Regioselective Palladium-Catalyzed Cross-Coupling Reactions of 2,4,7-Trichloroquinazoline

Peter Wipf ${ }^{*}$ and Kara M. George
University of Pittsburgh, Pittsburgh, PA 15260, USA

Abstract

The regioselective palladium-catalyzed cross-coupling reactions of 2,4,7-trichloroquinazoline with various aryl- and heteroarylboronic acids are reported. An efficient, sequential strategy was developed that provides access to novel, functionalized heterocycles.

Keywords

palladium catalysis; cross-coupling; heterocycles; regioselectivity; quinazoline

Abstract

Palladium-catalyzed cross-coupling reactions represent a powerful method for the formation of highly substituted heterocycles. ${ }^{1}$ The regioselective activation of polyhalogenated heteroaromatics in such reactions has been extensively studied ${ }^{2}$ and can provide a versatile means for the synthesis of libraries containing functionalized substituents in specific positions of the heterocyclic scaffold. The quinazoline moiety is of particular importance, as it is a component of a variety of biologically active compounds, including potent tyrosine kinase inhibitors, ${ }^{3}$ antibacterial, ${ }^{4}$ and anticancer agents. ${ }^{5}$ For example, trisubstituted quinazoline derivatives such as \mathbf{A} and \mathbf{B} have been prepared as part of a series of liver X receptor (LXR) modulators (Figure 1). ${ }^{6}$

Quinazolines are also components of several approved drugs, including erlotinib, ${ }^{7}$ used to treat several types of tumors, iressa, ${ }^{8}$ an epidermal growth factor receptor inhibitor approved for the treatment of nonsmall cell lung cancer, and prazosin, ${ }^{9}$ an α-adrenergic receptor blocker. While the regioselectivity for palladium-catalyzed alkylation, ${ }^{10}$ alkynylation, ${ }^{11}$ and arylation ${ }^{12}$ of 2,4-dichloroquinazolines has been previously explored, only the alkylation ${ }^{10}$ and alkynylation ${ }^{11}$ of 6 -bromo-2,4-dichloroquinazoline have been reported. For crosscoupling reactions employing 2,4-dichloroquinazoline, exclusive selectivity for the most electrophilic C-4 position ${ }^{13}$ has been observed. Attempts to achieve monosubstitution with the more highly halogenated 6 -bromo-2,4-dichloroquinazoline resulted in coupling at both the C-4 and C-6 positions in a ratio of 3:1, respectively. To our knowledge, a regioselective method for the sequential polyarylation of trihalogenated quinazolines has not been disclosed. Herein, we describe a versatile new protocol for the regioselective palladiumcatalyzed cross-coupling reactions of 2,4,7-trichloroquinazoline ${ }^{14}$ with aryl- and heteroarylboronic acids.

Initially, we set out to achieve the regioselective cross-coupling of 2,4,7trichloroquinazoline by consecutive, Suzuki cross-couplings (Scheme 1, route A). We

[^0]envisioned the first coupling to take place at the most electrophilic $\mathrm{C}-4$ position, followed by substitutions at the C-2 and C-7 positions, respectively. However, coupling at C-4 proved to be low-yielding due to competitive hydrolysis at that site under the reaction conditions. In order to circumvent this problem, a new route was designed in which the $\mathrm{C}-4$ position was first temporarily deactivated by a thioether, followed by a regioselective cross-coupling at C-2 (Scheme 1, route B). The C-4 position would then be functionalized via a palladiumcatalyzed, copper(I)-mediated cross-coupling to provide compounds of type 3, which could undergo a Suzuki reaction to provide trifunctionalized quinazoline target compounds 4.

