Jozef Bobok, KM FSv ČVUT, Thákurova 7, 16629 Praha 6, Czech Republic, email: erastus@@csearn.bitnet

Milan Kuchta, Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, 81473 Bratislava, Slovakia, email: matekuch@@savba.sk

REGISTER SHIFTS VERSUS TRANSITIVE F-CYCLES FOR PIECEWISE MONOTONE MAPS

Abstract

This paper investigates the family of continuous piecewise monotone functions which map a closed interval of the real line into itself. For these maps Preston [1] and Blokh [2] described the asymptotic behavior of the orbit of a "typical" point. Our results show that if the map is expanding on its intervals of monotonicity the dominant role is played by transitive f-cycles. Contrary to this for a "typical" map in a natural closure of the space of these maps there are no transitive f-cycles. Instead the behavior is dominated by the register shifts. This result is illustrated by an example.

1 Introduction

Consider a continuous function which maps a closed interval of the real line into itself. This gives us a simple dynamical system with discrete time. The new state of our system is the image of the old one using the given function. So each starting state determines a whole orbit. We are interested in the asymptotic behavior of the orbit of a "typical" point. For us "typical" has a topological rather than measure theoretic meaning.

A function is piecewise monotone if there is a finite partition of our interval such that the function is monotone on each part. If on each of these

134

Key Words: Iteration, Asymptotic behavior, Piecewise monotone, Expanding maps, Register shift, Transitive f-cycle, Residual set

Mathematical Reviews subject classification: Primary: 26A18, 26A21, 54H20, 58F08 Received by the editors December 8, 1992

subintervals the derivative is bigger than some number greater than one, then we show that the "typical" point is attracted by a transitive f-cycle. This means a periodic interval in which some orbit is dense. The orbits inside this transitive f-cycle can be very wild. Moreover such a function does not have any register shift.

On the other hand for a "typical" function from the slightly larger space of piecewise monotone functions with derivatives greater than or equal to one (or strictly greater than one) a "typical" point is attracted by a register shift. Thus the asymptotic behavior of such an orbit is very nice and if we do not notice small differences, then it looks like a periodic orbit. It follows that the "typical" function does not have any transitive f-cycle. So one phenomenon is replaced by the other.

2 Background

Let I = [0, 1] and let C(I) be the space of continuous functions which map I into itself. This space will be endowed with the metric ρ of uniform convergence.

A function $f \in C(I)$ is called piecewise monotone if there is an $n \ge 0$ and a set of points $0 = d_0 < d_1 < \cdots < d_n < d_{n+1} = 1$ such that f is strictly monotone on $[d_k, d_{k+1}]$ for each $k = 0, \ldots, n$. A point $t \in (0, 1)$ is called a turning point of f if f is not monotone in any neighborhood of t. We denote the set of the turning points of f by T(f). Let M_n be the set of piecewise monotone functions with the number of turning points less than or equal to n. Let $c \ge 0, d > 0$ and

$$M_{n,c} = \left\{ f \in M_n; \text{ if } f|[a,b] \text{ is monotone, then } \left| \frac{f(b) - f(a)}{b - a} \right| > c \right\},$$
$$\tilde{M}_{n,d} = \left\{ f \in M_n; \text{ if } f|[a,b] \text{ is monotone, then } \left| \frac{f(b) - f(a)}{b - a} \right| \ge d \right\}.$$

For $f \in C(I)$ define f^n (*n*-th iterate of f) inductively by $f^0(x) = x$ and (for $n \ge 1$) $f^n(x) = f(f^{n-1}(x))$. The orbit of $x \in I$ with respect to f is the sequence $\operatorname{orb}(x) = \{f^n(x)\}_{n=0}^{\infty}$. A closed interval $J \subset I$ is called periodic interval with period $\operatorname{per}(J) = k \in \mathbb{N}$ if $f^k(J) = J$ and $f^i(J) \cap f^j(J) = \emptyset$ for $0 \le i \ne j < k$. If J is a point, then it is called a periodic point and $\operatorname{Per}(f)$ denotes the set of all periodic points of f. A point $x \in I$ is called eventually periodic if $x \notin \operatorname{Per}(f)$ and $f^k(x) \in \operatorname{Per}(f)$ for some $k \ge 1$.

