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Abstract - Data path connection elements, such as multiplexers, 
consume a significant amount of area on a VLSI chip, 
especially for FPGA designs. Multiplexer optimization is a 
difficult problem because both register binding and port 
assignment to reduce total multiplexer connectivity during 
high-level synthesis are NP-complete problems. In this paper, 
we first formulate a k-cofamily-based register binding 
algorithm targeting the multiplexer optimization problem. We 
then further reduce the multiplexer width through an efficient 
port assignment algorithm. Experimental results show that we 
are 44% better overall than the left-edge register binding 
algorithm on the total usage of multiplexer inputs and 7% 
better than a bipartite graph-based algorithm. For large 
designs, we are able to achieve significantly better results 
consistently. After technology mapping, placement and routing 
for an FPGA architecture, it shows considerably positive 
impacts on chip area, delay and power consumption.  
 
 

I. Introduction 
 

As VLSI systems are becoming increasingly complex as driven 
by Moore’s law [1], and the advances in Deep Sub-Micron (DSM) 
technologies have made possible multi-million gate designs, circuit 
designers are facing a tremendous challenge of interconnect-centric 
design flow. It has been shown that the area of multiplexers and 
interconnects has by far outweighed the area of functional units and 
registers. This is especially the case for FPGA designs because a 
larger amount of transistors have to be provided in the wiring 
channels and logic blocks to provide programmability for signal 
transition. Studies show that interconnects alone contribute 70-80% 
of the total area [2] and 75-85% of the total power [3] [4] for most 
of the FPGA designs.  

A multiplexer (MUX) is a standard complex gate often used in 
data-path logic to provide multiple connections between functional 
units (FUs) and registers. The multiplexer area is not linear with its 
input number. Table 1 shows some characterization data of a 24-bit 
Carry Look-ahead adder, an 18-bit Wallace-Tree multiplier and 
some MUXes when they are mapped and fit into FPGAs [5]. A 
CLB under the Area column is a logic block containing four LUTs, 
and an LUT can implement any logic function of up to four 
variables in the experiment. A k-to-1 MUX selects one of the k 
inputs of the MUX to drive the MUX output. We can observe that 
the area, delay and power data of a 32-to-1 MUX are almost 
equivalent to the 18-bit multiplier. These data show how expensive 
a wide MUX is in terms of chip area, delay and power consumption. 
It thus motivates us to design highly effective algorithms to reduce 
the amount and sizes of the multiplexers generated during 
high-level synthesis. As a result, we reduce the complexity of the 
connections between functional units and registers and in return 
reduce the requirement of interconnects during the placement and 
routing in the later physical design stages. 

Given a scheduled data flow graph (DFG), the process of data 
path generation mainly consists of functional unit binding, register 
binding, and connection allocation steps. Functional unit binding 

assigns operations to physical functional units, and register binding 
assigns variables to registers. Both the operation-to-unit and the 
variable-to-register mappings determine the multiplexing 
requirements of the register transfer level (RTL) design. Lastly, 
connection allocation connects the functional units and registers 
together. We use the term connection to refer to this type of 
connectivity. Some works use interconnect or interconnection for 
the same concept. The total connections determine the total MUX 
inputs, or MUX connectivity. Connection allocation tries to reduce 

the MUX requirement through connection sharing and/or port 
assignment. In this work, we assume the DFG is already scheduled, 
and the functional unit binding is also finished. We concentrate on 
register binding and port assignment for MUX reduction – both of 
these problems were proved to be NP-complete to solve [6].  

