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Abstract

This paper describes a technique for calculating the switch-
ing activity of a set of registers shared by di�erent data
values. Based on the assumption that the joint pdf (prob-
ability density function) of the primary input random vari-
ables is known or that a su�ciently large number of input
vectors has been given, the register assignment problem for
minimum power consumption is formulated as a minimum
cost clique covering of an appropriately de�ned compati-
bility graph (which is shown to be transitively orientable).
The problem is then solved optimally (in polynomial time)
using a max-cost ow algorithm. Experimental results con-
�rm the viability and usefulness of the approach in mini-
mizing power consumption during the register assignment
phase of the behavioral synthesis process.

1 Introduction

One driving factor behind the push for low power design
is the growing class of personal computing devices as well
as wireless communications and imaging systems that de-
mand high-speed computations and complex functionalities
with low power consumption. Another driving factor is that
excessive power consumption is becoming the limiting fac-
tor in integrating more transistors on a single chip or on
a multiple-chip module. Unless power consumption is dra-
matically reduced, the resulting heat will limit the feasible
packing and performance of VLSI circuits and systems.
The behavioral synthesis process consists of three phases:

allocation, assignment and scheduling. These processes de-
termine how many instances of each resource are needed
(allocation), on what resource a computational operation
will be performed (assignment) and when it will be exe-
cuted (scheduling). Traditionally, behavioral synthesis aims
to minimize the number of resources required to perform a
task in a given time or to minimize the execution time for a
given set of resources. It has become necessary to develop
behavioral synthesis techniques that also account for power
dissipation in the circuit.
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This extends the two-dimensional optimization problem
to a third dimension. The three phases of the behavioral
synthesis process must be thus modi�ed to produce low
power circuits. Unfortunately, power dissipation is a strong
function of signal statistics and correlations, and hence is
non-deterministic.
Automatic techniques that minimize the switching activ-

ity on globally shared busses and register �les, that select
low power macros that satisfy the timing constraints, that
schedule operations to minimize the switching activity from
one cycle step to next, etc. must be developed. This paper
considers register assignment for low power.
Most of the high-level synthesis systems perform schedul-

ing of the control and data ow graph (CDFG) before al-
location of the registers and modules and synthesis of the
interconnect [11][18][7] as this approach provides timing in-
formation for the allocation and assignment tasks. Other
systems perform the resource allocation and binding before
scheduling, in order to provide more precise timing infor-
mation available during the scheduling [9]. Either approach
has its own advantages and shortcomings. The present work
assumes that the scheduling of the CDFG has been done
and performs the register allocation before the allocation
of modules and interconnection.
During the register allocation and assignment, data val-

ues (arcs in the data ow graph) can share the same phys-
ical register if their life times do not overlap. In the past,
researchers have proposed various techniques to reduce the
total number of the registers used. The existing approaches
include rule-based [6], greedy or iterative [10], branch and
bound [13], linear programming [1], and graph theoretic,
as in the Facet system [18], the HAL system [16] and the
EASY system [17].
Power consumption of well designed register sets depends

mainly on the total switching activity of the registers. In
many applications, the data streams which are input to the
circuit have certain probability distributions. Various ways
of sharing registers among di�erent data values thus pro-
duce di�erent switching activities in these registers. This
work presents a novel way of calculating this switching
activity based on the assumption that the joint pdf (prob-
ability density function) of primary input random variables
is known or a su�ciently large number of input vectors has
been given. In the latter case, the joint pdf can be ob-
tained by statistical methods. After obtaining the joint pdf
of primary input variables, the pdf of any internal arc (data
value) in the data ow graph and the joint pdf of any pair
of arcs (data values) in the data ow graph are calculated
by a method that will be described in detail in the follow-
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ing sections. The switching activity on a pair of arcs is
then formulated in terms of the joint pdf of these arcs, or
alternatively, in terms of a function of the joint pdf of all
primary input variables.
The life time of each arc (data value) in a sched-

uled data ow graph is the time during which the data
value is active (valid) and is de�ned by an interval
[birth time; death time]. A compatiblity graph G(V,A) for
these arcs (data values) is then constructed, where vertices
correspond to data values, and there is a directed arc (u,v)
between two vertices if and only if their corresponding life
times do not overlap and the u comes before v. We will
show that the unoriented compatiblity graph for the arcs
(data values) in a scheduled data ow graph without cycles
and branches is a comparability graph (or transitively ori-
entable graph) which is a perfect graph [5]. This is a very
useful property, as many graph problems (e.g. maximum
clique; maximum weight k-clique covering, etc.) can be
solved in polynomial time for perfect graphs while they are
NP-complete for general graphs.
Having calculated the switching activity between pairs

