, that if Λ = Q\ |J Q$ \J B,
where Q\ is an upper quadrant, Q3 is a lower quadrant, B is a disjoint union of horizontal
or vertical infinite strips and the interiors of Q\, Q$ and B ait disjoint, then P(A) is nonde-
creasing in p. This paper shows that, within a broad class of bivariate regions, sets A of
the type described above are the only sets whose probabilities increase with the correlation
coefficient when the means and the variances of X\, X2 take arbitrary values. Some results
are also given for the cases where the means and the variances are restricted in some way.

1. Introduction. Let X = (Xλ, ... , Xn) have the multivariate normal distribution with

mean vector μ, variance vector σ 2 and correlation matrix (p#). Slepian (1962) proved that

certain orthant probabilities are nondecreasing in each p# separately. This result and its

generalizations have several applications; see, for example, Slepian (1962), δidak (1968)

and Joag-dev, Perlman and Pitt (1983). It is natural to ask whether there are sets other than

orthants whose probabilities are nondecreasing in each p>r In this paper, we deal mainly

wth the bivariate case and obtain a result which can be considered as a partial converse to

Slepian's result.

Following the number of the quadrants in the plane, we denote by Qi an upper quadrant

of the type xλ ^ αu x2 ^ α2. A lower quadrant will be denoted by β 3 . The term infinite

horizontal strip will mean a set defined by — 00 < χλ < 00, α2 ^ x2 ^ *2 An infinite vertical

strip is defined similarly. We note that the probability of an infinite horizontal or vertical

strip is constant in p. Therefore, the following corollary of Slepian's result is immediate.

For ease of reference, we state it as a theorem.

SLEPIAN'S THEOREM. Let A C 7? have the form A = Qλ U Q3 U B, where B is a

finite disjoint union or horizontal (or vertical) infinite strips and the interiors ofQi, β 3

andB are disjoint. Then P(A) is nondecreasing in p.

In section 2, we show that, within a broad class of bivariate regions, the sets A described

in Slepian's theorem are the only sets whose probabilities are nondecreasing in p, when

the means μι ,μ2 and the variances σ2, σ 2 are allowed to take arbitrary values. Such a result

can be considered to be a partial converse to Slepian's theorem. When the means and var-

iances are restricted in some way, it is possible to obtain some additional regions whose

probabilities increase with p. Some results in this direction are given in Section 3. In Sec-

tion 4, we discuss an equivalent form of Slepian's result in terms of covariances and show

that its generalization based on the concept of association fails.
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2. A Partial Converse to Slepian's Theorem. In this section we first describe a broad

class 2) of sets in J? and then show that the only sets in 2) whose probabilities are nonde-

creasing in p for all values of μ l 9 μ2, &i and σ 2 are the sets A described in Slepian's

theorem.

Let 2> denote the class of all sets D with the following properties.

(1) D is a subset of Jp and coincides with the closure of its interior.

(2) The boundary of D consists of a finite number of line segments.

These two properties easily imply the following useful property.

(3) If a is a boundary point of D which is not a vertex, then there is an ε > 0 such that

the intersection of the disc |x — A| < ε with D is a convex set with a nonempty inter-

ior.

It is clear that 2) is a fairly broad class which includes all closed quadrants and their finite

disjoint unions. It is also easy to see that every set considered in Slepian's theorem is in

2). We also note that the boundary of a set in 2) may contain line segments which are neither

horizontal nor vertical.

Theorem 1 below concerns the class 2). We suspect that the theorem holds for a wider

class of sets such as the class of sets with Jordan boundaries. We also believe that the heart

of our proof will carry over to the more general case.

Suppose again that (Xl9 X2) has a bivariate normal distribution with parameters μi,μ 2 ,

σ?,σ2andp.

Definition 1. A set A C O? is called an S-region if P(A) is nondecreasing in p for

all values of μi, μ2, σ?, σ2.

We need a Lemma (see Figure 1).

T A

FIGURE 1. Illustration for the

proofofLemmal.

Γ Ac

LEMMA 1. Let ACZ Jp be such that there is a line segment L in the boundary of A

and a δ > 0 such that (a) the open rectangle T with L as one side and height δ is contained

in A; (b) the mirror image T of T about L is disjoint from A; and (c) L is neither horizontal

nor vertical. Then A is not an S-region.