Recall that $K = \bigcup_{k=0}^{m-1} f^k(J)$ (the orbit of a periodic interval J with period m) is called an f-cycle with period m. This f-cycle is said to be transitive

if there is an orbit of a point which is dense in K. Or equivalently K is transitive if for any closed $S \subset K$ such that $f(S) \subset S$ we have either S = K or $int(S) = \emptyset$. Note that any transitive f-cycle must contain a turning point. Hence a function from M_n can have only n different transitive f-cycles.

Let $\{K_n\}_{n=1}^{\infty}$ be a decreasing sequence $(K_{n+1} \subset K_n)$ of f-cycles and m_n be a period of K_n . It is easy to see that m_n divides m_{n+1} for each $n \geq 1$. We call the sequence $\{K_n\}_{n=1}^{\infty}$ splitting if $m_{n+1} > m_n$ for each $n \geq 1$. We say that $R \subset I$ is a register shift if there is a splitting sequence of f-cycles $\{K_n\}_{n=1}^{\infty}$ such that $R = \bigcap_{n=1}^{\infty} K_n$. We call $\{K_n\}_{n=1}^{\infty}$ a generator of R. Again note that any register shift must contain a turning point. Hence a function from M_n can have only n different register shifts.

Let K be an f-cycle. We define the set of attraction of K by

$$A(K, f) = \{ x \in I : f^n(x) \in int(K) \text{ for some } n \ge 0 \}.$$

If R is a register shift and $\{K_n\}_{n=1}^{\infty}$ is its generator, then similarly

$$A(R,f) = \bigcap_{n=1}^{\infty} A(K_n,f).$$

Note that $\bigcap_{n=1}^{\infty} A(K_n, f) = \bigcap_{n=1}^{\infty} A(\tilde{K}_n, f)$ for any two generators of R. Hence A(R, f) is well defined. Finally we define the set

 $Z(f) = \{ x \in (0,1); \exists \varepsilon > 0 \ \forall n \ge 0; \ f^n | (x - \varepsilon, x + \varepsilon) \text{ is strictly monotone} \}.$

Clearly, A(K, f) and Z(f) are open and A(R, f) is a G_{δ} set. Moreover if K is a transitive f-cycle and R is a register shift, then $A(K, f) \cap A(R, f) = \emptyset$ and $A(K, f) \cap Z(f) = \emptyset$. In general it can happen that $R \cap Z(f) \neq \emptyset$ and so $A(R, f) \cap Z(f) \neq \emptyset$. (For more details about the facts mentioned above see [1] or [2].)

Now we can formulate Theorem A on the asymptotic behavior of a point under a piecewise monotone map.

Theorem A. ([1], [2]). Let $f \in M_n$ and K_1, \ldots, K_r be transitive f-cycles and R_1, \ldots, R_s be register shifts. Then the set

$$\Lambda(f) = A(K_1, f) \cup \dots \cup A(K_r, f) \cup A(R_1, f) \cup \dots \cup A(R_s, f) \cup Z(f)$$

is of type G_{δ} dense in I.

The following results give more information about the behavior of a "typical" orbit of $x \in I$ with respect to $f \in \tilde{M}_{n,1}$. **Theorem B.** Let $f \in \tilde{M}_{n,c}$ for c > 1. Then f has no register shift and $Z(f) = \emptyset$.

If we consider the space $(\tilde{M}_{n,1}, \varrho)$ we have the following contrary results.

Theorem C.. A typical function from $\tilde{M}_{n,1}$ has no transitive f-cycle and $Z(f) = \emptyset$.

Theorem D. A typical function from $M_{n,1}$ has no transitive f-cycle and $Z(f) = \emptyset$.

3 Residual set in $(\tilde{M}_{n,1}, \varrho)$

We start this section with some auxiliary results. We will not prove all of these facts. Let $n \ge 1$ be fixed and $\tilde{M}_{n,0}$ be the closure of M_n in the space $(C(I), \varrho)$.

Proposition 3.1. $(\tilde{M}_{n,0}, \varrho)$ is a complete metric space.

Proposition 3.2.. For $c \ge 0$ the set $\tilde{M}_{n,c}$ is closed in $(\tilde{M}_{n,0}, \varrho)$.

Proposition 3.3.. For $c \ge 0$ the set $M_{n,c}$ is of type G_{δ} dense in $(\tilde{M}_{n,c}, \varrho)$.