of arcs that could potentially share the same register and
given the number of registers that are to be used, the regis-
ter assignment problem for minimum power consumption is
formulated as a minimum cost clique covering of the com-
patibility graph. The problem is then solved optimally (in
polynomial time) using a max-cost ow algorithm.
The two problems, calculation of the cross-arc switching

activities (which must be performed O(j E j) times, where
j E j is the number of edges in the compatibility graph)
and power minimization during register assignment, are in-
dependent. The calculation of the cross-arc switching ac-
tivities can be performed by any means. We present one
such technique later. Other techniques may however be
used. The power optimization is performed once the cross-
arc switching activities are known.
The remainder of this paper is organized as follows: Sec-

tion 2 shows the method to calculate the switching activity
between pairs of data values (arcs). Section 3 shows the
method to optimize the power consumption of registers in
the register allocation phase in behavioral synthesis. Sec-
tion 4 are some examples to demonstrate the methodology.

2 Switching Activity Calculation

2.1 Calculation of various pdfs

In many instances, the input data streams are somewhat
known, and can be thus described by some probabilistic dis-
tributions. (Our proposed method applies not only to the
well known probability distributions, such as joint Gaussian
distribution, but also to arbitrary probability distributions.)
Given a su�cient number of input vectors, it is possible to
�nd the symbolic expressions for the pdf's and the joint
pdf of all inputs using methods in statistics. For example,
one way to do this is to calculate the frequency of the oc-
curence for each vector among the set of input vectors, and
then perform the interpolation on the sets of discrete points
to obtain the symbolic expression of the joint pdf. Alterna-
tively, one can work directly with the input vectors without
having to �nd the symbolic expression of the joint pdf, that
is, for a su�ciently large number of the input vectors, the
frequency of occurence for each input vector can serve as
the value of the joint pdf for that pattern.

If we are given the joint pdf of the input random vari-
ables of a data ow graph, then the joint pdf of any pair
of values (arcs in the data ow graph) can be calcualted
[15]. We want to �nd the joint pdf of any two arcs.
Suppose that the two arcs are y1 = u1(x1; x2; : : : ; xn)
and y2 = u2(x1; x2; : : : ; xn). We can add another
(n � 2) free functions y3; y4; : : : ; yn and form a system
of n equations in n input variables. Let's denote the
joint pdf of the n input variables as  (x1; x2; : : : ; xn).
If the inverse solution x1 = w1(y1; y2; : : : ; yn); x2 =
w2(y1; y2; : : : ; yn); : : : ; xn = wn(y1; y2; : : : ; yn) can be ob-
tained symbolically, then the joint pdf of y1; y2; : : : ; yn
which is denoted by  0(y1; y2; : : : ; yn) is:
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Once we have the  0(y1; y2; : : : ; yn),we can calculate the

pairwise pdf of y1 and y2, fy1y2(y1; y2), as

fy1y2(y1; y2) =
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Z
1

�1

 
0(y1; y2; : : : ; yn)

dy3dy4 : : : dyn:

The integration can be performed either symbolically or
numerically. The numerical integration over (n � 2) vari-
ables involves much more computation, but is an alternative
approach which is always possible whenever the symbolic
integration over the (n� 2) variables is not possible.
In addition to the calculation of pairwise joint pdfs, the

pdf of any internal arc is needed to calculate the total
switching activity of the set of registers. Suppose func-
tion y = w(x1; x2; : : : ; xn) is some arc (data value) in the
data ow graph depending on n input random variables
x1; x2; : : : ; xn. The cdf (cumulated distribution function)
of the new random variable y is de�ned as G(y) = prob(Y
� y), which is equal to prob(w(x1; x2; : : : ; xn) � y). The
above probability can be evaluated as:

G(y) =

Z Z
� � �

Z
A

 (x1; x2; : : : ; xn)

where  (x1; x2; : : : ; xn) is the joint pdf of the n input ran-
dom variables x1; x2; : : : ; xn, and A = f(x1; x2; : : : ; xn) j
w(x1; x2; : : : ; xn) � yg. The pdf of y as g(y) is then ob-

tained by g(y) = d G(y)

dy
.
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Figure 1: Our register sharing model

