
Register Binding and Port Assignment for Multiplexer Optimization
 Deming Chen and Jason Cong

Computer Science Department
University of California, Los Angeles

{demingc, cong}@cs.ucla.edu

Abstract - Data path connection elements, such as multiplexers,
consume a significant amount of area on a VLSI chip,
especially for FPGA designs. Multiplexer optimization is a
difficult problem because both register binding and port
assignment to reduce total multiplexer connectivity during
high-level synthesis are NP-complete problems. In this paper,
we first formulate a k-cofamily-based register binding
algorithm targeting the multiplexer optimization problem. We
then further reduce the multiplexer width through an efficient
port assignment algorithm. Experimental results show that we
are 44% better overall than the left-edge register binding
algorithm on the total usage of multiplexer inputs and 7%
better than a bipartite graph-based algorithm. For large
designs, we are able to achieve significantly better results
consistently. After technology mapping, placement and routing
for an FPGA architecture, it shows considerably positive
impacts on chip area, delay and power consumption.

I. Introduction

As VLSI systems are becoming increasingly complex as driven
by Moore’s law [1], and the advances in Deep Sub-Micron (DSM)
technologies have made possible multi-million gate designs, circuit
designers are facing a tremendous challenge of interconnect-centric
design flow. It has been shown that the area of multiplexers and
interconnects has by far outweighed the area of functional units and
registers. This is especially the case for FPGA designs because a
larger amount of transistors have to be provided in the wiring
channels and logic blocks to provide programmability for signal
transition. Studies show that interconnects alone contribute 70-80%
of the total area [2] and 75-85% of the total power [3] [4] for most
of the FPGA designs.

A multiplexer (MUX) is a standard complex gate often used in
data-path logic to provide multiple connections between functional
units (FUs) and registers. The multiplexer area is not linear with its
input number. Table 1 shows some characterization data of a 24-bit
Carry Look-ahead adder, an 18-bit Wallace-Tree multiplier and
some MUXes when they are mapped and fit into FPGAs [5]. A
CLB under the Area column is a logic block containing four LUTs,
and an LUT can implement any logic function of up to four
variables in the experiment. A k-to-1 MUX selects one of the k
inputs of the MUX to drive the MUX output. We can observe that
the area, delay and power data of a 32-to-1 MUX are almost
equivalent to the 18-bit multiplier. These data show how expensive
a wide MUX is in terms of chip area, delay and power consumption.
It thus motivates us to design highly effective algorithms to reduce
the amount and sizes of the multiplexers generated during
high-level synthesis. As a result, we reduce the complexity of the
connections between functional units and registers and in return
reduce the requirement of interconnects during the placement and
routing in the later physical design stages.

Given a scheduled data flow graph (DFG), the process of data
path generation mainly consists of functional unit binding, register
binding, and connection allocation steps. Functional unit binding

assigns operations to physical functional units, and register binding
assigns variables to registers. Both the operation-to-unit and the
variable-to-register mappings determine the multiplexing
requirements of the register transfer level (RTL) design. Lastly,
connection allocation connects the functional units and registers
together. We use the term connection to refer to this type of
connectivity. Some works use interconnect or interconnection for
the same concept. The total connections determine the total MUX
inputs, or MUX connectivity. Connection allocation tries to reduce

the MUX requirement through connection sharing and/or port
assignment. In this work, we assume the DFG is already scheduled,
and the functional unit binding is also finished. We concentrate on
register binding and port assignment for MUX reduction – both of
these problems were proved to be NP-complete to solve [6].