Proof. First assume that the slope of L is negative. By changing the origin and scales,

if necessary, we may assume that

(i) L is contained in the line Jtj + x2 = 0;

(ii) 7 is described by the conditions
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0 < JCj + x2 < δ and \x{ - x2\ < i).

where 2Ύ) is the length of L. The mirror image T of T about L is then described by

- δ < x{ + x2 < 0 and |x, — xj < η.

Write £/ = Xi + X2 and V = Xi -Xi. Suppose that μi = μi = σ\ = σ\ = €, where 0

< 2e < δ. We use Z to denote a standard normal random variable.

Since TQ A, we have P(A) > />(Γ) = P[0 < U < δ] P[|V| < η]. But

P[0 < U < δ] = P [ - ( V 2 e / V T T p ) < Z < (δ-2€)/(2€(l+p))1/2J

—> 1

and

/>||V| < η] = P[\Z\ < η/(2€(l-

Therefore, lim^olim inf^^PiA) = 1. On the other hand T is disjoint fromΛ. Therefore

l-P(A) > P(T) = P[-$ <U< 0]-P[\V\ < 7}].

Again

P[\V\ < η] = P[|Z| <

and

P[-δ <U<0]= P[-(δ+2€)/(2€(l+p))1 /2 < Z < - (

•-> / ? [-(δ+2€/2Vβ < Z < - V i ] as p«> 1.

Therefore,

lim^oliπisupp^i P(A) ^ V2.

We thus see that, if ε is sufficiently close to zero, then

liminfp^D/^A) > limsup^j P(Λ).

This shows that A is not an S-region. The case where the line segment L has positive slope

can be handled similarly, the only change being that the mean vector is taken outside the

rectangle T. The lemma is thus proved. D

We are now ready to prove a partial converse to Slepian's theorem. While the proof is

somewhat long, it is elementary and is broken down into several simple steps.

THEOREM 1. Let D e 2) be an S-region. Then D is of the form Qλ (J Q3 \JB, where

B is a finite disjoint union of horizontal (or vertical) infinite strips, the interiors ofQi, β 3

andB are disjoint and one or more ofQi9 Q^B may be empty.

Proof. Recall that D satisfies the conditions (1), (2) and (3) stated at the beginning

of this section.

Step I. If L is a line segment in the boundary of D which is neither vertical nor

horizontal, condition (3) shows that D would satisfy the conditions of Lemma 1 and could

not be an 5-region. Therefore, every line segment in the boundary of D is either horizontal

or vertical.

Step 2. Suppose a is a vertex of D. Let ε > 0 and let Λf denote the disc |x - a| <

ε. The horizontal and vertical lines through a divide TV into four parts which we denote

by Nu N2, N3, N4. We claim that, if ε is sufficiently small, then D C\ N is the union of

one or more of the fy s.

In view of Step 1, we can use condition (2) to choose ε so that no boundary point of

D is in the interior of any one of the N s. Now suppose, if possible, that there are points
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b and c in the interior of Nγ such that b € Dc. Then the line segment [b,c] must contain a
boundary point d of D and this point d must be in the interior of N{. But this contradicts
the choice of e. Thus, the interior of N{ must be either completely contained in D or
completely outside D. The same argument holds for the other N.'s. Thus, the claim at the
beginning of this step is verified.

Step 3. What we have proved so far tells us that, around a vertex, the set D is either
a quadrant or the union of two or three quadrants. We can thus classify the vertices conve-
niently into ten types to be designated as NE, NW, SW, SE, (NE)C, (NW)C, (SW)C, (SE)C,
NE U SW, NW U SE. We illustrate two of these types in Figure 2.

FIGURE 2. Illustration for the
proof of Theorem 1 (Step 3).

(a) NE vertex (b) (SW)C vertex

Calculations similar to those in the proof of Lemma 1 show that the existence of a vertex of
the type NW, SE, (NE/, (SWy or NW(JSE would contradict the fact that D is an 5-region.
Therefore, a vertex of D must be one of the five types NE, SW, (NWy, (SEf or NE U SW.
In what follows, we treat a NE U SW vertex as both a NE vertex and a SW vertex.