2.2 The power consumption model

Switched capacitance refers to the product of the load capac-
itance and the switching activity of the driver. The power
consumption of a register is proportional to the switched
capacitance on its input and output (see Fig. 1). Suppose
register R1 can be shared between three data values i; j and
k:We assume that an input multiplexor picks the value that
is written into R1 while an output demultiplexor dispatches
the stored value to its proper destination. Now, P (R1)
/ switching(x) � (Cout;Mux + Cin;R1

) +switching(y) �
(Cout;R1

+Cin;DeMux). Since switching(x) = switching(y),
P (R1) = switching(y)�Ctotal. Note that Ctotal is �xed for
a given library. In any case, minimizing the switching ac-
tivity at the output of the registers will minimize the power
consumption regardless of the speci�c load seen at the out-
put of the registers. Here we ignore the power consumption
internal to registers and only consider the external power
consumption.
In the register allocation phase, if several compatible arcs

are assigned to the same register R, the switching on R
will occur whenever one stored data value is replaced by
another data value. For example, suppose X,Y,Z and W
are four compatible data values that share register R and
the arcs (X;Y ); (Y;Z); (Z;W ) 2 A. Suppose that in the
beginning, the register was reset to some unknown value.
We assume the switching activity from the unknown value
to X is some constant value. Then the following is the chain
of the data transitions X ! Y ! Z ! W . If the input
variable values are known, then the exact switching activity
is calculated as constant+H(X;Y )+H(Y;Z) where H(i; j)
is the Hamming distance between two numbers i and j. If,
however, the circuit has even one input random variable,
the whole system has to be described in a probabilistic way
as described next.
Assume that the n primary input random variables are

a1; a2; : : : ; an and set A = f(a1; a2; : : : ; an)g is the set con-
taining all possible combinations of input tuples. Let set B
= f(x; y) j x = x(a1; a2; : : : ; an); y = y(a1;a2; : : : ; an);
8(a1; a2; : : : ; an) 2Ag. The switching activity between the
two consecutive data values X and Y is then given by:

switching(X;Y ) =
X

(x;y)2B

fxy(x; y)�H(x; y) (1)

where the summation is over all possible patterns of (x; y)
2 B, and the function H(x; y) is the Hamming distance
between two numbers x and y which are represented in a
certain number system in binary form. Equation ( 1) re-
quires that the discrete type joint pdf for x; y be known.
The method for calculating the joint pdf of two random
variables described in section 2.1 is mainly suitable for the
case when the variables in the system are of continuous
type. When however the precision used to represent the

discrete numbers is high enough or the variance of the un-
derlying distribution is not too large, the continuous type
pdf gxy(x; y) can be used as a good approximation for the
discrete type pdf fxy(x; y) after being multiplied by the
scaling factor (

P
(x;y)2B

gxy(x;y))
�1.

The symbolic computation method is however not very
practical because it involves the tasks of �nding the sym-
bolic inverse solution of the system of nonlinear equations
and symbolic or numerical integration of complicated ex-
pressions over the region de�ned by a combination of in-
equalities and/or equalities. Fortunately, the same switch-
ing activity for a pair of discrete random variables x and y
can be obtained much more easily by the following:

switching(X;Y ) =
X
a1

X
a2

� � �
X
an

 (a1; a2; : : : ; an)

�H(x(a1; a2; : : : ; an); y(a1; a2; : : : ; an)) (2)

where  (a1; a2; : : : ; an) is the joint pdf of the input variables
a1; a2; : : : ; an.
Both equation ( 1) and equation ( 2) started from the

assumption that the joint pdf  (a1; a2; : : : ; an) is obtained
or known. This is a necessary condition in order to pre-
cisely calculate the cross-arc switching activities. Further-
more, equation ( 2) can be used directly once the input
vectors are given without obtaining the symbolic expression
for  (a1; a2; : : : ; an). Here we assume that the bit width of
a register is �nite, so the total number of the patterns that
can be stored in a register is also �nite. If we assume all of
the numbers in our system are integers (positive or nega-
tive), then the total number of di�erent (x; y) pairs involved
in equation ( 1) is at most 22�bit width. In general, equa-
tion ( 2) involves multidimensional nested summations over
intervals of integral values. When the joint pdf of primary
input variables is band-limited (e.g. Gaussian), we can nar-
row down the interval of summation in each dimension and
thereby signi�cantly speed up the computation.
Let's denote the set A = f(a1; a2; : : : ; an)g, set B =