There is extensive literature on binding and allocation problems
for high-level synthesis [7] [8] [9]. We first review works done to
minimize connectivity through functional unit binding and/or
register binding. Works in [10] and [11] used a clique partitioning
method to reduce register and connection usage. They designed
heuristic algorithms to solve the clique partitioning problem due to
its high complexity. In [12], a branch-and-bound search algorithm
was applied to bind registers and allocate connections while
binding functional units. In [13], a breakthrough approach using a
weighted bipartite-matching algorithm was presented to solve both
register and functional unit binding. The weights on the bipartite
graph represented the connection cost when variables or operations
were assigned to registers or functional units. It generated optimal
number of registers for non-hierarchical DFGs. It compared with
[10], [11], and [12] and showed better results in terms of total
MUX inputs. Trying to further improve connection solutions, [14]
presented an integer linear programming formulation to minimize
MUX and wire area. It is optimal with regard to its objective
function. The main concern is its high complexity. Authors in [15]
presented an integrated data path synthesis flow for scheduling and
binding to reduce total connections. Although it had better
connection results compared to [13], larger numbers of registers
were reported. In [16], a min-cost max-flow algorithm was
presented to carry out functional unit binding and register binding
for connection reduction. Although the formulation was efficient, it
also suffered an increased number of registers than the minimum
required. It did not report comparison results with other published
algorithms.

Table 1: Characterization of adder, multiplier and MUXes

Functional Unit
and MUX Implementation Area

(CLB)
Delay
(ns)

Power
(w)

add24bit_cla Carry look-ahead 26 11.8 0.010
mul18bit_wall Booth-recoded Wallace 280 14.8 0.308
mux24bit_2to1 Synopsys design 6 0.6 0.002
mux24bit_8to1 Synopsys design 66 4.6 0.023
mux24bit_32to1 Synopsys design 276 10.9 0.240

The port assignment problem was studied in [17] and [18]. The
work in [17] performed global permutation of all the inputs for a
functional unit during the MUX generation. The work in [18]
designed an integer linear programming algorithm. The complexity
of both algorithms is a concern.

In this paper, we present a k-cofamily-based algorithm to carry
out the register binding task, which guarantees to maintain the
minimum number of registers while reducing the MUX usage. We
also implement a port assignment algorithm that further reduces the
total MUX inputs efficiently after the register binding is done. In
the following, Section 2 provides the definitions and problem
formulation. Section 3 presents the k-cofamily algorithm, and
Section 4 presents the port assignment algorithm. Section 5 shows
our experimental results, and Section 6 concludes this paper.

II. Definitions and Problem Formulation

 The data path of a high-level design can be represented by a
DFG, G = (V, A). Let V = {v1, v2, …, vx}, A = {a1, a2, …, ay}, and a =
{vm, vn} represents the edge from vm to vn. Set V corresponds to
operations and set A corresponds to data flowing from one operation
to another. After scheduling, the life time of each edge (data value)
in the DFG is the time during which the data value is active (valid)
and is defined by an interval [birth time; death time]. A
compatibility graph Gc = (Vc, Ac) for these edges can then be
constructed, where vertices correspond to data values (or variables),
and there is a directed edge ac = (vi, vj) between two vertices if and
only if their corresponding life times do not overlap, and variable vi
comes before vj. In such a case, we call variables vi and vj compatible
with each other and they can be bound into a single register without
life time conflicts. Let wij denote the weight of the edge ac, which
represents the cost of binding vi and vj into a single register.

We now introduce several important concepts in combinatorial
theory on partially ordered sets which will be used later in our
algorithm. A partially ordered set (POSET) P is a collection of
elements with a binary relation ← defined on P × P which satisfies
the following conditions [19]:

1) reflexive, i.e., x ← x for all x ∈ P;
2) antisymmetric, i.e., x ← y and y ← x ⇒ x = y;
3) transitive, i.e., x ← y and y ← z ⇒ x ← z;

We say that x and y are related if we have either x ← y or y ← x.

An antichain in P is a subset of elements such that no two of them
are related. A chain in P is a subset of elements such that every two
of them are related. A k-family in P is a subset of elements that
contains no chain of size k + 1, and a k-cofamily in P is a subset of
elements that contains no antichain of size k + 1 [20]. We can
associate weights for k-cofamilies, where the minimum weighted
k-cofamilies are especially important to us. Details will be
explained in Section III.