There is extensive literature on binding and allocation problems 
for high-level synthesis [7] [8] [9]. We first review works done to 
minimize connectivity through functional unit binding and/or 
register binding. Works in [10] and [11] used a clique partitioning 
method to reduce register and connection usage. They designed 
heuristic algorithms to solve the clique partitioning problem due to 
its high complexity. In [12], a branch-and-bound search algorithm 
was applied to bind registers and allocate connections while 
binding functional units. In [13], a breakthrough approach using a 
weighted bipartite-matching algorithm was presented to solve both 
register and functional unit binding. The weights on the bipartite 
graph represented the connection cost when variables or operations 
were assigned to registers or functional units. It generated optimal 
number of registers for non-hierarchical DFGs. It compared with 
[10], [11], and [12] and showed better results in terms of total 
MUX inputs. Trying to further improve connection solutions, [14] 
presented an integer linear programming formulation to minimize 
MUX and wire area. It is optimal with regard to its objective 
function. The main concern is its high complexity. Authors in [15] 
presented an integrated data path synthesis flow for scheduling and 
binding to reduce total connections. Although it had better 
connection results compared to [13], larger numbers of registers 
were reported. In [16], a min-cost max-flow algorithm was 
presented to carry out functional unit binding and register binding 
for connection reduction. Although the formulation was efficient, it 
also suffered an increased number of registers than the minimum 
required. It did not report comparison results with other published 
algorithms.  

Table 1: Characterization of adder, multiplier and MUXes 

Functional Unit 
and MUX Implementation Area 

(CLB) 
Delay 
(ns) 

Power 
(w) 

add24bit_cla Carry look-ahead 26 11.8 0.010 
mul18bit_wall Booth-recoded Wallace 280 14.8 0.308 
mux24bit_2to1 Synopsys design 6 0.6 0.002 
mux24bit_8to1 Synopsys design 66 4.6 0.023 
mux24bit_32to1 Synopsys design 276 10.9 0.240 



The port assignment problem was studied in [17] and [18]. The 
work in [17] performed global permutation of all the inputs for a 
functional unit during the MUX generation. The work in [18] 
designed an integer linear programming algorithm. The complexity 
of both algorithms is a concern. 

In this paper, we present a k-cofamily-based algorithm to carry 
out the register binding task, which guarantees to maintain the 
minimum number of registers while reducing the MUX usage. We 
also implement a port assignment algorithm that further reduces the 
total MUX inputs efficiently after the register binding is done. In 
the following, Section 2 provides the definitions and problem 
formulation. Section 3 presents the k-cofamily algorithm, and 
Section 4 presents the port assignment algorithm. Section 5 shows 
our experimental results, and Section 6 concludes this paper.  
 
 

II. Definitions and Problem Formulation 
  
  The data path of a high-level design can be represented by a 
DFG, G = (V, A). Let V = {v1, v2, …, vx}, A = {a1, a2, …, ay}, and a = 
{vm, vn} represents the edge from vm to vn. Set V corresponds to 
operations and set A corresponds to data flowing from one operation 
to another. After scheduling, the life time of each edge (data value) 
in the DFG is the time during which the data value is active (valid) 
and is defined by an interval [birth time; death time]. A 
compatibility graph Gc = (Vc, Ac) for these edges can then be 
constructed, where vertices correspond to data values (or variables), 
and there is a directed edge ac = (vi, vj) between two vertices if and 
only if their corresponding life times do not overlap, and variable vi 
comes before vj. In such a case, we call variables vi and vj compatible 
with each other and they can be bound into a single register without 
life time conflicts. Let wij denote the weight of the edge ac, which 
represents the cost of binding vi and vj into a single register. 

We now introduce several important concepts in combinatorial 
theory on partially ordered sets which will be used later in our 
algorithm. A partially ordered set (POSET) P is a collection of 
elements with a binary relation ← defined on P × P which satisfies 
the following conditions [19]: 

 
1) reflexive, i.e., x ← x for all x ∈ P;  
2) antisymmetric, i.e., x ← y and y ← x  ⇒  x = y; 
3) transitive, i.e., x ← y and y ← z  ⇒  x ← z; 
 
We say that x and y are related if we have either x ← y or y ← x. 

An antichain in P is a subset of elements such that no two of them 
are related. A chain in P is a subset of elements such that every two 
of them are related. A k-family in P is a subset of elements that 
contains no chain of size k + 1, and a k-cofamily in P is a subset of 
elements that contains no antichain of size k + 1 [20]. We can 
associate weights for k-cofamilies, where the minimum weighted 
k-cofamilies are especially important to us. Details will be 
explained in Section III. 