f(x; y) j x = x(a1; a2; : : : ; an); y = y(a1; a2; : : : ; an);
8(a1; a2; : : : ; an) 2Ag, C = f(y; z) j y = y(a1; a2; : : : ; an);
z = z(a1; a2; : : : ; an); 8(a1; a2; : : : ; an) 2Ag, and D =
f(z;w) j z = z(a1; a2; : : : ; an); w = w(a1; a2; : : : ; an);
8(a1; a2; : : : ; an) 2Ag.
The total switching activity in the above example with

register R shared by four arcs (data values) is formulated
as follows:

constant +
X

(x;y)2B

fxy(x; y)�H(x; y)

+
X

(y;z)2C

fyz(y; z)�H(y; z)

+
X

(z;w)2D

fzw(z;w)�H(z;w) =

constant +
X
a1

X
a2

� � �
X
an

 (a1; a2; : : : ; an)� (H(x; y)

+H(y; z) +H(z;w)) (3)

The total switching activity for a register can be calcu-
lated after the the set of variables that share that register



are found. Note that the sequence of data transitions are
known at that time.

3 Power Optimization

3.1 Max-cost ow formulation

De�nition 3.1 A directed graph G0 = (V,A) is called
the compatibility graph for register allocation problem if
the it is constructed by the following procedure. Each
arc (data value) i in the data ow graph has an interval
(birth timei; death timei) associated with it. Each open
interval i corresponds to a vertex i in G0 = (V,A). There
is a directed arc (u; v) 2 A if and only if intervalu \
intervalv = ; and death timeu < birth timev.

All proofs can be found in [2].

Theorem 3.1 Given a data ow graph without loops and
branches, the compatibility graph G0 = G(V,A) for register
allocation problem is acyclic.

De�nition 3.2 [5]An undirected graph G =(V,E) is a
comparability graph if there exists an orientation (V,F) of
G satisfying

F \ F�1 = ;; F + F
�1 = E; F

2 � F

where F 2 = f(a; c) j (a; b); (b; c) 2 F for some vertex b
g. Comparability graphs are also known as transitively ori-
entable graphs and partially oderable graphs.

De�nition 3.3 The unoriented compatibility graph G00 =
(V; E) is obtained by removing the edge orientations of
G0=(V; A).

Theorem 3.2 Given a data ow graph without loops and
branches, the unoriented compatibility graph G00 = (V,E)
for register allocation problem is a comparability graph.

To minimize the total power consumption on the regis-
ters, a network NG = (s; t; Vn; En; C;K) is constructed
from the compatibility graph G0 = G(V; A). This is
a similar construction to the one used in [17] to solve
the weighted module allocation problem which simultane-
ously minimizes the number of modules and the amount
of interconnection needed to connect all modules. Con-
ceptually, NG = (s; t; Vn; En; C;K) is constructed from
G0 = G(V;A) with two extra vertices, the source vertex s
and the sink vertex t. The additional arcs are the arcs from
s to every vertex in V of G(V;A), and from every vertex in
V of G(V; A) to t. We use the Max-Cost Flow algorithm
on NG to �nd a maximum cost set of cliques that cover
the G0 = G(V; A). The network on which the ow is
conducted has the cost function C and the capacities K de-
�ned on each arc in En. Assuming that each register has an
unknown value at time t0�, we use a constant sw0 to rep-
resent the switching(Unknown; v) for each vertex v. More
formally, the network NG = (s; t; Vn; En; C;K) is de�ned
as the following:

Vn = V [ fs; tg

En = A [ f(s; v); (v; t) j v 2 V g

w(s; v) = L� bsw0 �Mc (4)

w(u;v) = L � b
X

(u;v)2B

fuv(u; v)�H(u; v)�Mc

= L � b
X
a1

X
a2

� � �
X
an

 (a1; a2; : : : ; an)

� H(u(a1; a2; : : : ; an); v(a1; a2; : : : ; an))c (5)

w(v; t) = L; 8 v 2 V; w(t; s) = L: (6)

where A = f(a1; a2; : : : ; an)g, B = f(u; v) j u =
u(a1; a2; : : : ; an); v = v(a1; a2; : : : ; an);
8(a1; a2; : : : ; an) 2Ag, L = bmax fswitching(u; v)g �
Mc+ 1 over all possible u,v 2 V [ fsg, and M is a large
constant used to scale up the smallest switching activity
value to an integer.
For each arc e 2 En, a cost function C: En ! N is

de�ned, which assigns a non-negative integer cost to each
arc . The cost function C for network NG is : c(u; v) =
w(u;v) for all (u; v) 2 En. The cost function is de�ned to
indicate the power savings on the arc.
For each arc e 2 En, a capacity function K: En ! N ,

is de�ned that assigns to each arc a non-negative number.
The capacity of all the arcs is one, except for the return arc
from t to s which has capacity k, where k is user-speci�ed
ow value.