Step 4. Any vertex of D, of one of the acceptable types in Step 3, is defined by two
half lines starting at the vertex. We now show that no other vertex of D can be on any one
of these defining half lines. Suppose, for instance, that a = (α]9 α2) is a NE-type vertex.
If there is a vertex on the half line xλ > aί9 x2 = a2, then the closest such vertex (to a)
must be either a NW vertex or a (SW)C vertex, which is impossible; see Figure 3. Thus
there cannot be any vertex on the half line X] > ai9 x2

 = a2. The same argument applies
to vertices of the type SW, (NW)C and (SE)C.

I L FIGURE 3. Illustration for the
proof of Theorem 1 (Step 4).

Step 5. Let a = {aλ, a2) be a vertex of the NE type. We show that the entire quadrant
jci > a\, X2 ̂  ai is contained in D. To see this, let (bι, bi) be a point of Z> in the open
quadrant xλ >aux2>a2. Since Dc is open, there is a neighborhood of b which is contained
in Dc. Therefore (see Figure 4), we can start from a point c in such a neighborhood and
proceed vertically downward to hit the set D at a point d which is not a vertex of D. Now,
if we proceed horizontally to thge left from d we must hit a vertex e, which is a SE, (NE)C

or SE U NW vertex. Since all these types are impossible, we have reached a contradiction.
Thus the entire quadrant determined by a NE type vertex is contained in D. The same result
holds for a SW type vertex.
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I. FIGURE 4. Illustration for the

proof of Theorem 1 (Step 5).

Step 6. If a = (α j , α2) is a (NW)C type vertex, then one can show by following elemen-

tary arguments as above that the entire open quadrant xx < α]y x2 > α2 is outside D. A

similar result holds for a (SE)C type vertex.

Step 7. It follows easily from Steps 4, 5 and 6 that D can have at most one vertex

of any given type. For instance, if there are two NE type vertices, then, by Step 5, it cannot

happen that one of the quadrants is contained in the other. But then, we are bound to get

a vertex on one of the defining half lines which is impossible by Step. 4.

Step 8. As our final step, we show that, if D has a (NW)C vertex or a (SE)00 vertex,

then D contains an infinite horizontal or vertical strip. We give the proof for a (NW)C

vertex. Let a = (αl9α2) be a (NW)C vertex. The horizontal and vertical lines through a

divide the plane into four quadrants, which we denote by Aγ, A2, A3, Λ4 in the usual order.

By Step 6, we know that the interior of A^ is completely outside D. If D coincides with A{

U A 3 U ^ 4 , then D clearly contains an infinite strip. So suppose that there is a point of Dc

in the interior of Λ, for some i = 1,3,4. Three cases arise.

Case (i). Suppose we can find a point b of Dc in the interior of A\\ (see Figure 5).

Since Dc is open, we may assume that, if we proceed leftward from b, we would hit D

at a boundary point c which is not a vertex. The boundary of D at c must be vertical. If

we proceed downward from c and reach a vertex d, then d must be either a NW vertex

or a (NE)C vertex. Since both these types are impossible, there is no vertex on the half line

r, = C], x2 ^ c2. Now proceed upward from c. If we do not reach a vertex at all, then

D clearly contains a vertical strip. So suppose that we do reach a vertex e. In view of Step

4, e must be of the (SE)C type. We now claim that the half line JCJ = C\, x2 > e2 is in the

interior of d. To see this, suppose that we proceed upward from c to reach a boundary point

f of D. If f is a vertex, then f can be of either the (NW)C type, which is impossible by Step

7, or the (NE)C type, which is impossible by Step 3. Thus f is not a vertex. Further, the

boundary of D at f is horizontal. Now, if we go leftward from f, we must reach a vertex,

ii
w

FIGURE 5. Illustration for the

proof of Theorem 1 (Step 8).
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which is either a SE vertex or a (NE)C vertex. This contradiction proves the above claim.

We now see that, for some δ > 0, the vertical strip Cj - δ < x, ^ Cj, — oo < χ2 < oo must

be contained in D.

Case (ii). If we can find a point b of Dc in the interior of A3, then the discussion in

Case (i) above easily shows that D contains an infinite horizontal strip.

Case (Hi). If neither Case (i) nor Case (ii) arises, then A, U A3 C D and we can find

a point b of Dc in the interior of A4. Again, we may assume that, if we proceed leftward

from b, we would hit D at a boundary point c which is not a vertex. From this point on,

the proof given in Case (i) applies word for word.