The problem of register binding for MUX reduction can be 
formulated as the following: 

 
  Instance: A scheduled DFG graph G = (V, A), a set of registers R, 
a set of functional units U, a functional unit binding {fu: v→ u | for 
all v, where v∈V and u∈U}, and a positive integer N. 
  Question: Is there a register binding {fr: a→ r | for all a, where 
a∈A and r∈R} such that the number of connections between 
registers and functional units is ≤ N? 
 

The problem of port assignment for MUX reduction can be 
formulated as the following: 

 
  Instance: A scheduled DFG graph G = (V, A), a set of registers R, 
a set of functional units U, a functional unit binding {fu: v→ u | for 
all v, where v∈V and u∈U}, a register binding {fr: a→ r | for all a, 
where a∈A and r∈R}, and a positive integer N. 
  Question: Is there a port assignment, i.e., for the two input- 
registers of every operation bound to a functional unit u, which 
register should be connected to which port of u, such that the 
number of connections between registers and u is ≤ N? 
 

As shown in [6], both of these problems were proved to be 
NP-complete. 
 
 

III. Register Binding with k-cofamily Formulation 
 
A. Problem Reduction 
 

In this section, we formulate the register binding problem for 
MUX reduction as a problem of calculating the minimum weighted 
cofamilies of a POSET. To obtain such a cofamily, the problem is 
then reduced to calculating the minimum cost flow in a network.  

Given a compatibility graph Gc = (Vc, Ac), let POSET Pc = {v1, 
v2, …, vn} such that Pc contains all the vertices of Gc, and the 
compatibility relation defined in Ac can be the relation ← on the 
elements of Pc. It is easy to show that the compatibility relation is 
reflexive, antisymmetric, and transitive. By such, an edge ac = (vi, 
vj) of Ac represents a relation on the two elements of Pc as vi ← vj. 
Therefore, there is a one-to-one correspondence between one node 
in Vc and one element in Pc, and between one edge in Ac and one 
← in Pc. We also assign the weight on ac to the relation vi ← vj. 
Our objective for register binding is as follows: find a subset of Ac 
that covers all the vertices in Vc in such a way that the total sum of 
the weights of all the edges in the subset is the minimum with the 
constraint that all the vertices can only be bound into as many as k 
registers.  

 
Theorem 1: A register binding on a compatibility graph Gc into 

k registers is equivalent to find k disjoint chains in the POSET Pc, 
and each chain contains all the variables bound into one of the k 
registers. 

 
Theorem 1 can be illustrated from a simple example. In Fig. 1 

(a)1, the solution with an optimal number of registers (in this case, 
two) is obtained by the partition of two disjoint chains (dashed 
ovals) in the POSET. Variables in one disjoint chain can then be 
bound into one separate register.   

Therefore, register binding of the nodes in Gc into k registers 
with the minimum total weight is equivalent to finding k disjoint 
chains in the POSET Pc with the minimum total weight. There is 
an important fundamental result on partially ordered sets due to 
Dilworth [21], which indicates that any k-cofamily in a POSET P 
can be partitioned into at most k disjoint chains. We have the 
following Corollary. 

 
Corollary 1: The minimum weighted k-cofamily with at least 

one antichain of size k in a POSET Pc can be partitioned into 
exactly k disjoint chains with the minimum total weight to cover 
every element in Pc. 

 

                                                        
1 Edges {1, 4} and {1, 5} are there due to the transitive property of 
the relations. 



Therefore, our goal becomes to find the minimum weighted 
k-cofamily in Pc. In [22], an algorithm based on network flow 
theories was presented to calculate the maximum node-weighted 
k-cofamilies. Next, we will show how we can convert the 
calculation of the minimum edge-weighted k-cofamily into the 
calculation of the minimum cost flow in a network. 