K(u;v) = 1; 8(u; v) 2 En n f(t; s)g

K(t; s) = k

For each arc e 2 En, a ow function f : En ! N is
de�ned which assigns to each arc a non-negative number.
The ow f(e) on each arc e 2 En must obey the following:
0 � f(e) � K(e) and the ow on each vertex v 2 Vn
must satisfy the ow conservation rule.

Theorem 3.3 A ow f: En ! N with j f j = 1, in
the network NG corresponds to a clique � in the unoriented
compatibility graph G00.

Theorem 3.4 A ow f: En ! N , with j f j = k, in the
network NG corresponds to a set of cliques �1; �2; : : : ; �k in
the unoriented compatibility graph G00.

The generated cliques may not be vertex disjoint because
the k paths in the NG may not be vertex disjoint. One
way to ensure that the resulting cliques are vertex disjoint
is to employ a node-splitting technique. This technique
duplicates every vertex v 2 V in the graph G0 = G(V;A)
into another node v0. There is an arc from v to v0 for
each v 2 V . If there is an arc (u; v) 2 A in the graph
G0 = G(V; A), there is an arc (u0; v) in the new network
N 0
G. There is also an arc from the source vertex s to every

vertex v 2 V and from every duplicated vertex v0 to the
sink vertex t.
More formally, the node splitting technique generates the

following network N 0
G = (s; t; V 0n; E

0
n; C

0;K 0) where:

V
0
n = Vn [ V

0
0

there is a vertex v
0 = f(v) 2 V 00

for each vertex v 2 V0

E
0
n = A

0 [ f(s; v); (f(v); t); v 2 V0g [ f(t; s)g

[f(v; f(v) j v 2 V0g
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G

A
0 = f(f(u); v) j (u; v) 2 Ag

C
0((t; s)) = C

0((v; f(v)) = L; 8 v 2 V0

C 0((u0; v)) = C((u; v)) for all (u0; v) 2 A0 [ f(s; v)

; (f(v); t) j v 2 V0g

K
0((t; s)) = k;K

0((u; v)) = 1 for all u 6= t;

and v 6= s:

The transformations from the data ow graph to the �nal
network N 0

G are shown in Fig. 2.

Theorem 3.5 A ow f: En ! N , with j f j = k, in
the network N 0

G corresponds to a set of vertex disjoint

cliques �1; �2; : : : ; �k in the unoriented compatibility graph
G00.

De�nition 3.4 [14]Let N = (s,t,V,E,C,K) be a ow net-
work with underlying directed graph G=(V,E), a weighting
on the arcs cij 2 R+ for every arc (i,j) 2 E, a capacity
K(e) for every arc e 2 E, and a ow value v0 2 R+. The
min-cost ow problem is to �nd a feasible s-t ow of value
v0 that has minimum cost. In the form of an LP:

min c
t
f

Af = �v0d every node

f � b every arc

f � 0 every arc

where A is the node-arc incidence matrix and

di =

(
�1 i = s

+1 i = t
0 otherwise

De�nition 3.5 The maximum cost ow problem is that
given a network N=(s,t,V,E,C,K) and a �xed ow value
v0, �nd the ow that maximizes the total cost.

The easiest method to solve the max-cost ow problem
is to negate the cost of each arc in the network, and run
the min-cost ow algorithm on the new network [14].
The previous network construction N 0

G ensures that the
resulting paths are vertex disjoint cliques in G0 (or G00).
When the max-cost ow algorithm is applied on this net-
work,we obtain cliques that maximize the total cost. The
ow value on each path is one, this implies that the total
cost on each individual path is the sum over all individual
arcs on that path according to their topological order in
the graph G0 = G(V; A), where the cost on each arc is a
linear function of the \Saved Power". For example, if (s; b),
(b; c), (c; d), (d; t) is a path from source s to sink t. The
total cost on this path is cost(s; b) + cost(b; c) + cost(c;d)
+ cost(d; t). Also, from the above information, we can con-
clude that the set of variables fb; c; dg will share the same
register according to the order b! c! d:

Theorem 3.6 The max-cost ow algorithm on the network
N 0
G gives the minimum total power consumption on the reg-

isters in the circuit represented by the compatibility graph
G0.

