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Regioselective functionalization of aryl azoles as
powerful tool for the synthesis of pharmaceutically
relevant targets
Ferdinand H. Lutter 1, Lucie Grokenberger1, Luca Alessandro Perego 2, Diego Broggini2,

Sébastien Lemaire 3, Simon Wagschal 2✉ & Paul Knochel 1✉

Aryl azole scaffolds are present in a wide range of pharmaceutically relevant molecules. Their

ortho-selective metalation at the aryl ring is challenging, due to the competitive metalation of

the more acidic heterocycle. Seeking a practical access to a key Active Pharmaceutical

Ingredient (API) intermediate currently in development, we investigated the metalation of 1-

aryl-1H-1,2,3-triazoles and other related heterocycles with sterically hindered metal-amide

bases. We report here a room temperature and highly regioselective ortho-magnesiation of

several aryl azoles using a tailored magnesium amide, TMPMgBu (TMP= 2,2,6,6-tetra-

methylpiperidyl) in hydrocarbon solvents followed by an efficient Pd-catalyzed arylation. This

scalable and selective reaction allows variation of the initial substitution pattern of the aryl

ring, the nature of the azole moiety, as well as the nature of the electrophile. This versatile

method can be applied to the synthesis of bioactive azole derivatives and complements

existing metal-mediated ortho-functionalizations.
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N
-aryl azole scaffolds are present in several marketed and
experimental drugs, such as celecoxib1, apixaban2, zibo-
tentan3, and nesapidil4 (Fig. 1a). As part of an ongoing

development program, we sought a straightforward access to N-
aryl-1,2,3-triazole 1a5. An attractive and efficient approach to
access such heterocyclic motif is the C–H functionalization of 1-
aryl-1H-1,2,3-triazoles such as 2a (Fig. 1b). A well-established
strategy involves transition metal-catalyzed C–H arylations6–21.
These reactions usually require harsh conditions and often lead to
bis-arylated products, which limits their practicality6,8,12–17,22,23.
The direct deprotonation with a suitable base may be an alter-
native for the selective functionalization of aryl azoles. However,
the regioselective metalation of the aryl ring linked to a hetero-
cycle is challenging, due to the competitive and often favored
metalation of the N-heterocycle itself24.

A potential approach to achieve a regioselective metalation at
the aryl ring is the avoidance of coordinating solvents such as
THF, which competes with the nitrogen atom of the azole ring in
complexation of the base25. Sterically hindered metal-amide
bases, especially magnesium- and zinc-derived TMP-bases
(TMP= 2,2,6,6-tetramethylpiperidyl) have proved to be powerful
reagents for the functionalization of various (hetero)arenes26–33.
The use of hindered metal amides in hydrocarbon solvents should
thus be beneficial. In line with this concept, Hagadorn showed
that TMP2Zn is an excellent base for the α-zincation of various
carbonyl compounds and the metalation of pyridine-N-oxide in
toluene34,35. Similarly, Mulvey and co-workers36–43 reported
several mixed bimetallic amide bases for metalation reactions in
non-coordinating hydrocarbon solvents. Herein we report a
highly selective and broadly applicable magnesiation of various
aryl azoles using the amide base TMPMgBu in a toluene/hexane
solvent mixture and subsequent cross-couplings and electrophilic
quench reactions.

Results
Reaction optimization. In preliminary experiments, the reaction
of 1-aryl-1H-1,2,3-triazole 2a with various metal-amide bases was
examined to assess the selectivity between products A and B. The
use of strong bases like TMPLi or LDA exclusively afforded the

undesired metalation at the most acidic 5-position of the triazole
together with large amounts of decomposition products (Fig. 2a,
entries 1–2). Similarly, mixtures of A and B were obtained with
TMPMgCl⋅LiCl or TMP2Mg in THF44–46 (entries 3–4). We
turned our attention to TMPMgBu47,48, which was conveniently
prepared by treating TMP-H with commercially available Bu2Mg
in hexane (25 °C, 48 h), affording a clear 0.74–0.81 M solution in
94–98% yield (Fig. 2b). Unfortunately, performing the metalation
of 2a in THF using TMPMgBu did not yield better results in
terms of selectivity between the two metalation sites (Fig. 2a,
entry 5). As mentioned above, we anticipated that the use of the
highly coordinating solvent THF could hamper a selective coor-
dination at the N(2)-atom of the triazole. We therefore switched
to metal bases in hydrocarbons. While TMP2Mg in toluene
proved to be too reactive, leading to extensive decomposition of
the starting material 2a (entry 6), TMPMgBu in toluene turned
out to be highly selective, affording the desired metalated triazole
A in 81% yield within 1 h (A:B= 96:4, entry 7). However,
TMP2Zn34,35 or iPrMgCl.LiCl were not suitable reagents for the
deprotonation of the aryl moiety of 2a (entries 8–9).