The problem of register binding for MUX reduction can be
formulated as the following:

 Instance: A scheduled DFG graph G = (V, A), a set of registers R,
a set of functional units U, a functional unit binding {fu: v→ u | for
all v, where v∈V and u∈U}, and a positive integer N.
 Question: Is there a register binding {fr: a→ r | for all a, where
a∈A and r∈R} such that the number of connections between
registers and functional units is ≤ N?

The problem of port assignment for MUX reduction can be
formulated as the following:

 Instance: A scheduled DFG graph G = (V, A), a set of registers R,
a set of functional units U, a functional unit binding {fu: v→ u | for
all v, where v∈V and u∈U}, a register binding {fr: a→ r | for all a,
where a∈A and r∈R}, and a positive integer N.
 Question: Is there a port assignment, i.e., for the two input-
registers of every operation bound to a functional unit u, which
register should be connected to which port of u, such that the
number of connections between registers and u is ≤ N?

As shown in [6], both of these problems were proved to be
NP-complete.

III. Register Binding with k-cofamily Formulation

A. Problem Reduction

In this section, we formulate the register binding problem for
MUX reduction as a problem of calculating the minimum weighted
cofamilies of a POSET. To obtain such a cofamily, the problem is
then reduced to calculating the minimum cost flow in a network.

Given a compatibility graph Gc = (Vc, Ac), let POSET Pc = {v1,
v2, …, vn} such that Pc contains all the vertices of Gc, and the
compatibility relation defined in Ac can be the relation ← on the
elements of Pc. It is easy to show that the compatibility relation is
reflexive, antisymmetric, and transitive. By such, an edge ac = (vi,
vj) of Ac represents a relation on the two elements of Pc as vi ← vj.
Therefore, there is a one-to-one correspondence between one node
in Vc and one element in Pc, and between one edge in Ac and one
← in Pc. We also assign the weight on ac to the relation vi ← vj.
Our objective for register binding is as follows: find a subset of Ac
that covers all the vertices in Vc in such a way that the total sum of
the weights of all the edges in the subset is the minimum with the
constraint that all the vertices can only be bound into as many as k
registers.

Theorem 1: A register binding on a compatibility graph Gc into

k registers is equivalent to find k disjoint chains in the POSET Pc,
and each chain contains all the variables bound into one of the k
registers.

Theorem 1 can be illustrated from a simple example. In Fig. 1

(a)1, the solution with an optimal number of registers (in this case,
two) is obtained by the partition of two disjoint chains (dashed
ovals) in the POSET. Variables in one disjoint chain can then be
bound into one separate register.

Therefore, register binding of the nodes in Gc into k registers
with the minimum total weight is equivalent to finding k disjoint
chains in the POSET Pc with the minimum total weight. There is
an important fundamental result on partially ordered sets due to
Dilworth [21], which indicates that any k-cofamily in a POSET P
can be partitioned into at most k disjoint chains. We have the
following Corollary.

Corollary 1: The minimum weighted k-cofamily with at least

one antichain of size k in a POSET Pc can be partitioned into
exactly k disjoint chains with the minimum total weight to cover
every element in Pc.

1 Edges {1, 4} and {1, 5} are there due to the transitive property of
the relations.

Therefore, our goal becomes to find the minimum weighted
k-cofamily in Pc. In [22], an algorithm based on network flow
theories was presented to calculate the maximum node-weighted
k-cofamilies. Next, we will show how we can convert the
calculation of the minimum edge-weighted k-cofamily into the
calculation of the minimum cost flow in a network.

First, we construct the split graph G(Pc) associated with Pc as
follows: for each element vi in Pc, we introduce two vertices xi and
yi in G(Pc). We introduce a direct edge (xi, yj) in G(Pc) if vi ← vj.
Moreover, we introduce two more vertices s (source) and t (sink) in
G(Pc) and add edges (s, xi) and (yi, t) for each 1 ≤ i ≤ n. Fig. 1 (b)
shows the corresponding split graph of POSET Pc of Fig. 1 (a). We
choose the capacity of each edge e to be 1 and the cost of each edge
e, denoted as d(e), to be

=−
=
=

=
),(if ,1
),(if ,

),(or),(if ,0
)(

ii

jiij

ii

yxe
yxew

tyxse
ed

Theorem 2: Let Pc be a POSET of n elements. Let k be the

minimum number of registers required to bind all the n
corresponding variables in the compatibility graph Gc. Then, Pc
has a k-cofamily that covers all the n elements with minimum total
weight if and only if the split graph G(Pc) has a (n-k)-flow of the
minimum weight2.