PROOF. Let [a, b] be an interval in I. Obviously the sets

$$K_{\pm}(a,b) = \{ f \in \tilde{M}_{n,c}; f'(x) = \pm c \text{ for } x \in (a,b) \}$$

are closed and nowhere dense. Let $\{[a_k, b_k]\}_{k=0}^{\infty}$ be a sequence of intervals such that for any interval $J \subset I$ there is a $k \geq 0$ such that $[a_k, b_k] \subset J$. Then $M_{n,c} = \tilde{M}_{n,c} \setminus \bigcup_{k=0}^{\infty} (K_+(a_k, b_k) \cup K_-(a_k, b_k))$ and proof is finished. \Box

The following assertion is an easy consequence of Propositions 3.1., 3.2., and 3.3..

Lemma 3.4. If $f \in M_{n,1}$, then $Z(f) = \emptyset$ and for a typical function from $\tilde{M}_{n,1}$ we have $Z(f) = \emptyset$.

The following corollary is immediate.

Corollary 3.5. If $f \in \tilde{M}_{n,1}$ and R is a register shift, then $int(R) = \emptyset$.

PROOF. It suffices to observe that $int(R) \setminus Z(f)$ is countable for any $f \in M_n$.

There exist functions in $M_{n,c}$ whose turning points are either periodic or eventually periodic points. Hence let

$$P_{n,c} = \{ f \in M_{n,c}; \ T(f) = A \cup B, \\ (A \subset \operatorname{Per}(f)) \& \ (\forall x \in B \ \exists k \in \mathbb{N}; \ f^k(x) \in A) \}.$$

Lemma 3.6. If $c \ge 1$, then the set $P_{n,c}$ is dense in $(M_{n,c}, \varrho)$.

PROOF. Choose an open set U in $\tilde{M}_{n,c}$. By Proposition 3.3. there exists function $f \in U \cap M_{n,c}$ and if we denote the turning points of f by $z_1 < z_2 < \cdots < z_m \ (m \leq n)$, then without loss of generality we can assume that

$$f(z_i) \notin \{0, 1\}$$
 for $i \in \{1, \dots, m\}$. (*)

Since $c \ge 1$, the set $\bigcup_{n=0}^{\infty} f^{-n}(T(f))$ is dense in I. Suppose f has at z_1 a local maximum (The opposite case is analogous.) The reader can easily verify that there exists $g_1 \in U \cap M_{n,c}$ such that $T(g_1) = T(f), g_1(z_j) = f(z_j)$ for $j \ne 1$ $g_1(z_1) \ge f(z_1)$ (see (*)) and $g_1(z_1) \in \bigcup_{n=0}^{\infty} g_1^{-n}(T(g_1))$. Obviously we have $g_1^k(z_1) = z_i$ for some $k \ge 1$ and $i \in \{1, \ldots, m\}$. Moreover g_1 can be chosen such that condition (*) also holds for g_1 . So we can repeat this procedure for z_2, \ldots, z_m and finally we get a function $g \in U \cap M_{n,c}$ such that T(g) = T(f) and for any $z \in T(g)$ there is a $k \ge 1$ such that $g^k(z) \in T(g)$. Hence obviously $g \in P_{n,c}$. (See figure 1.)

Remark 3.1. If $c \in [0,1)$, then the set $P_{n,c}$ is not dense in $(\tilde{M}_{n,c}, \varrho)$.

For what follows let R_m be a finite set of disjoint closed intervals such that the sum of their lengths is less than 1/m. Analogous to the definition of $P_{n,c}$ for $f \in \tilde{M}_{n,1}$ let $f \triangle R_m$ denote the statement that there is a partition of T(f)into two disjoint parts A_f, B_f such that

- (i) for all $x \in A_f$ there is $J \in R_m$ such that $x \in int(J)$,
- (ii) for all $J \in R_m$ there is $k \in \mathbb{N}$ such that $f^k(J) \subset \operatorname{int}(J)$,
- (iii) for all $x \in B_f$ there is $J \in R_m$ and $k \in \mathbb{N}$ such that $f^k(x) \in \operatorname{int}(J)$.

Let $H_m = \{ f \in \tilde{M}_{n,1}; f \triangle R_m \text{ for some } R_m \}.$

Lemma 3.7. The set $H = \bigcap_{m=1}^{\infty} H_m$ is of type G_{δ} dense in $(\tilde{M}_{n,1}, \varrho)$.