First, we construct the split graph G(Pc) associated with Pc as 
follows: for each element vi in Pc, we introduce two vertices xi and 
yi in G(Pc). We introduce a direct edge (xi, yj) in G(Pc) if vi ← vj. 
Moreover, we introduce two more vertices s (source) and t (sink) in 
G(Pc) and add edges (s, xi) and (yi, t) for each 1 ≤ i ≤ n. Fig. 1 (b) 
shows the corresponding split graph of POSET Pc of Fig. 1 (a). We 
choose the capacity of each edge e to be 1 and the cost of each edge 
e, denoted as d(e), to be 
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Theorem 2: Let Pc be a POSET of n elements. Let k be the 

minimum number of registers required to bind all the n 
corresponding variables in the compatibility graph Gc. Then, Pc 
has a k-cofamily that covers all the n elements with minimum total 
weight if and only if the split graph G(Pc) has a (n-k)-flow of the 
minimum weight2. 

 
Our task then becomes to find the minimum cost flow in the 

network G(Pc). It can be obtained through capacity 

scaling and successive shortest path computation and has running 
complexity O(|E| logU (|E|+|V|log|V|) [23] [24], where U is an 
upper bound on the largest supply/demand and largest capacity in 
the network. In our case, U = n - k. After we obtain the minimum 
cost flow, each edge with a unit flow in G(Pc), e = (xi, yj), 
represents that variables vi and vj should be bound together into the 
same register. If there is a flow for e = (xi, yi), it means that vi 
occupies a register just by itself3. 
 
B. Cost Function Formulation 
 

In this section, we provide some details for calculating the edge 
weight wij if vi and vj are to be bound together. A MUX occurs in 

                                                        
2 Proof is omitted. Interested readers please refer to [22], where a 
maximum weighted k-cofamily was computed for node-weighted 
partially ordered set. A related theorem was presented in [22]. 
3 vi is not compatible with any of the other variables. 

two situations: 1) it is introduced before a register r when more 
than two functional units produce results and store them into this 
register; 2) it is introduced before a port p of a functional unit when 
more than two registers feeding data to this port. Different register 
binding will produce different multiplexing situations. 

Fig. 2 shows an example. Case 1 binds the two variables driven 
by functional units F1 and F2 into two separate registers. By such, 
it saves a MUX between the connections of F1/F2 and their output 
registers. However, two more MUXes will be required for 
connections of the two registers R1/R2 to the fanout functional 
units (fanout_FUs) F3 and F4. On the other hand, Case 2 binds the 
two variables from F1 and F2 into a single register, and as a result, 
a MUX is generated between F1/F2 and register R. Yet, it is a 
better solution than Case 1 because there are no MUXes required 
between R and fanout_FUs F3/F4. Notice that if F1 and F2 are 
actually the same functional unit there will not be a MUX 
generated in Case 2, which makes Case 2 an even better solution. 
However, there are situations where Case 1 is better than Case 2, 
especially when F1 and F2 are different. A simple case happens 
when none of the fanout_FUs in Case 1 requires a MUX to connect 
to both register R1 and R2 so it uses one less MUX than Case 2. In 
the real situation, it is hard to predict which case is better because it 
all depends on the original DFG data flow, scheduling results, and 
the functional unit binding solution.  

The cost function is defined as follows:  
   
  LTTNw fufrmuxij −⋅+⋅∂+−= )( _ β  
 
 where Nmux is the number of MUXes saved (or MUXes wasted, 
i.e., Nmux becoming negative) by binding vi and vj into a single 
register (Case 2) than not binding them into a single register (Case 
1); Tr_f is the total number of connections between register R1/R2 
and the fanout_FUs; Tfu is the total number of fanout_FUs involved 
during this tempted binding of vi and vj; L is a large positive 
constant4; α and β are positive scaling constants. The term Tr_f is 
trying to capture the overall connectivity situation of the 
fanout_FUs so that some global optimization criteria can be 
considered. It is needed because not all of the fanout_FUs that 
connect to R1/R2 require a MUX on their ports for the signals 
driven by R1/R2. If its value is large, Case 2 is preferred, i.e., vi and 
vj are preferred to be bound into a single register to reduce the total 
connectivity of fanout_FUs. Term Tfu is trying to capture the 
overall connectivity from another angle, i.e., if more fanout_FUs 
are involved, Case 2 is preferred. Nonetheless, Nmux is set as the 
overwhelming factor in this cost function because it directly 
reflects the MUX usage of this binding. The smaller the cost, the 
better to bind vi and vj together. 
 