Our task then becomes to find the minimum cost flow in the

network G(Pc). It can be obtained through capacity

scaling and successive shortest path computation and has running
complexity O(|E| logU (|E|+|V|log|V|) [23] [24], where U is an
upper bound on the largest supply/demand and largest capacity in
the network. In our case, U = n - k. After we obtain the minimum
cost flow, each edge with a unit flow in G(Pc), e = (xi, yj),
represents that variables vi and vj should be bound together into the
same register. If there is a flow for e = (xi, yi), it means that vi
occupies a register just by itself3.

B. Cost Function Formulation

In this section, we provide some details for calculating the edge
weight wij if vi and vj are to be bound together. A MUX occurs in

2 Proof is omitted. Interested readers please refer to [22], where a
maximum weighted k-cofamily was computed for node-weighted
partially ordered set. A related theorem was presented in [22].
3 vi is not compatible with any of the other variables.

two situations: 1) it is introduced before a register r when more
than two functional units produce results and store them into this
register; 2) it is introduced before a port p of a functional unit when
more than two registers feeding data to this port. Different register
binding will produce different multiplexing situations.

Fig. 2 shows an example. Case 1 binds the two variables driven
by functional units F1 and F2 into two separate registers. By such,
it saves a MUX between the connections of F1/F2 and their output
registers. However, two more MUXes will be required for
connections of the two registers R1/R2 to the fanout functional
units (fanout_FUs) F3 and F4. On the other hand, Case 2 binds the
two variables from F1 and F2 into a single register, and as a result,
a MUX is generated between F1/F2 and register R. Yet, it is a
better solution than Case 1 because there are no MUXes required
between R and fanout_FUs F3/F4. Notice that if F1 and F2 are
actually the same functional unit there will not be a MUX
generated in Case 2, which makes Case 2 an even better solution.
However, there are situations where Case 1 is better than Case 2,
especially when F1 and F2 are different. A simple case happens
when none of the fanout_FUs in Case 1 requires a MUX to connect
to both register R1 and R2 so it uses one less MUX than Case 2. In
the real situation, it is hard to predict which case is better because it
all depends on the original DFG data flow, scheduling results, and
the functional unit binding solution.

The cost function is defined as follows:

 LTTNw fufrmuxij −⋅+⋅∂+−=)(_ β

 where Nmux is the number of MUXes saved (or MUXes wasted,
i.e., Nmux becoming negative) by binding vi and vj into a single
register (Case 2) than not binding them into a single register (Case
1); Tr_f is the total number of connections between register R1/R2
and the fanout_FUs; Tfu is the total number of fanout_FUs involved
during this tempted binding of vi and vj; L is a large positive
constant4; α and β are positive scaling constants. The term Tr_f is
trying to capture the overall connectivity situation of the
fanout_FUs so that some global optimization criteria can be
considered. It is needed because not all of the fanout_FUs that
connect to R1/R2 require a MUX on their ports for the signals
driven by R1/R2. If its value is large, Case 2 is preferred, i.e., vi and
vj are preferred to be bound into a single register to reduce the total
connectivity of fanout_FUs. Term Tfu is trying to capture the
overall connectivity from another angle, i.e., if more fanout_FUs
are involved, Case 2 is preferred. Nonetheless, Nmux is set as the
overwhelming factor in this cost function because it directly
reflects the MUX usage of this binding. The smaller the cost, the
better to bind vi and vj together.

4 L guarantees wij < -1 (check the formulation of d(e)).

x3 x2

s

x1 x4

y1 y2 y3 y4

x5

y5

t

1

3
2

5
4

Fig. 1: (a) A POSET Pc. (b) The split graph G(Pc).