138

Figure 1: Functions f and g (dotted).

PROOF. By Propositions 3.1. and 3.2. it suffices to show that the set H_m is open and dense in $(\tilde{M}_{n,1}, \varrho)$. The first property is clear from (i)–(iii) and in order to prove the second one we will use Lemma 1.6.

Choose an open set U in $M_{n,1}$. By Lemma 3.6. there is a function $f \in U \cap P_{n,1}$ such that $f(T(f)) \subset (0,1)$. Let $A_f = T(f) \cap \operatorname{Per}(f)$, $B_f = T(f) \setminus A_f$, let $C_f = \{f^k(A_f)\}_{k=0}^{\infty}$ and let $D_f = \{f^k(B_f)\}_{k=0}^{\infty}$. Set $C_f \cup D_f = \{x_1, \ldots, x_q\}$ where $q = \operatorname{card}(C_f \cup D_f)$. Then there is a union of disjoint intervals $V = \bigcup_{i=1}^{q} (c_i, d_i)$ such that $x_i \in (c_i, d_i)$ and $\sum_{i=1}^{q} (d_i - c_i) < 1/m$. For $0 < \alpha < \min_{i=1}^{q} \{|x_i - c_i|, |x_i - d_i|\}$ we also have $V_\alpha \subset V$ where $V_\alpha = \bigcup_{i=1}^{q} [x_i - \alpha, x_i + \alpha]$. Let $g \in C(I)$ be such that

- (iv) g(x) = f(x) for $x \in C_f \cup D_f$,
- (v) T(g) = T(f),
- (vi) |g'(x)| = 1 for $x \in V_{\alpha}$,
- (vii) g(x) = f(x) for $x \in I \setminus V$,
- (viii) g|J is linear for any interval $J \subset V \setminus V_{\alpha}$.

It is easy to verify that g is unique and $g \in \tilde{M}_{n,1}$. We can choose V and α small enough such that $g \in U$. In addition we have $X_g = X_f$ for $X \in \{A, B, C, D\}$. Let $R_m = \{[x - \alpha, x + \alpha]; x \in A_g\}$. From (vi) we have $g([x - \alpha, x + \alpha]) \subset [g(x) - \alpha, g(x) + \alpha]$ for any $x \in C_g \cup D_g$ and so from (iv)–(vi) for the partition $T(g) = A_g \cup B_g$ we have that $g \triangle R_m$ is nearly fulfilled. More precisely it is fulfilled except for (ii) where we have only $f^k(J) \subset J$ instead of $f^k(J) \subset int(J)$.

Observe that C_g is a finite union of orbits of some turning points, so we can write $C_g = \bigcup_{i=1}^{s} \operatorname{orb}(x_i)$ where $x_i \in T(g)$ and $\operatorname{orb}(x_i) \cap \operatorname{orb}(x_j) = \emptyset$ for any $1 \leq i \neq j \leq s$. Now we will modify g in a neighborhood of x_i in order to get new function a h and a set R_m such that $h \triangle R_m$.

Let $k_i = per(x_i)$ for $1 \le i \le s$. Because $x_i \in T(g)$ it is easy to see from (vi) that either

$$g^{k_i}([x_i - \alpha, x_i + \alpha]) = [x_i - \alpha, x_i]$$
(1)

or

$$g^{k_i}([x_i - \alpha, x_i + \alpha]) = [x_i, x_i + \alpha].$$

$$\tag{2}$$

Suppose (1). Then obviously for any $x \in \operatorname{orb}(x_i) \cap T(g)$ if $g^k([x - \alpha, x + \alpha]) \subset [x_i - \alpha, x_i + \alpha]$ for some $k \ge 1$, then $g^k([x - \alpha, x + \alpha]) \subset [x_i - \alpha, x_i]$. Hence for any $J \in R_m$ there is $k \ge 0$ (we will take the minimal one) and $1 \le i \le s$ such that

$$g^k(J) \subset [x_i - \alpha, x_i]. \tag{3}$$

Similarly for (2).