                                                        
4 L guarantees wij < -1 (check the formulation of d(e)). 
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Fig. 1: (a) A POSET Pc.  (b) The split graph G(Pc).
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Fig. 2: One example of multiplexing situations 



IV. Port Assignment 
 

Port assignment is an important technique for reducing MUX 
connections between functional units and registers. However, 
effective heuristics have not been proposed to practically tackle this 
difficult problem during high-level synthesis. In this section, we 
will apply a greedy algorithm for port assignment. We will show 
later that our algorithm is very effective. 

In [6], an important lemma proves that finding the minimum 
connectivity port assignment is equivalent to minimizing the 
number of input-registers that are connected to both ports of a 
functional unit u. An optimal solution will be automatically 
obtained for u if there are no input-registers that drive both ports of 
u. We will use this lemma to guide our port assignment solutions. 

We observe two cases where a register is connected to both ports 
of u. In Fig. 3, the register in Case 1 contains variables v1 and v2 
and the operations on the functional unit u is v1+x1 and v2+x2. 
Because of the bad port assignments of x1 and x2, this register has 
to drive both ports of u and renders a total of four connections. The 
register in Case 2 contains a variable v, and the three operations 
together with the current port assignments force v to drive both 
ports of u and render a total of five connections. 

 

 
  Fortunately, we observe that the connection number of both 
cases can be reduced using a simple operation of operand swapping. 
For Case 1, we can swap the port assignments of v1 and x1, and for 
Case 2, v and c. The solutions are illustrated in Fig. 4. 

 
In our port assignment algorithm, we first provide a solution of a 

random port assignment. We then find all the registers that drive 
both ports of their corresponding functional units and perform 
operand swapping. Fig. 5 provides an outline of the algorithm to 
handle the Case 2 situation. Case 1 is handled following a similar 
fashion. The actual implementation deals with other details and 
complications, such as a combination of Case 1 and 2 in a single 
register, which are omitted in the outline. The worst complexity is 
O(n2) where n is the total MUX input number for the two ports of 

the targeted functional unit. 
There are some situations where operand swapping will not help. 

For example, if we have an operation as v1+v2 in Case 1, the 
register has to drive both ports. For Case 2, if we encounter a series 
of circular operations such as a+b, b+c, and c+a, then the register 
has to drive both ports too. We check these situations first so the 
operand swapping procedure can exit early if these situations are 
encountered. 

 
 

V. Experimental Results 
 

 We compare our algorithm with an enhanced version of the 
weighted bipartite-matching algorithm [5]. It was based on the 
original bipartite-matching algorithm published in [13]. As shown 
in the Introduction, [13] has been consistently winning on MUX 

Benchmarks Node No. Edge No. Min Reg. No. 

aircraft 2283 4680 528 

chem 347 731 112 

dir 148 314 50 

feig_dct 548 1899 282 

honda 97 214 34 

mcm 94 252 54 

pr 42 134 31 

steam_u4mul 220 472 55 

u5ml_12 547 1144 163 

wang 48 134 30 

Terminology: 
opr_pair, o and o~: the two operands for a single 

operation, e.g. addition 
port_pair, p and p~: the two ports on the functional 

unit u, e.g. an adder 
target_register, R: a register under consideration  
dual_signals of R, {d_1, d_2, …, d_S}: the signals in R 

that are driving the two ports of port_pair 
simultaneously in the initial solution 

remnant_signals of R, rsig_set: a set that contains the 
other signals in R that only drive one port of the 
port_pair 

 
Case A: S = 1 

1. Find all the opr_pairs that contain d_1. It is possible 
that there are more than one d_1~. 
2. Find the port to which all the signals in rsig_set are 
assigned in the initial solution. Suppose it is port p.  
3. Swap d_1 from port p~ with all the d_1~ from port 
p. Make sure there is no new dual_signals created for R 
or for other registers that drive u.   
4. If step 3 is successful, R will only drive port p and 
total MUX input number is reduced by 1 for u. 