F1 F2

F3 F4

R

F2 F1

F4

R1 R2

F3

Case 1 Case 2

MUX

 MUX

MUX

Fig. 2: One example of multiplexing situations

IV. Port Assignment

Port assignment is an important technique for reducing MUX
connections between functional units and registers. However,
effective heuristics have not been proposed to practically tackle this
difficult problem during high-level synthesis. In this section, we
will apply a greedy algorithm for port assignment. We will show
later that our algorithm is very effective.

In [6], an important lemma proves that finding the minimum
connectivity port assignment is equivalent to minimizing the
number of input-registers that are connected to both ports of a
functional unit u. An optimal solution will be automatically
obtained for u if there are no input-registers that drive both ports of
u. We will use this lemma to guide our port assignment solutions.

We observe two cases where a register is connected to both ports
of u. In Fig. 3, the register in Case 1 contains variables v1 and v2
and the operations on the functional unit u is v1+x1 and v2+x2.
Because of the bad port assignments of x1 and x2, this register has
to drive both ports of u and renders a total of four connections. The
register in Case 2 contains a variable v, and the three operations
together with the current port assignments force v to drive both
ports of u and render a total of five connections.

 Fortunately, we observe that the connection number of both
cases can be reduced using a simple operation of operand swapping.
For Case 1, we can swap the port assignments of v1 and x1, and for
Case 2, v and c. The solutions are illustrated in Fig. 4.

In our port assignment algorithm, we first provide a solution of a

random port assignment. We then find all the registers that drive
both ports of their corresponding functional units and perform
operand swapping. Fig. 5 provides an outline of the algorithm to
handle the Case 2 situation. Case 1 is handled following a similar
fashion. The actual implementation deals with other details and
complications, such as a combination of Case 1 and 2 in a single
register, which are omitted in the outline. The worst complexity is
O(n2) where n is the total MUX input number for the two ports of

the targeted functional unit.
There are some situations where operand swapping will not help.

For example, if we have an operation as v1+v2 in Case 1, the
register has to drive both ports. For Case 2, if we encounter a series
of circular operations such as a+b, b+c, and c+a, then the register
has to drive both ports too. We check these situations first so the
operand swapping procedure can exit early if these situations are
encountered.

V. Experimental Results

 We compare our algorithm with an enhanced version of the
weighted bipartite-matching algorithm [5]. It was based on the
original bipartite-matching algorithm published in [13]. As shown
in the Introduction, [13] has been consistently winning on MUX

Benchmarks Node No. Edge No. Min Reg. No.

aircraft 2283 4680 528

chem 347 731 112

dir 148 314 50

feig_dct 548 1899 282

honda 97 214 34

mcm 94 252 54

pr 42 134 31

steam_u4mul 220 472 55

u5ml_12 547 1144 163

wang 48 134 30

Terminology:
opr_pair, o and o~: the two operands for a single

operation, e.g. addition
port_pair, p and p~: the two ports on the functional

unit u, e.g. an adder
target_register, R: a register under consideration
dual_signals of R, {d_1, d_2, …, d_S}: the signals in R

that are driving the two ports of port_pair
simultaneously in the initial solution

remnant_signals of R, rsig_set: a set that contains the
other signals in R that only drive one port of the
port_pair

Case A: S = 1

1. Find all the opr_pairs that contain d_1. It is possible
that there are more than one d_1~.
2. Find the port to which all the signals in rsig_set are
assigned in the initial solution. Suppose it is port p.
3. Swap d_1 from port p~ with all the d_1~ from port
p. Make sure there is no new dual_signals created for R
or for other registers that drive u.
4. If step 3 is successful, R will only drive port p and
total MUX input number is reduced by 1 for u.

Case B: S > 1

For each d_i that belongs to the set {d_1, d_2, …, d_S},
perform operations 1 to 3 as in the Case A. If all the
swapping is successful, R will only drive port p and
total MUX input number is reduced by 1.