Thioether $\mathbf{1}$ was readily accessed by treatment of 2,4,7-trichloroquinazoline with 1.05 equivalents of isopropyl mercaptan and NaH . Substitution occurred exclusively at the electrophilic C-4 position. Subsequent regioselective C-2 arylation of $\mathbf{1}$ proceeded in excellent yields with most arylboronic acids in the presence of $5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ and 15 $\mathrm{mol} \% \mathrm{Ph}_{3} \mathrm{P}$ at $75{ }^{\circ} \mathrm{C}$, furnishing diaryl products 2 (Table 1, entries 1-8). ${ }^{15}$ In the case of oxygen- and nitrogen-containing heterocyclic nucleophiles, slightly lower yields were obtained, presumably due to the decreased reactivity of these reagents, ${ }^{16}$ as shown by the need for prolonged reaction times (Table 1, entries 8-10). Excess boronic acid (1.5 equiv) was necessary for complete consumption of starting materials, and attempts to use stoichiometric amounts resulted in incomplete conversions. In addition, efforts to decrease the reaction time by increasing reaction temperatures resulted in poor regioselectivity and low overall yields.

Stage 2 functionalization at the C-4 position was performed using the palladium-catalyzed, copper(I)-mediated desulfitative coupling conditions reported by Liebeskind and coworkers. ${ }^{17}$ These reactions were carried out in the presence of excess copper(I) thiophene-2carboxylate (CuTC) and boronic acid. All desulfitative arylations were achieved in excellent yields and complete selectivity for the C-4 position (Table 2).

The third and final cross-coupling reaction was initially carried out using the conditions reported in Table 1. In all cases, incomplete consumption of starting material resulted, even upon heating to reflux and increasing the equivalents of boronic acid. Finally, in order to ensure the complete consumption of starting material, $10 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}, 30 \mathrm{~mol} \% \mathrm{Ph}_{3} \mathrm{P}$, and 4.0 equivalents of boronic acid were used. These conditions resulted in a successful cross-coupling at position C-7 in good yields for both aryl- and heteroarylboronic acids (Table 3).

In conclusion, we have demonstrated that temporary deactivation of the C-4 position by substitution of the chlorine atom with isopropyl mercaptan allows for the subsequent regioselective palladium-catalyzed cross-coupling at the $\mathrm{C}-2$ position in 2,7dichloroquinazoline 1. Furthermore, palladium-catalyzed, copper(I)-mediated desulfitative coupling at the C-4 position, followed by the final palladium-catalyzed cross-coupling at the $\mathrm{C}-7$ position, provides convenient access to the desired tricarbosubstituted quinazolines. This simple and efficient sequential coupling route to highly substituted quinazolines enables the orchestration of regioselective palladium-catalyzed cross-coupling reactions for the preparation of focused libraries of kinase inhibitors. ${ }^{18}$

2,7-Dichloro-4-(isopropylthio)quinazoline (1)

To a solution of 2,4,7-trichloroquinazoline ${ }^{14}(0.300 \mathrm{~g}, 1.28 \mathrm{mmol})$ in freshly distilled and degassed THF $(13.0 \mathrm{~mL})$ cooled to $0^{\circ} \mathrm{C}$ was added a premixed solution of $i-\operatorname{PrSH}(0.12 \mathrm{~mL}$, $1.28 \mathrm{mmol})$ and $\mathrm{NaH}(0.032 \mathrm{~g}, 1.35 \mathrm{mmol})$ in THF $(2.0 \mathrm{~mL})$ dropwise. The mixture was stirred for 16 h , warmed to r.t., poured into ice cold $\mathrm{H}_{2} \mathrm{O}$, extracted with $\mathrm{EtOAc}(5 \times 25$ $\mathrm{mL})$, and washed with $\mathrm{H}_{2} \mathrm{O}$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give a light yellow residue. The residue was purified by chromatography on
$\mathrm{SiO}_{2}(1: 50, \mathrm{EtOAc}-$ hexanes $)$ to provide $1(0.291 \mathrm{~g}, 83 \%)$ as a light yellow crystalline solid; mp 89.1-90.1 ${ }^{\circ} \mathrm{C}$ (EtOAc). IR (ATR): 3075, 2965, 2881, 1551, 1459, 1321, 1224, 1133, 852 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) : $\delta=8.07(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 7.98(\mathrm{~d}, 1 \mathrm{H}, J=2.1$ $\mathrm{Hz}), 7.72(\mathrm{dd}, 1 \mathrm{H}, J=9.0,2.1 \mathrm{~Hz}), 4.18(\mathrm{sept}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.46(\mathrm{~d}, 6 \mathrm{H}, J=6.9$ $\mathrm{Hz}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}): $\delta=174.8,156.0,149.7,140.1,128.9,126.6,125.9$, 120.2, 36.0, 22.2 (2 C). MS (EI): $m / z(\%)=272$ (33) [M] ${ }^{+}, 230(100), 195$ (48), 161 (37). HRMS (EI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{~S}$: 271.9942; found: 271.9946 .