Proof: The total cost is
P

e 2En
f(e)� c(e), which is a

linear function of the \Total Saved Power". The reason is
that

X
e 2 En

f(e)� c(e) =

X
e 2En

f(e) � [L�M � switching(e)] =

L�
X
e 2En

f(e) � M �
X
e 2En

f(e)� switching(e)

In our specially constructed network, f(e) in every arc e
except (t; s) has value either zero or one. The �rst term in
the above,

P
e 2En

f(e), is a constant (= 2 � j V j + k

for G0 = G(V;A)) among all possible clique coverings that
cover all of the vertices in the original graph G0. When we
maximize the total cost for a given ow value in N 0

G, we
are indeed minimizing the total power consumption given
that the number of registers is equal to this ow value.
Note that, the max-cost ow on N 0

G always �nds the clique
covering that covers all of the vertices in the original graph
G0 whenever the ow value j f j is larger than or equal to
kmin. kmin can be determined by the left edge algorithm
[11] or simply by �nding the maximum number of arcs that
cross any c-step boundary. In most cases, the kmin found
by the left edge algorithm is equal to the kmin for max-cost
ow. However, in some pathological cases, the two values
are not the same. In that case, a post-processing step is
needed [2]. 2

The time complexity for the max-cost ow algorithm is
O(km2), according to [4], where m = 2� j V j +2 for the
graph G0 = G(V; A) and k is the ow valus.
Conditional branches can be easily handeled in our sys-

tem by relaxing the conditional data ow graph into several



unconditional data ow graphs and performing the above
method on the individual relaxed data ow graphs. Due
to the limited space, we do not present the details here. A
detailed exposition is provided in [2].

4 An example

The following example is based on a scheduled data ow
graph as the one shown in Fig 3. This simple data ow
graph has �ve primary input variables a,b, c, d and e. For
the sake of presentation, we choose the 5-variate joint Gaus-
sian distribution as the joint pdf of a,b, c, d and e. Note
however that our method works for arbitrary joint pdf's.
The 5-variate Gaussian is a good choice as this pdf is com-
monly encountered in many application domains, like DSP.
Let

X =

0
BBB@

a � �a
b � �b
c � �c
d � �d
e � �e

1
CCCA ; where

0
BBB@

�a
�b
�c
�d
�e

1
CCCA =

0
BBB@

1:0
1:0
1:0
1:0
1:0

1
CCCA

The 5-variate Gaussian distribution is given by:

f(X) = Gaussian5(a; b; c; d; e)

=
1p

(2�)5 � det(C)
expf�

1

2
X
t
C
�1

Xg

where matrix C is the covariance matrix for the 5-variate
Gaussian joint pdf. We assume that in this case it is given
by:0
BBB@

69:309 �25:370 �38:290 �12:669 6:576
�25:370 73:235 �11:992 4:952 �63:063
�38:290 �11:992 91:016 �21:767 2:559
�12:669 4:952 �21:767 66:731 10:366

6:575 �63:063 2:559 10:366 74:706

1
CCCA

The numerical values on the right hand side are provided
as an example. From Fig. 3, we know that there are six in-
termediate variables in the data ow graph, that is, random
variables f, g, h, i, j, and k.

f = a+ b

g = c+ d

h = (a+ b)� (c+ d)

i = (a+ b+ 1)� (c+ d)

j = e
2

k = e
2 + (a+ b+ 1)� (c+ d)

The variables' life times are:
fa(1; 2); b(1; 2); c(1;2); d(1; 2); e(1; 4); f(2; 3); g(2; 4);

h(2; 4); i(4; 5); j(4; 5); k(5; 6)g.
From the above life times, the procedure used to con-

struct the oriented compatibility graph for the register al-
location problem generates G0 = G(V; A).
In this example, we assume 16-bit registers and the two's

complement representation for the values. All numbers are
in the range [-32768, 32767].

1

2

3

4

5

6

+ +

*

+ ^2

+

a b c d e

g

h

j

k

g

f

i

Figure 3: The scheduled data ow graph.