Fig 5: An outline of the operand swapping

Table 2: Node, edge and minimum register numbers

MUX

v1
v2

x1 x2

v1+x1
v2+x2

+

MUX

Case 1

MUX MUX

v

a bc

a+b
v+c
v+a

Case 2

Fig. 4: Operand swapping for the two cases

MUX

v1
v2

x1 x2

v1+x1
v2+x2

+

MUX

Case 1

MUX MUX

v

a b c

a+b
v+c
v+a

Case 2

Fig. 3: Two cases of register connecting to both ports

input reduction compared to other algorithms when the variables
are bound into the minimum number of registers required. In [5],
the cost function for the weighted bipartite graph was refined. It
was counting the inputs of the involved MUXes directly instead of
counting number of input-registers as in [13] when computing the
cost of assigning variable vi to register rj. Although more
input-registers generally mean more MUXes, these two parameters
are not always correlating with each other when we consider the
registers that drive both ports of functional units. Thus, the
refinement in [5] should help to capture the cost more accurately.
There is no port assignment in both [13] and [5].

The benchmarks shown in Table 2 are from [25]. The examples
used in this study are data-dominated behavioral descriptions with
predominantly arithmetic operations that are commonly
encountered in signal and image processing applications. The
initial scheduling and functional unit binding solutions are
generated by the LOPASS high-level synthesis system that targets

low power designs [5]. The minimum register number shown in
Table 2 is obtained by a left-edge [26] register binding algorithm,
which is optimal for a comparability graph generated from
non-hierarchical designs, i.e., no alternative paths and loops [9].

Table 3 shows the total MUX input results for k-cofamily with pa
(port assignment), k-cofamily without pa, bipartite without pa [5],
and left-edge without pa. Table 4 shows the comparison results. We
can see that overall k-cofamily+pa is 4% better than k-cofamily w/o

pa; 7% better than the bipartite algorithm w/o pa, and 44% better
than the left-edge algorithm w/o pa. We observe that k-cofamily+pa
performs especially well for large designs. In Table 4, if we only
count the designs with more than 200 nodes, although
k-cofamily+pa will still be 4% better than k-cofamily w/o pa, it will
be 10% better than bipartite, and 55% better than the left-edge. The
extra gain is obviously coming from register binding. The
minimum cost network-flow method always gives us the optimal
solution based on the assigned cost on the edges. This shows that
the k-cofamily formulation of our work is able to capture the
connection cost more accurately than the bipartite-based algorithm,
especially when the search space is large for designs with large
amount of nodes and edges.

 Table 5 shows the upper bound of the total possible reductions
of MUX inputs for all the benchmarks by port assignment. This
upper bound is obtained assuming that all the registers that drive
both ports of the functional units can be changed to only drive a
single port through operand swapping. However, it is generally not
the case due to the situations explained in Section IV such as
circular operations. Nonetheless, we observe an 84% reduction of
the upper bound value. This shows the effectiveness of our operand
swapping method. Statistics also show that we have achieved the
known optimal solutions by 65% of all the workable cases, where
we either get rid of the dual-port connections or find out that it is
impossible to achieve that. The actually obtained optimal solutions
will most likely be larger than 65% if we can afford to compute the
optimal solution through an algorithm of exponential complexity,
which is forbidden because the total MUX input number for the
two ports of certain functional units is very large for the large
designs – around 50 for example.

Overall, the run time is fast to complete both k-cofamily and port
assignment algorithms – within 35 seconds running on a 750 MHz
SunBlade 1000 Unix box. An exception is benchmark aircraft,
which takes slightly more than 1 hour to finish.

To get an idea of how the MUX reduction influences the final
design in area, delay and power, we feed two of the RT-level
designs generated by k-cofamily+pa and bipartite w/o pa to a
FPGA design/architecture evaluation framework, fpgaEva_LP [4].
Please note that we target FPGA applications because we have
access to the tool. Our MUX reduction results can be applied to
ASIC designs as well. Due to the large number of LUTs (4-input
look-up tables) generated, we can only test on two relatively small
designs. Tables 6 and 7 show the results. k-cofamily+pa
consistently improves area, delay and power over the bipartite
algorithm. These results provide us with some insights into how
much impact we can expect through the optimization of data path
connections.