 
Case B: S > 1 

For each d_i that belongs to the set {d_1, d_2, …, d_S}, 
perform operations 1 to 3 as in the Case A. If all the 
swapping is successful, R will only drive port p and 
total MUX input number is reduced by 1. 

 

Fig 5: An outline of the operand swapping 

Table 2: Node, edge and minimum register numbers 
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v1+x1 
v2+x2 

+ 

MUX 

Case 1 

MUX MUX 
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v+c 
v+a 

Case 2

Fig. 4: Operand swapping for the two cases
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Fig. 3: Two cases of register connecting to both ports



input reduction compared to other algorithms when the variables 
are bound into the minimum number of registers required. In [5], 
the cost function for the weighted bipartite graph was refined. It 
was counting the inputs of the involved MUXes directly instead of 
counting number of input-registers as in [13] when computing the 
cost of assigning variable vi to register rj. Although more 
input-registers generally mean more MUXes, these two parameters 
are not always correlating with each other when we consider the 
registers that drive both ports of functional units. Thus, the 
refinement in [5] should help to capture the cost more accurately. 
There is no port assignment in both [13] and [5]. 

The benchmarks shown in Table 2 are from [25]. The examples 
used in this study are data-dominated behavioral descriptions with 
predominantly arithmetic operations that are commonly 
encountered in signal and image processing applications. The 
initial scheduling and functional unit binding solutions are 
generated by the LOPASS high-level synthesis system that targets 

 

low power designs [5]. The minimum register number shown in 
Table 2 is obtained by a left-edge [26] register binding algorithm, 
which is optimal for a comparability graph generated from 
non-hierarchical designs, i.e., no alternative paths and loops [9]. 

Table 3 shows the total MUX input results for k-cofamily with pa 
(port assignment), k-cofamily without pa, bipartite without pa [5], 
and left-edge without pa. Table 4 shows the comparison results. We 
can see that overall k-cofamily+pa is 4% better than k-cofamily w/o 

pa; 7% better than the bipartite algorithm w/o pa, and 44% better 
than the left-edge algorithm w/o pa. We observe that k-cofamily+pa 
performs especially well for large designs. In Table 4, if we only 
count the designs with more than 200 nodes, although 
k-cofamily+pa will still be 4% better than k-cofamily w/o pa, it will 
be 10% better than bipartite, and 55% better than the left-edge. The 
extra gain is obviously coming from register binding. The 
minimum cost network-flow method always gives us the optimal 
solution based on the assigned cost on the edges. This shows that 
the k-cofamily formulation of our work is able to capture the 
connection cost more accurately than the bipartite-based algorithm, 
especially when the search space is large for designs with large 
amount of nodes and edges.  

 Table 5 shows the upper bound of the total possible reductions 
of MUX inputs for all the benchmarks by port assignment. This 
upper bound is obtained assuming that all the registers that drive 
both ports of the functional units can be changed to only drive a 
single port through operand swapping. However, it is generally not  
the case due to the situations explained in Section IV such as 
circular operations. Nonetheless, we observe an 84% reduction of 
the upper bound value. This shows the effectiveness of our operand 
swapping method. Statistics also show that we have achieved the 
known optimal solutions by 65% of all the workable cases, where 
we either get rid of the dual-port connections or find out that it is 
impossible to achieve that. The actually obtained optimal solutions 
will most likely be larger than 65% if we can afford to compute the 
optimal solution through an algorithm of exponential complexity, 
which is forbidden because the total MUX input number for the 
two ports of certain functional units is very large for the large 
designs – around 50 for example.  