Substrate scope. We then examined the reactivity of the arylmetal
species generated via deprotonation with TMPMgBu in the
palladium-catalyzed Negishi cross-coupling (Fig. 2c). After
transmetalation with ZnCl2, the resulting arylzinc reagent was
coupled with 4-chloro-6-methoxypyrimidine using 1 mol% of
[PdCl2(dppf)] (dppf= 1,1′-bis(diphenylphosphino)ferrocene) and
the desired active pharmaceutical ingredient (API) intermediate
1a could be isolated in 86% yield. With these results in hand, we
examined the scope of the metalation reaction using various
substituted aryl triazoles (Fig. 3).

The metalation of the electron-deficient triazole 2b proceeded
smoothly within 1 h at room temperature leading exclusively to
the organomagnesium reagent 3b in 86% yield. The unsubstituted
phenyl derivative 2c was metalated in 4 h affording 72% of the
desired metal reagent 3c along with 6% deprotonation at the
triazole 5-position. The electron-rich triazoles 2d–f required a
prolonged metalation time of 4–6 h and furnished 3d–f in
68–77% yield. The metalation of the ortho-fluoro triazole 2g
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Fig. 1 Background and objective. a Examples of bioactive aryl azole derivatives. b Retrosynthetic strategy for API intermediate 1a.
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afforded 3g in 80% yield. We did not observe any metalation
ortho to either the methoxy or the fluoro moieties, indicating that
the triazole unit is a much stronger directing group than those
substituents. When testing other substituents at the 4-position of
triazole, we found that the TMS group was key to reach high
selectivity as the corresponding 4-butyl and 4-phenyl analogs
afforded only mixtures of arylmagnesium species (see Supple-
mentary Fig. 13).

Magnesium organometallics 3a–g were then transmetalated with
ZnCl2 prior to their use in the cross-coupling with a variety of
functionalized (hetero)aryl bromides. Palladium-catalyzed coupling
reactions proceeded smoothly with several electron-rich and
-deficient aryl bromides, furnishing the corresponding products
1b–f in 75–87% yield. Remarkably, the reaction of the sterically
demanding 2-bromonaphthalene led to 1g in 74% yield. Various
fluorinated aryl bromides containing a trifluoromethoxy, penta-
fluorosulfinyl, trifluoromethyl, or fluoro substituent were success-
fully applied in these couplings affording the desired arylated
products 1h–k in 70–95% yield. Furthermore, a range of heteroaryl
bromides, such as pyridyl-, pyrimidyl-, indolyl-, and various
thienyl- and furyl bromides were used as coupling partners leading
to the corresponding products 1l–s in 62–96% yield. Next, the
metalation was extended to other aryl azoles (Fig. 4a). Treating 1-
phenyl-3,5-dimethyl-1H-pyrazole 4a with TMPMgBu (1.0 equiv)
for 1 h afforded 5a in 82% yield and perfect regioselectivity.
Unsubstituted pyrazole 4b was selectively metalated at the aryl
moiety leading to the magnesium reagent 5b (78% yield).
Remarkably, no competitive metalation of the azole ring was
observed in any case. Furthermore, 2,5-diphenyl-1,3,4-oxadiazole
4c underwent a selective mono-magnesiation, affording 5c in 76%
yield after 2 h metalation time. The magnesiation of phenyl
oxazoline 4d proceeded within 1 h leading to the metalated
product 5d in 77% yield.

Negishi cross-couplings starting from 5a afforded the com-
pounds 6a–b in 68–95% yield under the standard conditions.

Substrates containing such a 3,5-dimethylpyrazole group are of
special interest, since an oxidative cleavage via ozonolysis affords
the corresponding N-acetylated anilines17. The unsubstituted N-
aryl pyrazolylmagnesium reagent 5b was coupled with functio-
nalized aryl bromides bearing a tosylate and nitrile group leading
to the products 6c–d in 89% and 88% yield, respectively. The
reaction of 5c with bromobenzene afforded the corresponding
1,3,4-oxadiazole 6e in 80% yield, which is a valuable precursor for
the synthesis of electroluminescent compounds49.

Additionally, a more electron-deficient derivative was synthe-
sized following the optimized procedure leading to 6f in 75%
yield. Finally, the cross-coupling of 5d furnished the correspond-
ing products 6g–h in 91–96% yield.