General Procedure for Compounds of Type 2

To a reaction vial was added 1 (1.0 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}$ (0.05 equiv), $\mathrm{Ph}_{3} \mathrm{P}$ (0.15 equiv), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (3.1 equiv), and $\mathrm{R}^{1} \mathrm{~B}(\mathrm{OH})_{2}$ (1.5 equiv). The reaction mixture was flushed with N_{2}. Freshly distilled and degassed DME and $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{DME}-\mathrm{H}_{2} \mathrm{O}, 10: 1\right)$ were added via syringe to generate a 0.1 M solution of $\mathbf{1}$, and the reaction mixture was stirred at $75^{\circ} \mathrm{C}$ under a N_{2} atmosphere for the required time. $\mathrm{H}_{2} \mathrm{O}$ was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The crude residue was purified by chromatography on SiO_{2} (EtOAc-hexanes or THF-toluene) to give the desired products of type $\mathbf{2}$.

7-Chloro-4-(isopropylthio)-2-(thiophen-2-yl)quinazoline(Table 1, Entry 1)

Mp 122.7-124.7 ${ }^{\circ} \mathrm{C}$ (DMSO). IR (ATR): 2973, 2917, 2855, 1524, 1437, 1327, 1236, 988, $837,773,714 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=8.06$ (dd, $1 \mathrm{H}, J=3.6,1.2 \mathrm{~Hz}$), $8.00(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.95(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 7.84(\mathrm{dd}, 1 \mathrm{H}, J=5.1,1.5 \mathrm{~Hz}), 7.61$ (dd, $1 \mathrm{H}, J=9.0,2.1 \mathrm{~Hz}), 7.26(\mathrm{dd}, 1 \mathrm{H}, J=4.8,3.6 \mathrm{~Hz}), 4.30(\mathrm{sept}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.53(\mathrm{~d}, 6$ $\mathrm{H}, J=6.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=171.2,156.0,149.0,142.8,139.2$, 131.7, 129.8, 128.8, 127.6, 127.0, 125.8, 120.0, 35.7, 22.4 (2 C). ESI-MS: $m / z(\%)=321$ $\left([M+1]^{+} 100\right), 277$ (65). ESI-HRMS: m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{~S}_{2}[\mathrm{M}+1]: 321.0287$; found: 321.0271 .

General Procedure for Compounds of Type 3

To a reaction vial was added a compound of type $\mathbf{2}$ (1.0 equiv), CuTC (2.2 equiv), and $\mathrm{R}^{2} \mathrm{~B}(\mathrm{OH})_{2}$ (2.2 equiv). The reaction mixture was flushed with N_{2} and freshly distilled and degassed THF was added via syringe to generate a 0.06 M solution of $\mathbf{2}$. The reaction mixture was stirred vigorously at $50^{\circ} \mathrm{C}$ under a N_{2} atmosphere for the required time. A sat. aq solution of NaHCO_{3} was added, and the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with NaHCO_{3}, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was then purified by chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc}-$ hexanes or THF-toluene) to provide the corresponding products of type 3 .

7-Chloro-2-phenyl-4-m-tolylquinazoline (Table 2, Entry 1)