Because $f \in M_{n,1}$ we have that

$$\left|\frac{g(c_i) - g(x_i - \alpha)}{c_i - (x_i - \alpha)}\right| > 1 \quad \text{and} \quad \left|\frac{g(d_i) - g(x_i + \alpha)}{d_i - (x_i + \alpha)}\right| > 1.$$

So there is $0 < \lambda < \min\{\alpha, (x_i - \alpha) - c_i, d_i - (x_i + \alpha)\}\$ such that for any $1 \le i \le s$

$$\left|\frac{g(c_i) - g(x_i - \alpha)}{(x_i - \alpha + \lambda) - c_i}\right| > 1 \quad \text{and} \quad \left|\frac{g(d_i) - g(x_i + \alpha)}{d_i - (x_i + \alpha - \lambda)}\right| > 1.$$
(4)

Now we can define function h and a new set R_m . Let

- (ix) h(x) = g(x) for any $x \in I \setminus \bigcup_{i=1}^{s} (c_i, d_i)$,
- (x) if (1), then $h(x) = g(x + \lambda)$ for any $x \in [x_i \alpha \lambda, x_i + \alpha \lambda]$, if (2), then $h(x) = g(x - \lambda)$ for any $x \in [x_i - \alpha + \lambda, x_i + \alpha + \lambda]$,
- (xi) if (1), then h is linear on $[c_i, x_i \alpha \lambda]$ and $[x_i + \alpha \lambda, d_i]$, if (2), then h is linear on $[c_i, x_i - \alpha + \lambda]$ and $[x_i + \alpha + \lambda, d_i]$,

Figure 2: Functions g and h (dotted).

and in R_m we replace interval $[x_i - \alpha, x_i + \alpha]$ by $[x_i - \alpha - \lambda, x_i + \alpha - \lambda]$ in case (1) and by $[x_i - \alpha + \lambda, x_i + \alpha + \lambda]$ in case (2). (See figure 2.)

From (4) it follows that $h \in \tilde{M}_{n,1}$ and we can choose $\lambda > 0$ small enough such that $h \in U$.

For $1 \le i \le s$ let $z_i = x_i - \lambda$ and $J_i = [x_i - \alpha - \lambda, x_i + \alpha - \lambda]$ in case (1) or $z_i = x_i + \lambda$ and $J_i = [x_i - \alpha + \lambda, x_i + \alpha + \lambda]$ in case (2).

Let $B_h = B_g$ and $A_h = (A_g \setminus \bigcup_{i=1}^s x_i) \cup \{z_i\}_{i=1}^s$. We have $T(h) = A_h \cup B_h$ and $A_h \cap B_h = \emptyset$. Moreover, for any $x \in B_h$ there is $k \ge 1$ (we will take the minimal one) such that $g^k(x) = x_i$ for some $1 \le i \le s$. But then $h^k(x) = x_i$ and $x_i \in \text{int } J$ for some $J \in R_m$. So condition (iii) is fulfilled and condition (i) is obvious. Only (ii) remains.

From (3) we have that for any $J \in R_m$ there is $k \ge 0$ such that $h^k(J) \subset J_i$ for some $1 \le i \le s$. But h(J) = g(J) for any $J \ne J_i$ and $h(J_i) = g([x_i - \alpha, x_i + \alpha])$. Hence if $J = J_i$, then $h^{k_i}(J_i) \subset \operatorname{int}(J_i)$ by (1), (2). If $J \ne J_i$ and $x \in J \cap A_h$, then $h^{k_i}(J) \subset [x - \alpha + \lambda, x + \alpha - \lambda] \subset \operatorname{int}(J)$ by (vi), (x). So we have $h \bigtriangleup R_m$.

4 Proofs of Theorems

Theorem B. Let $f \in \tilde{M}_{n,c}$ for c > 1. Then f has no register shift and $Z(f) = \emptyset$.

PROOF. (Compare with [3].) By Lemma 1.4 and Corollary 1.5 it suffices to show that there is $\eta > 0$ such that the length of $f^k(J)$ is greater than η for any interval $J \subset I$ and a suitable $k \in \mathbb{N}$ (k = k(J)). Let $c^m > 2$. Then any interval mapped by f^m will expand while it does not contain at least two points of $T(f^m)$.

Theorem C.. A typical function from $\tilde{M}_{n,1}$ has no transitive f-cycle and $Z(f) = \emptyset$.