VI. Conclusions

 In this paper, we presented two efficient algorithms to target the
two NP-complete optimization problems: register binding for
multiplexer reduction and port assignment for multiplexer
reduction. We first formulated a k-cofamily-based register binding
algorithm that guaranteed to maintain the minimum register
number required while optimizing the multiplexers. We then further

Benchmarks cofamily
with pa

cofamily
w/o pa

bipartite
w/o pa

leftedge
w/o pa

aircraft 3579 3734 3923 5420

chem 509 522 592 782

dir 201 209 195 288

feig_dct 972 1034 1060 1389

honda 153 157 173 225

mcm 135 140 147 189

pr 60 63 60 67

steam_u4mul 316 323 337 524

u5ml_12 776 796 854 1269

wang 79 81 78 96

Table 3: Total MUX input number of different algorithms

Benchmarks cofamily
with pa

cofamily
w/o pa

bipartite
w/o pa

leftedge
w/o pa

aircraft 1 1.04 1.10 1.51

chem 1 1.03 1.16 1.54

dir 1 1.04 0.97 1.43

feig_dct 1 1.06 1.09 1.43

honda 1 1.03 1.13 1.47

mcm 1 1.04 1.09 1.40

pr 1 1.05 1.00 1.12

steam_u4mul 1 1.02 1.07 1.66

u5ml_12 1 1.03 1.10 1.64

wang 1 1.03 0.99 1.22

Average 1 1.04 1.07 1.44

Table 4: Comparison results of different algorithms with
k-cofamily + pa (port assignment)

Reduction upper bound 334

Actual reduction 279

Reduction Percentage 84%

 Table 5: Reduction percentage of the upper bound value
through operand swapping

reduced the multiplexer width through a port assignment algorithm.
Experimental results show that, overall, we are 44% better than the
left-edge register binding algorithm on the total usage of
multiplexer inputs and 7% better than a bipartite graph-based
algorithm. We observe 10% better results than the bipartite
graph-based algorithm on average for large designs, which shows
that our k-cofamily-based algorithm is able to capture connection
cost more accurately for designs with large numbers of nodes and
edges. After technology mapping, placement and routing for an
FPGA architecture, it shows consistently positive impacts on chip
area, delay and power consumption.

mcm 4-LUT No. Delay (s) Power (w)

bipartite w/o pa 7528 35.5 1.256

k-cofamily+pa 7085 34.5 1.178

Reduction -5.9% -2.8% -6.2%

Table 6: Area, delay, and power data for mcm

steam_u4mul 4-LUT No. Delay (s) Power (w)
bipartite w/o pa 13732 49.9 2.500

k-cofamily+pa 13093 46 2.385

Reduction -4.7% -7.8% -4.6%

Table 7: Area, delay, and power data for steam_u4mul

Acknowledgements

 This work is partially supported by Altera Corporation under the
California MICRO program, the NSF Grant CCR-0096383, and
MARCO/DARPA Gigascale Silicon Research Center (GSRC).

References

[1] G. E. Moore, “Cramming More Components onto Integrated
Circuits,” Electronics Magazine, 38:114-117, 1965.

[2] A. Singh and M. Marek-Sadowska, “Efficient Circuit
Clustering for Area and Power Reduction in FPGAs,” ACM
International Symposium on FPGA, Feb. 2002.

[3] E. Kusse and J. Rabaey, “Low-Energy Embedded FPGA
Structures,” Proc. of International Symposium on Low Power
Electronics and Design, Aug. 1998.

[4] F. Li, D. Chen, L. He and J. Cong, “Architecture Evaluation for
Power-efficient FPGAs,” ACM International Symposium on FPGA,
Feb. 2003.

[5] Deming Chen, Jason Cong, and Yiping Fan, “Low-Power
High-Level Synthesis for FPGA Architectures,” Proc. of Int. Symp.
on Low Power Electronics and Design, Aug. 2003.