> IR (ATR): $3058,3030,2914,2851,1556,1532,1336,913,766,695,682 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}$ (300 MHz, DMSO- $\left.d_{6}\right): \delta=8.63-8.56(\mathrm{~m}, 2 \mathrm{H}), 8.22(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 8.11(\mathrm{~d}, 1 \mathrm{H}, J=$ $9.0 \mathrm{~Hz}), 7.73(\mathrm{dd}, 1 \mathrm{H}, 9.0,2.1 \mathrm{~Hz}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.62-7.57(\mathrm{~m}, 3$ $\mathrm{H}), 7.54(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.49(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 2.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, DMSO- $\left.\mathrm{d}_{6}\right): \delta=168.3,160.0,151.9,139.1,138.1,137.1,136.6,131.2,131.0,130.4,129.1$, $128.8(2 \mathrm{C}), 128.6,128.4,128.3(2 \mathrm{C}), 127.3,127.2,119.8,21.1 . \mathrm{MS}(\mathrm{EI}): m / z(\%)=330$ $(17)[\mathrm{M}]^{+}, 329(43)[\mathrm{M}-1]^{+}, 238(43), 91(100) . \mathrm{HRMS}(\mathrm{EI}): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{ClN}_{2}$: 330.0924 ; found: 330.0930.

General Procedure for Compounds of Type 4

To a reaction vial was added a compound of type 3 (1.0 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}$ (0.10 equiv), $\mathrm{Ph}_{3} \mathrm{P}$ (0.30 equiv), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (6.2 equiv), and $\mathrm{R}^{3} \mathrm{~B}(\mathrm{OH})_{2}$ (4.0 equiv). The reaction mixture was flushed with N_{2}. Freshly distilled and degassed DME and $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{DME}-\mathrm{H}_{2} \mathrm{O}, 10: 1\right)$ were added via syringe to generate a 0.1 M solution of $\mathbf{3}$, and the reaction mixture was sealed and heated at reflux for the required time. $\mathrm{H}_{2} \mathrm{O}$ was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The crude residue was purified by chromatography on SiO_{2} (EtOAc-hexanes or THF-toluene) to give the desired products of type 4.

2-(4-tert-Butylphenyl)-4-(4-ethylphenyl)-7-(3-methoxyphenyl)-quinazoline (Table 3, Entry 2)

Mp 89.2-91.0 ${ }^{\circ} \mathrm{C}$ (EtOAc). IR (ATR): 3063, 2959, 2866, 1552, 1528, 1338, 852, 773 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta=8.55(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 8.37(\mathrm{~d}, 1 \mathrm{H}, J=1.7$ $\mathrm{Hz}), 8.18(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 8.03(\mathrm{dd}, 1 \mathrm{H}, J=8.8,1.8 \mathrm{~Hz}), 7.86(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.61$ $(\mathrm{d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.52(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.51-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{dd}, 2 \mathrm{H}, J=7.1,1.7$ $\mathrm{Hz}), 7.11-7.03(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 1.30(\mathrm{t}, 3 \mathrm{H}, J$ $=7.6 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}): $\delta=167.6,159.9,159.6,153.6,151.8,146.3$, $145.4,140.0,134.9,134.5,130.4,130.1$ (2 C), 128.2 (2 C), 128.1 (2 C), 127.6, 126.9, 125.6, 125.5 (2 C), 120.2, 119.7, 114.7, 112.7, 55.3, 34.7, 31.1 (3 C), 28.1, 15.5. MS (EI): m/z (\%) $=472(100)[\mathrm{M}]^{+}, 457(79)$. HRMS $(\mathrm{EI}): m / z$ calcd for $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}$: 472.2515; found: 472.2510 .

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We gratefully acknowledge financial support provided by the NIH (P41GM081275).