PROOF. Consider $f \in H$ (see Lemma 3.7.). Assume that f has a transitive f-cycle K. Then $K \cap T(f) \neq \emptyset$. And by (i)–(iii) there exists a closed nondegenerate interval $J \subset K$ such that $f^k(J) \subset J$ for some $k \in \mathbb{N}$ and $\operatorname{orb}(J) \neq K$. But this contradicts our assumption that K is transitive f-cycle. Second part follows from Lemma 3.4..

Theorem D. A typical function from $M_{n,1}$ has no transitive f-cycle and $Z(f) = \emptyset$.

PROOF. The assertion easily follows from Propositions 3.1.–3.3. and Theorem C. $\hfill \Box$

5 Construction of a Function From $M_{n,1}$ That Has No Transitive *f*-cycle

Let $A = \{a_j\}_{j=1}^{\infty}$ and $p_i = \prod_{j=1}^{i} a_j$. We say that function f has an A-register shift if there is a sequence $\{J_i\}_{i=1}^{\infty}$ of subintervals of I such that J_i is periodic with $per(J_i) = p_i$ and $J_{i+1} \subset J_i$ for all $i \in \mathbb{N}$.

We denote by |S| the Lebesgue measure of a set S, by $\operatorname{conv}(S)$ the convex hull of S and by $\operatorname{d}(S_1, S_2)$ the distance between the sets S_1, S_2 . Moreover, we say $S_1 < S_2$ if x < y for any $x \in S_1, y \in S_2$.

Lemma 5.1. For any $A = \{a_i\}_{i=1}^{\infty}$ there is $f \in M_{1,1}$ such that f has A-register shift.

PROOF. Fix an $A = \{a_i\}_{i=1}^{\infty}$. Without loss of generality we can assume that a_i is a prime number for all $i \in \mathbb{N}$.

Let $a \in \mathbb{N}$ be prime. If a > 2, then define $\psi \colon \{1, \ldots, a\} \to \{1, \ldots, a\}$ by

$$\begin{split} \psi(1) &= \frac{1}{2}(a+1), \\ \psi(i) &= a+2-i \ \text{ for } \ 1 < i \leq \frac{1}{2}(a+1), \\ \psi(i) &= a+1-i \ \text{ for } \ \frac{1}{2}(a+1) < i \leq a, \end{split}$$

and if a = 2, then simply $\psi(1) = 2$ and $\psi(2) = 1$.

Let $\{I_i^a\}_{i=1}^a$ be the set of subintervals of I = [0, 1] such that

$$\begin{split} I &= \operatorname{conv} \left(\bigcup_{i=1}^{a} I_{i}^{a} \right), \\ &|I_{i}^{a}| = |I_{j}^{a}| & \text{for } 1 \leq i, j \leq a, \\ &I_{i}^{a} < I_{i+1}^{a} & \text{for } 1 \leq i < a, \\ &\operatorname{d}(I_{i}^{a}, I_{i+1}^{a}) < \operatorname{d}(I_{\psi(i)}^{a}, I_{\psi(i+1)}^{a}) & \text{for } 1 \leq i < a. \end{split}$$

Of course this is possible only if a > 2. If a = 2 let $I_2^2 = [0, \frac{1}{3}], I_1^2 = [\frac{2}{3}, 1].$

This change in order of indexing saves some troubles when a = 2. We can assume that $\sum_{i=1}^{a} |I_i^a| \leq \frac{2}{3}$. Let g_a be a continuous function such that

- $g_a(I_i^a) = I_{\psi(i)}^a$ for $1 \le i \le a$,
- $g_a | I_i^a$ is linear for $i \neq 2$,
- $g_a|J$ is linear for any interval $J \subset I$ with $J \cap I_i^a = \emptyset$ for $i = 1, \ldots, a$,
- we do not specify $g_a | I_2^a$,
- g_a can have only one turning point.

(See figure 3.)

Let $f \in C(I)$ and $f^*(x) = f(1-x)$ for $x \in I$. (The graph of f^* is symmetric to the graph of f in the axis $x = \frac{1}{2}$.)

Now for $i \ge 1$ let f_i be a function such that $f_i = g_{a_i}$ and moreover $f_i | I_2^{a_i}$ "looks like" function f_{i+1}^* (this mean that $h_1 \circ f_i | I_2^{a_i} \circ h_2 = f_{i+1}^*$ where h_1 is linear increasing mapping from $I_{a_i}^{a_i}$ onto I and h_2 is linear increasing mapping from I onto $I_2^{a_i}$).