The versatility of the method was shown by performing various
trapping reactions of the arylmagnesium reagent 3a with several
commonly used electrophiles (Fig. 4b). Thus, a reaction with I2
afforded 7a in 98% yield and the addition of benzaldehyde or
MeSSO2Me to 3a led to the corresponding alcohol 7b or thioether
7c in 86% and 75% yield, respectively. A transmetalation with
CuCN⋅2LiCl and subsequent reaction with benzoyl chloride or an
allyl bromide derivative afforded 7d–e in 62–77% yield.

Late-stage diversification. Various late-stage modifications were
performed to demonstrate the synthetic utility of the cross-
coupling products (Fig. 5). The TMS group could be easily
removed using TBAF giving access to unsubstituted triazole 8 in
91% yield. Treating 1h with TMPMgBu for 2 h in toluene led to
the arylmagnesium reagent 9 in 80% yield. After transmetalation
with ZnCl2, a palladium-catalyzed cross-coupling with 5-bromo-
N-methyl indole afforded the bis-arylated triazole 10 in 88%
yield. The reaction of 1h with 1,3-dibromo-5,5-dimethylhy-
dantoin furnished the corresponding bromide 11 in 93% yield. A
palladium-catalyzed Suzuki-cross-coupling of 11 with an aryl-
boronic acid allows the smooth functionalization of the triazole
moiety, affording 12 in 86% yield.
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Mechanistic probes. We then sought to gain a deeper under-
standing of the metalation and cross-coupling steps. It is known
that commercially available Bu2Mg solutions are mixtures of n-
butyl and s-butyl magnesium species. Analysis of an iodolyzed
sample revealed a 60:40 ratio of n-butyl and s-butyl moieties
present in Bu2Mg, and the same ratio was found in TMPMgBu.
Interestingly, Bu2Mg in toluene/hexane was also an excellent base
to selectively deprotonate 2a affording ortho-magnesiation in
93% yield (Fig. 6). The resulting mixture mainly contained ArMg
(n-Bu) and ArMg(s-Bu) (89% and 4%, respectively). However,
after transmetalation with zinc chloride, only 28% of the desired
cross-coupling product 1b were obtained together with 88% of 4-
butyl-anisole (13a), resulting from the cross-coupling of the n-
butyl residue. This observation accounts for the superiority of

TMPMgBu to Bu2Mg in the metalation/cross-coupling sequence:
the use of TMPMgBu limits the formation of the ArMgBu and
thus after transmetalation ArZnBu, which preferentially transfers
the butyl group to Ar′Br, forming the byproduct Ar′Bu 13a.

Discussion
In conclusion, we have described a highly regioselective magne-
siation of various aryl azoles using a hindered mixed magnesium
amide base, TMPMgBu, in toluene/hexane at room temperature.
Subsequent palladium-catalyzed cross-couplings with a variety of
(hetero)aryl bromides or trapping with electrophiles afforded
polyfunctionalized aryl azoles in good to excellent yields. This
methodology could be applied to the synthesis of a key API
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intermediate and several late-stage modifications demonstrated
the versatility of the resulting products. Mechanistic experiments
highlighted the key role of TMP for the reactivity of the resulting
organomagnesium reagents in cross-coupling reactions.

Methods
Preparation of arylmagnesium reagent 3a. Aryl triazole 2a (126 mg, 0.5 mmol,
1.0 equiv.) was placed in a dry and argon-flushed 10 ml Schlenk tube equipped with

a magnetic stirring bar and a septum and was suspended in toluene (0.5 ml, 1.00 M).
TMPMgBu (0.67 ml, 0.75 M, 1.0 equiv) was added and the mixture was stirred for
1 h affording the magnesium reagent 3a in 81% yield.

Palladium-catalyzed cross-coupling. 3a was transmetalated with a ZnCl2
solution (0.5 ml, 1.00 M in THF) and THF (1.0 ml) was added. A dry and argon-
flushed Schlenk tube, equipped with a magnetic stirring bar and a septum, was
charged with Pd(dppf)Cl2 (1.0 mol%, 0.005 mmol, 3.7 mg) and 1-bromo-4-
methoxybenzene (0.850 mmol, 159 mg, 2.10 equiv) was added. The freshly
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prepared arylzinc reagent was added and the reaction mixture was placed in an
oil bath at 55 °C. After 16 h, saturated aq. NH4Cl solution (5 ml) was added, the
phases were separated, and the aqueous phase was extracted with EtOAc (3 × 25
ml). The combined organic layers were dried over MgSO4. The solvents were
removed under reduced pressure and the crude product was subjected to column
chromatography.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper and its Supplementary Information files.
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