We have thus shown that the existence of a (NW)C vertex implies that D contains an infi-

nite strip. The same conclusion clearly holds if D has a (SE)C vertex.

We are now ready to put everything together. If D contains an infinite horizontal (or

vertical) strip, then we can remove the finite disjoint union B of all such strips from D to

get a set E. Of course, if D does not contain an infinite strip, then B = φ and E = D.

In any case, £ is an 5-region, £ € Z> and £ does not contain an infinite strip. Now observe

that:

(a) By Step 8, any vertex of £ is a NE or a SW or a NE SW vertex, (b) by Step
7, E has at most two vertices, (c) if E has exactly one vertex, then E has the form Qί9

C?3 or Qλ \J Q3, (d) if E has two vertices, then one must be a NE vertex and the other

a SW vertex, in this case, E has the form Qλ \J Q3. The theorem is now completely proved.

5. The Effect of Restrictions on Means or Variances. The results of Section 2 show

that within the reasonably broad class of sets 2>, the subclass of sets whose probabilities

increase with p is rather narrow. However, it should be noted that the means and variances

were completely unrestricted. One may therefore ask whether, under some restrictions on

means and variances, one can identify additional sets whose probabilities increase with p.

In this section we show that, at least in some cases, the answer is in the affirmative. We

again assume that (Xu X2) has the bivariate normal distribution with parameters μl9 μ2,

σ?,σ2andp.

Example 1. Suppose that μi, μ 2 are fixed. Consider the half space H defined by the

inequality aλxλ + α2jt2 ^ &> where aλ ,a2 have the same sign. Suppose that (μj ,μ2) is outside

H. That is, aλμ,λ + α 2 μ 2 < k. Then

P(H) = P[Z> {k^\μ\-^iμi)l{(a\σ\+a\σ\ + laiaiσiσip))1'2

which is nondecreasing in p because axa2 > 0. The same conclusion holds if axa2 < 0 and

(μ^μ^) belongs to H. We note that H does belong to the class 2) .

In the case where σ! ,σ2 are fixed and μ, ,μ 2 are allowed to vary, we have been unable
to find any regions (additional to those already found in Section 2) whose probabilities in-
crease with p.

The rest of this section considers the case where μi,μ 2,σ,,σ 2 are all fixed. Since a

change of origin does not change the variances we assume that μ, = μ 2 = 0. Write α =

(σVσ2). For the given value of α, we now construct a family of sets whose probabilities

increase with p. Consider the following conditions on a set S in CR1.
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(i) If (xι,x2) e 5, then the entire line segment joining (x{,x2) to ((x{ + ax2)/2,

(x{ + αx,)/2α)asinS.

(ii) If (JCJ ,x2) € S, then (x{ + ac,x2 + c)eS for every c > 0.

(iii) {x{ ,x2) € S =>JCj + ct*2 > 0.

Condition (i) is a convexity condition. Condition (ii) says that the variables* 'hang together''
in 5. The third condition is not natural but is related to the fact that μι = μi = 0. We saw in

Example 1 that the position of the mean vector is important in determining whether a given

set has its probability increasing in p.

THEOREM 2. Suppose S(ZJ?2 is a set which satisfies the conditions (i), (ii), (iii)

statedabove. Let μχ = μ2 = 0and{σJσ2) = a. ThenP(S) is nondecreasing in p.

Proof. Let Uλ = (Xι + aX2)/(VJ σ,) and U2 = (X, - *X2)I(V~2 σ,). Then Uu

U2 are independent with zero means and variances (1 + p) and (1 - p) respectively. Under

this transformation, the set S is converted into a set T such that

(A) If (μγ ,M2) e Γ, then the entire line segment joining {uχ,w2) to (u{ ,0) is in T.

(B) If (M, ,M2) e T, then (wt + t,u2) e T, for all t > 0.

(C) (W l ,M2)€Γ=>W l>0.