Henceforth, if we say "slope" we mean in fact "absolute value of the slope". **Claim.** Function f_i has the following properties:

Figure 3: Possible functions g_2 , g_3 and g_5 .

- (1) $f_i|J$ is linear with slope greater than 1 for any interval $J \subset I$ such that $J \cap I_i^{a_i} = \emptyset$ for all $i = 1, ..., a_i$,
- (2) If $A_i = \{a_j\}_{j=i}^{\infty}$, then f_i has A_i -register shift,
- (3) A_1 -register shift of f_1 is generated by $\{J_i\}_{i=1}^{\infty}$ where $|\operatorname{orb}(J_i)| \leq (\frac{2}{3})^i$,
- (4) f_i has a unique turning point.

PROOF. Part (1) is obvious because $g_a(0) > 0$ and so there is no difficulty even if $a_i = 2$. Interval $I_j^{a_i}$ is periodic with period a_i and $f_i^{a_i}|I_j^{a_i}$ is exactly function f_{i+1} because $I_j^{a_i}$ is mapped once by $f_i|I_2^{a_i}$ which is f_{i+1}^* , once by the order preserving linear homeomorphism $f_i|I_1^{a_i}$ (or zero times if $a_i = 2$) and $a_i - 2$ times by the order reversing linear homeomorphism $f_i|I_j^{a_i}$ for $2 < j \leq a_i$ (or once by $f_i|I_1^{a_i}$ if $a_i = 2$). Hence we have part (2). Parts (3) and (4) are obvious.

Therefore $f_1 \in M_{1,1}$ and it has an A-register shift. Let $J_0 = I$, $J_1 = I_2^{a_1}$ and J_i be the interval corresponding to $I_2^{a_i}$ if we consider only $f_1|J_{i-1}$. More precisely J_i is a periodic interval with period p_i such that $J_i \cap T(f_1) \neq \emptyset$.

Here is our strategy for obtaining a function $f \in M_{1,1}$ such that f has an A-register shift.

- 1. Let $F_1 = f_1$. Then $\{J_i\}_{i=1}^{\infty}$ is our sequence of periodic intervals which generate A-register shift. Moreover $F_1|J$ is linear with slope greater than 1 for any interval such that $J \cap \operatorname{orb}(J_1) = \emptyset$ (see Claim).
- 2. Assume that $F_n|J$ is linear with slope greater than 1 for any interval J such that $J \cap \operatorname{orb}(J_n) = \emptyset$. We will modify F_n on the set $\operatorname{orb}(J_{n-1})$ such that we will obtain new intervals J_i for $i \ge n$ and our modified function F_{n+1} will be linear with slope greater than 1 on any interval J such that $J \cap \operatorname{orb}(J_{n+1}) = \emptyset$.

Figure 4: Illustration how to get F_1, F_2, F_3 for $A = \{2, 2, 2, ...\}$.

3. Finally we will get function $f = \lim_{n \to \infty} F_n$.

Fix $n \in \mathbb{N}$. Let $\operatorname{orb}(J_n) = \{I_i^n\}_{i=1}^{p_n}$ where $I_1^n = J_n$ and $F_n(I_i^n) = I_{i+1}^n$ $(F_n(I_{p_n}^n) = I_1^n)$. Let $\operatorname{orb}(J_{n+1})$ equal the set of intervals $\{I_{i,j} = [a_{i,j}, b_{i,j}]\}$ where $1 \leq i \leq p_n, 1 \leq j \leq a_{n+1}, I_{i,j} \subset I_i^n$ and $b_{i,j} < a_{i,j+1}$. Of course $I_i^n = [a_{i,1}, b_{i,a_{n+1}}]$.

We have that $|I_i^n| = |I_j^n|$ for any i, j and $F_n|I_i^n$ is either linear with slope ± 1 (if i > 1) or "looks like" function f_{n+1} or f_{n+1}^* (if i = 1). (All this is true for n = 1 and our modification will preserve these properties.)