We used equation ( 2) in Section 2.2 to calculate
the cross-arc switching activities for every pair of arcs in
G(V;A):
The switching activity of for any variable x from time =

t0� which is assumed to have some unknown value to the
time that the variable gets its �rst value was taken to be a
constant equal to (1=5)�[switching(0; a)+switching(0; b)+
switching(0; c) + switching(0; d) + switching(0; e)]:
After calculating the switching activities, we construct

the max-cost ow network. The weight on each arc is cal-
culated by equation ( 4)-( 6) in Section 3.
Here we choose M = 1000, and so L = 10837. The fol-

lowing weights are obtained:
w(x; x0) = L; 8x 2 V ; w(s;x) = 5271; 8x 2 V and

other w's are given by the following table:

f g h i j k t
a 4699 3315 2065 1906 2697 1233 10837
b 4687 3755 2102 1998 3066 1329 10837

c 3373 4599 2225 2291 2617 1703 10837
d 3811 4552 2258 2296 2708 1641 10837
e 2145 3884 2291 10837
f 679 2827 650 10837

g 3614 2418 2074 10837
h 2718 1 610 10837
i 2916 10837

j 1487 10837

Applying the max-cost ow on the network N 0
G with the

vertex splitting technique, the following results for number
of registers, cliques and actual total switching activity are
obtained:

No. of reg; cliques tot. S.A.

7; ffa; fg; fc; g; ig; fe; jg; fbg; fdg; fhg; fkgg 65.514
6 ; ffa; fg; fc; g; i; kg; fe; jg; fbg; fdg; fhgg 67.872
5 ; ffa; fg; fc; g; i; kg; fd; hg; fe; jg; fbgg 70.882



Note that our method �nds the minimum power register
assignment for the given number of registers.
To demonstrate that the switching activity calculation

based on the joint pdf is necessary to obtain a low power
register assignment we performed an experiment where ev-
ery arc weight in the compatibility graph was set to some
constant (C = 100) and then ran the max-cost ow for
di�erent ow values. For ow value 5, we obtained:
Number of registers is equal to 5,

cliques = ffa; h; kg; fb; f; ig; fc; g; jg; fdg; fegg, actual total
switching activity = 80.487882, which is 13.55% worse than
the optimum solution.
Next, we generated register assignment solution using

Real [11] which �nds the minimum number of registers need
(in this case) and obtained the following result:
Number of registers is equal to 5,

cliques = ffa; f; i; kg; fb; g; jg; fc; hg; fdg; fegg, actual total
switching activity = 78.471, which is 10.71% worse than the
optimum solution.
Indeed, among all valid register assignment of given size,

our proposed algorithm �nds the one that minimizes the
power consumption.
The percentage power reduction increases for larger data

ow graphs. For example, we obtained 22.5% improvement
in power (compared to the minimum register count register
assignment procedure) on 7-input data ow graph using
similar assumptions about the joint pdf and the data types.
Speci�cally,
For the Min-Power Register Assignment, we obtained:
Number of registers is equal to 9, cliques =

ffa; ig; fb; hg; fe; j; kg; fl; mg;fng; fcg; fdg;ffg; fggg and
actual total switching activity = 6.861; Number of regis-
ters is equal to 8,
cliques = ffa; l;mg; fb; hg;fe; j; kg; ff; ig; fcg;fdg; fgg;fngg
and actual total switching activity = 7.272; Number of reg-
isters is equal to 7,
cliques = ffa; l;m;ng;fd; hg; fe; j; kg, ff; ig; fbg;fcg; fggg
and actual total switching activity = 7.763.
For the Min-Count Register Assignment, we obtained:
Number of registers is equal to 7,

cliques = ffa; j;mg; fb; h; k; ng; fc; i; lg; fdg; feg; ffg; fggg
and actual total switching activity = 10.017.

5 Conclusion

This paper presented a novel way to calculate the switch-
ing activity external to a set of registers based on the as-
sumption that the joint pdf of the primary input random
variables is known or can be calculated. For a scheduled
data ow graph without cycles, the compatibility graph for
register allocation and assignment problem was proven to
be a transitively orientable graph. A special network was
then constructed from the above compatibility graph and
the max-cost ow algorithm (a variation of min-cost ow
algorithm) was performed to obtain the minimum power
consumption register assignment. Due to properties of tran-
sitively orientable graph, the time complexity is polynomial.
Our future work will focus on the register assignment for
pipelined design and data ow graph with outer loops.
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