Let β p denote the distribution of U = (UUU2). Then P(5) = QP(T). Now, if D p denotes

the 2x2 diagonal matrix whose (1,1) entry is (1 + ρ)" 1 / 2 and (2,2) entry is (1 - p)~1/2, then

QP(T) = βoΦpΌ But clearly P l < p 2 =>D P i (Γ)C D9l(T). Therefore βP i(Γ) ^ QP2(7),

whenever p! ^ p 2. The theorem is thus proved. D

The generalization of Theorem 2 to the fc-variate equi-correlated case is straightforward

and we state it in the theorem below without proof. Again we assume that the means are

zero, σ 2 = V a r ^ ) and p = coτr(XifXj), for all i'. Φ j . If x = (*, , . . . , *„), we write x*

= {lϊnyXixi/σi). We also write σ = (σ!, ... , σn).

THEOREM 3. Let X have the equi-correlated multivariate normal distribution with zero

means. Suppose SC^be such that

(1) x e S => the entire line segment joining x and (σ jjc*, σ2Jc*, ... , σnx*) ί s in S.

(2)

(3)

Then P(S) is a nondecr easing function of p.

Example 2. One may ask whether the class of regions whose probabilities are nonde-

creasing in p is closed under intersections. The answer is in the negative even if attention

is restricted to "increasing" sets. To see this, suppose that μi = μ 2 = 0 and σ! = σ 2 =

1. Let 5! = {(jt, ,JC2): JCJ ^ 0} and S2 = {(JC, ,JC2): X2 ^ -(1 + e)jc,}, where e > 0. Then P(Sχ)

and P(S2) are both nondecreasing in p because of Example 1. Now, if e is close to zero,

then P(Sι Π S2) is close to V2 when p = -1 and close to % when p = 0. Thus P(Sι Π S2) is

not nondecreasing in p.

4. An Equivalent Form of Slepian's Result. According to Yanagimoto and Okamoto

(1969), a random vector (Xι ,X2), whose distribution Pp depends on a parameter p, is said

to have larger positive quadrant dependence under p! than under p 2 if

(4.1) PPί(Xx ^ xλ ,X2 ^ x2) ^ PP2(X, ^ xι ,X2 ^ xi) for all (x, ,x2).
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They showed that (4.1) is equivalent to

(4.2) Cov[/UXi),/2(X2);Pi] ^ Cov\fι(Xι)9MX2);p2]

for all nondecreasing functions/i/2 Now Slepian's result shows that a bivariate normal

vector (XUX2) satisfies (4.1) and consequently it satisfies (4.2), whenever pj > p2. Here

the concept of "positive quadrant dependence" has been given an ordering relation which

agrees, at least for the bivaTiate normal case, with the ordering based on the weaker concept

of dependence, namely, the correlation coefficient.

Observe that the functions fu f2 have separate arguments. We may ask whether

Cov[/i,(X,,X2), h2(XuX2)] is nondecreasing in p if hu h2 are nondecreasing in each argu-

ment and (Xi ,X2) is bivariate normal. This question is clearly related to the concept of as-

sociation introduced by Esary, Proschan and Walkup (1967). That the answer is in the nega-

tive is indicated by Example 2. This example gives a set Sλ Π S2 = B, say, such that P(B)

is near 3/s when p = 0 and near Vi when p = - 1 . If h denotes the indicator function of

B, then h is increasing and Waτ[h(Xι ,X2)] is larger at p = -1 than at p = 0. Another example

is as follows.

Example 3. Consider two quadrants

Qo = {(xi,x2):xi^0,X2^0}

and

Qt = {{x\ ,* 2 ): x\ ^ 0, x2 ^ t}9 where t > 0.

Again let (Xj ,X2) have a bivariate normal distribution with zero means, unit variances and

correlation coefficient p. Denote the density function of (X! ,X2) by g. Then

(4.3) P(Qt) = fofΓg(xi Λ;p)Λ*fri

Using (4.3) and the fact that

(d/d9)g = (d2/dxudx2)g,

we get

( 4 4 ) d/dp[P(QoΠ Qύ-P(Qo)P(Qt)]

= g(0,t;p)-P(Qo)g(0,t;p)-P(Qo)g(0,0;p).

When p is near 1, g(0,0;p) is large, g(0,t;p) is small and P(Qι) is bounded away from

zero. Therefore the above derivative (4.4) is negative for p near 1. Equivalently, the

indicators of βo and Q\ are nondecreasing functions whose covariance is decreasing in p

near p = 1.

Acknowledgment. Thanks are due to the referee who made useful comments on the

earlier draft of the paper, pointed out the need for the results of section 2 and provided

a simpler proof of Theorem 2.
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