References and Notes

1. Kalinin VN. Synthesis 1992:413.
2. Schröter S, Stock C, Bach T. Tetrahedron 2005;61:2245.
3. (a) Fry DW, Kraker AJ, McMichael A, Ambroso LA, Nelson JM, Leopold WR, Connors RW, Bridges AJ. Science 1994;265:1093. [PubMed: 8066447] (b) Uckun FM, Sudbeck EA, Mao C, Ghosh S, Liu XP, Vassilev AO, Navara CS, Narla RK. Curr Cancer Drug Targets 2001;1:59. [PubMed: 12188892] (c) Strawn LM, Shawver LK. Exp Opin Invest Drugs 1998;7:553.
4. Bedi PMS, Kumar V, Mahajan MP. Bioorg Med Chem Lett 2004;14:5211. [PubMed: 15380229]
5. Foster BA, Coffey HA, Morin MJ, Rastinejad F. Science 1999;286:2507. [PubMed: 10617466]
6. Bernotas, RC.; Ullrich, JW.; Travins, JM.; Wrobel, JE.; Unwalla, RJ. WO 2009020683. 2009.
7. Gundla R, Kazemi R, Sanam R, Muttineni R, Sarma JARP, Dayam R, Neamati N. J Med Chem 2008;51:3367. [PubMed: 18500794]
8. (a) Wakeling AE, Guy SP, Woodburn JR, Ashton SE, Curry BJ, Barker AJ, Gibson KH. Cancer Res 2002;62:5749. [PubMed: 12384534] (b) Baselga J, Rischin D, Ranson M, Calvert H, Raymond E, Kieback DG, Kaye SB, Gianni L, Harris A, Bjork T, Averbuch SD, Feyereislova A, Swaisland H, Rojo F, Albanell J. J Clin Oncol 2002;20:4292. [PubMed: 12409327] (c) Twombly R. J Natl Cancer Inst 2002;94:1596. [PubMed: 12419780]
9. da Silva JFM, Walters M, Al-Damluji S, Ganellin CR. Bioorg Med Chem 2008;16:7254. [PubMed: 18625562]
10. (a) Mangalagiu I, Benneche T, Undheim K. Tetrahedron Lett 1996;37:1309. (b) Qingbo L, Mangalagiu I, Benneche T, Undheim K. Acta Chem Scand 1997;51:302.
11. Mangalagiu I, Benneche T, Undheim K. Acta Chem Scand 1996;50:914.
12. Charpiot B, Brun J, Donze I, Naef R, Stefani M, Mueller T. Bioorg Med Chem Lett 1998;8:2891. [PubMed: 9873643]
13. (a) Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles. Wiley-VCH; Weinheim: 2003. (b) Garcia Y, Schoenebeck F, Legault CY, Merlic CA, Houk KN. J Am Chem Soc 2009;131:6632. [PubMed: 19368385]
14. Curd HS, Landquist JK, Rose FL. J Chem Soc 1948:1759. [PubMed: 18105999]
15. Exclusive coupling at the C-2 position was determined by 2D NMR experiments.
16. (a) Barder TE, Walker SD, Martinelli JR, Buchwald SL. J Am Chem Soc 2005;127:4685. [PubMed: 15796535] (b) Billingsley K, Buchwald SL. J Am Chem Soc 2007;129:3358. [PubMed: 17326639]
17. Liebeskind LS, Srogl J. Org Lett 2002;4:979. [PubMed: 11893201]
18. (a) Decornez H, Gulyás-Forró A, Papp Á, Szabó M, Sármay G, Hajdú I, Cseh S, Dormán G, Kitchen DB. ChemMedChem 2009;4:1273. [PubMed: 19551802] (b) Peng J, Lin W, Jiang D, Yuan S, Chen Y. J Comb Chem 2007;9:431. [PubMed: 17343423] (c) Wipf P, Minion DJ, Halter RJ, Berggren MI, Ho CB, Chiang GG, Kirkpatrick L, Abraham R, Powis G. Org Biomol Chem 2004;2:1911. [PubMed: 15227545]

Figure 1.
Quinazoline derivatives designed as LXR modulators

Scheme 1.
Selective cross-coupling strategies to minimize synthetic steps and maximize diversity in quinazolines 4

Table 1
Selective Suzuki Reaction of $\mathbf{1}$

Entry	$\mathbf{R}^{\mathbf{1}}$	Time (h)	Yield (\%)	
1		S	24	99

2

3

36
33
95
25
13
89
6

Entry	$\mathbf{R}^{\mathbf{1}}$	Time (h)	Yield (\%)
7		17	89

8
9

33

48

48

79

66

53
10

Table 2
Palladium-Catalyzed, Copper(I)-Mediated Coupling of 2

Entry \mathbf{R}^{1}
2

3

Entry \mathbf{R}^{1}

5

6

19

Entry $\mathbf{R}^{\mathbf{1}}$

8

48

[^0]: Fax $+1(412) 6240787$ pwipf@ pitt.edu.
 This paper is dedicated to Prof. Gerry Pattenden on the occasion of his $70^{\text {th }}$ birthday.
 Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.