[6] Barry Pangrle, “On the Complexity of Connectivity Binding,”
IEEE Tran. on Computer-Aided Design, Vol.10, No.11, Nov. 1991.

[7] D. Gajski et. al. Editors, High-Level Synthesis – Introduction to
Chip and System Design, Kulwer Academic Publishers, 1992.

[8] L. Stok, “Data Path Synthesis,” Integration-The VLSI Journal,
Vol.18, No.1, pp.1-71, Dec. 1994, Netherlands.

[9] Giovanni De Micheli, Synthesis and Optimization of Digital
Circuits, McGraw-Hill, Inc., 1994.

[10] C-J. Tseng and D. P. Siewiorek, “Automated Synthesis of
Data Path in Digital Systems,” IEEE Tran. on CAD of ICAS,
Vol.CADJ, No.3, pp.379-395, Jul. 1986.

[11] P. G. Paulin, J. P. Knight, and E. F. Girczyc, “HAL: A
Multi-Paradigm Approach to Automatic Data Path Synthesis,” 23rd
IEEE Design Automation Conference, pp. 263-270, Jul. 1986.

[12] B. M. Pangrle, “Splicer: A Heuristic Approach to Connectivity
Binding,” 25th ACM/IEEE Design Automation Conference, pp.
536-541, Jun. 1988.

[13] C.Y. Huang, Y.S. Chen, Y.L. Lin, and Y.C. Hsu, “Data Path
Allocation Based on Bipartite Weighted Matching,” Proc. of the
27th Design Automation Conference, pp.499–504, 1990.

[14] Minjoong Rim, Rajiv Jain, and Renato De Leone, “Optimal
Allocation and Binding in High-Level Synthesis,” Proc. of DAC,
pp.120-123, 1992.

[15] Taewhan Kim and C.L. Liu, “An Integrated Data Path
Synthesis Algorithm Based on Network Flow Method,” Proc. of the
IEEE Custom Integrated Circuits Conference, 1995.

[16] HW Zhu and CC Jong, “Interconnection Optimization in Data
Path Allocation Using Minimal Cost Maximal Flow algorithm,”
Microelectronics, Vol.33, No.9, pp.749-59, Sept. 2002.

[17] S. Raje and R. Bergamaschi, “Generalized Resource Sharing,”
Proc. of ICCAD, 1997.

[18] S. Yamada, “An Optimal Block Terminal Assignment
Algorithm for VLSI Data Path Allocation,” Inst. Electron. Inf. &
Commun. Eng. IEICE Transactions on Fundamentals of
Electronics Communications & Computer Sciences, Vol. E80-A,
No.3, pp.564-6, Mar. 1997, Japan.

[19] C.L. Liu, Elements of Discrete Mathematics, New York:
McGraw-Hill, 1977.

[20] C. Greene and D. Kleitman, “The Structure of Sperner
k-family,” J. Combinatorial Theory, Ser. A, Vol.20, pp.41-68, 1976.

[21] R. P. Dilworth, “A Decomposition Theorem for Partially
Ordered Set,” Ann. Math, Vol.51, pp.161-166, 1950.

[22] J. Cong and C. L. Liu, “On the k-Layer Planar Subset and
Topological Via Minimization Problems,” IEEE Trans. on
Computer-Aided Design, Vol. 10, pp. 972-981, August 1991.

[23] J. Edmonds and R.M. Karp, “Theoretical Improvements in
Algorithmic Efficiency for Network Flow Problems.” J. of the
ACM, Vol. 19, No. 2, 1972.

[24] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows,
Section 10.2., Prentice Hall, 1993.

[25] M. B. Srivastava and M. Potkonjak, “Optimum and Heuristic
Transformation Techniques for Simultaneous Optimization of
Latency and Throughput,” IEEE Trans. on VLSI Systems, vol.3 (1),
pp.2-19, Mar. 1995.

[26] A. Hashimoto and J. Stevens, "Wire Routing by Optimizing
Channel Assignment within Large Apertures", Proc. of 8th Design
Automation Workshop, pp. 155-179, 1971.