Overall, the run time is fast to complete both k-cofamily and port 
assignment algorithms – within 35 seconds running on a 750 MHz 
SunBlade 1000 Unix box. An exception is benchmark aircraft, 
which takes slightly more than 1 hour to finish. 

To get an idea of how the MUX reduction influences the final 
design in area, delay and power, we feed two of the RT-level 
designs generated by k-cofamily+pa and bipartite w/o pa to a 
FPGA design/architecture evaluation framework, fpgaEva_LP [4]. 
Please note that we target FPGA applications because we have 
access to the tool. Our MUX reduction results can be applied to 
ASIC designs as well. Due to the large number of LUTs (4-input 
look-up tables) generated, we can only test on two relatively small 
designs. Tables 6 and 7 show the results. k-cofamily+pa 
consistently improves area, delay and power over the bipartite 
algorithm. These results provide us with some insights into how 
much impact we can expect through the optimization of data path 
connections.   

 
 
 
 
 

 
VI. Conclusions 

 
 In this paper, we presented two efficient algorithms to target the 
two NP-complete optimization problems: register binding for 
multiplexer reduction and port assignment for multiplexer 
reduction. We first formulated a k-cofamily-based register binding 
algorithm that guaranteed to maintain the minimum register 
number required while optimizing the multiplexers. We then further 

Benchmarks cofamily 
with pa 

cofamily 
w/o pa 

bipartite 
w/o pa 

leftedge 
w/o pa 

aircraft 3579 3734 3923 5420 

chem 509 522 592 782 

dir 201 209 195 288 

feig_dct 972 1034 1060 1389 

honda 153 157 173 225 

mcm 135 140 147 189 

pr 60 63 60 67 

steam_u4mul 316 323 337 524 

u5ml_12 776 796 854 1269 

wang 79 81 78 96 

Table 3: Total MUX input number of different algorithms  

Benchmarks cofamily 
with pa 

cofamily 
w/o pa 

bipartite 
w/o pa 

leftedge 
w/o pa 

aircraft 1 1.04 1.10 1.51 

chem 1 1.03 1.16 1.54 

dir 1 1.04 0.97 1.43 

feig_dct 1 1.06 1.09 1.43 

honda 1 1.03 1.13 1.47 

mcm 1 1.04 1.09 1.40 

pr 1 1.05 1.00 1.12 

steam_u4mul 1 1.02 1.07 1.66 

u5ml_12 1 1.03 1.10 1.64 

wang 1 1.03 0.99 1.22 

Average 1 1.04 1.07 1.44 

Table 4: Comparison results of different algorithms with    
k-cofamily + pa (port assignment) 

Reduction upper bound 334 

Actual reduction 279 

Reduction  Percentage 84% 

 Table 5: Reduction percentage of the upper bound value 
through operand swapping 



reduced the multiplexer width through a port assignment algorithm. 
Experimental results show that, overall, we are 44% better than the 
left-edge register binding algorithm on the total usage of 
multiplexer inputs and 7% better than a bipartite graph-based 
algorithm. We observe 10% better results than the bipartite 
graph-based algorithm on average for large designs, which shows 
that our k-cofamily-based algorithm is able to capture connection 
cost more accurately for designs with large numbers of nodes and 
edges. After technology mapping, placement and routing for an 
FPGA architecture, it shows consistently positive impacts on chip 
area, delay and power consumption.  
 

 
mcm 4-LUT No. Delay (s) Power (w) 

bipartite w/o pa 7528 35.5 1.256 

k-cofamily+pa 7085 34.5 1.178 

Reduction -5.9% -2.8% -6.2% 

Table 6: Area, delay, and power data for mcm 

steam_u4mul 4-LUT No. Delay (s) Power (w) 
bipartite w/o pa 13732 49.9 2.500 

k-cofamily+pa 13093 46 2.385 

Reduction -4.7% -7.8% -4.6% 

Table 7: Area, delay, and power data for steam_u4mul 
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