Let $F_{n+1}|S = F_n|S$ for $S = I \setminus \operatorname{orb}(J_{n-1})$ and we will define F_{n+1} on $\operatorname{orb}(J_{n-1})$. Take c > 1 and new intervals $I_i^* \subset \operatorname{orb}(J_{n-1})$ such that $I_2^* = I_2^n$, $I_i^n \subset I_i^*$ for $1 \le i \le p_i$, $|I_{i+1}^*| = c|I_i^*|$ for $2 \le i < p_i$ and $|I_1^*| = c|I_{p_i}^*|$. We can choose c so small that the intervals I_i^* are pairwise disjoint. Let $F_{n+1}(I_i^*) = I_{i+1}^*$ ($F_{n+1}(I_{p_i}^*) = I_1^*$) and let F_{n+1} be linear outside the intervals I_i^* . Choose $a_{i,j}^*, b_{i,j}^* \in I_i^*$ such that

$$I_i^* = [a_{i,1}^*, b_{i,a_{n+1}}^*],$$

$$a_{i,j}^* < b_{i,j}^* < a_{i,j+1}^* < b_{i,j+1}^* \text{ for } 1 \le j < a_{n+1},$$

$$b_{i,j}^* - a_{i,j}^* = b_{i,j} - a_{i,j} \text{ for } 1 \le j \le a_{n+1},$$

$$a_{i,j+1}^* - b_{i,j}^* = k(a_{i,j+1} - b_{i,j}) \text{ for } 1 \le j < a_{n+1}$$

for some constant k > 1 and let $I_{i,j}^* = [a_{i,j}^*, b_{i,j}^*]$. Now we can complete the definition of F_{n+1} .

If $F_n(I_{i,j}) = I_{i+1,s}$, then $F_{n+1}(I_{i,j}^*) = I_{i+1,s}^*$ and the graph of F_{n+1} on $I_{i,j}^*$ will be the same as the graph of F_n on $I_{i,j}$. (It will be linear with slope 1 unless $I_{i,j} = J_{n+1}$ when it will "look like" f_{n+2} or f_{n+2}^* .) And let F_{n+1} be linear outside the intervals $I_{i,j}^*$. (See figure 4.) So F_{n+1} is completely defined. Let the new $J_n = I_1^*$, $J_{n+1} = I_{1,s}^*$ (where old $J_{n+1} = I_{1,s}^*$) and J_i for $i \ge n+2$ be given by $F_{n+1}^{p_{n+1}}|I_{1,s}^*$. Moreover, the slopes of F_{n+1} may be decreased comparing to the slopes of F_n only on the set $(\operatorname{orb}(J_{n-1}) \setminus \operatorname{orb}(J_n)) \cup (J_n \setminus \operatorname{orb}(J_{n+1}))$ where they were bigger than 1 and so it is possible to choose c > 1 such that the changes are small enough and the slopes remain greater than 1. And finally it is obvious that the slopes of F_{n+1} on the set $\operatorname{orb}(J_n) \setminus (\operatorname{orb}(J_{n+1}) \cup J_n)$ are now greater than c. Hence we made the required modification.

Moreover we can choose c > 1 sufficiently small such that $|\operatorname{orb}(J_n)|$ increases during this modification no more than twice. And obviously for i > n $|\operatorname{orb}(J_i)|$ remains the same. So we made modification on an invariant set S where $|S| \leq 2(\frac{2}{3})^{n-1}$ and this set remains invariant. This proves that $\lim_{n\to\infty} F_n = f$ exists and is continuous. It is obvious that $f \in M_{1,1}$ and f has an A-register shift. \Box

Corollary 5.2. The function f from Lemma 5.1 has no transitive f-cycle.

PROOF. Each register shift and transitive f-cycle are disjoint and they must contain a turning point. But our f has only one turning point and a register shift.

Remark 5.1. For the construction of $f \in \tilde{M}_{n,c}$ for $c \in [0,1]$, see [1], [4].

References

- C. Preston, Iterates of piecewise monotone mappings on an interval, Lecture Notes in Mathematics 1347, Springer-Verlag, 1988.
- [2] A. Blokh, Decompositions of dynamical systems on an interval, Russ. Math. Surveys 38 (1983), 133–134.
- [3] K. Janková, M. Polakovič, Transitivity of expanding maps of the interval, (Russian and Slovak summaries). Acta Math. Univ. Comenian. 56/57 (1989), 243–247.
- [4] Z. Nitecki, Topological dynamics on the interval, Ergodic theory and dynamical systems II, 1–73, Progress in Math. 21, Birkhäuser, Boston, 1982.