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MAPS

Abstract

This paper investigates the family of continuous piecewise monotone
functions which map a closed interval of the real line into itself. For these
maps Preston [1] and Blokh [2] described the asymptotic behavior of the
orbit of a “typical” point. Our results show that if the map is expanding
on its intervals of monotonicity the dominant role is played by transitive
f -cycles. Contrary to this for a “typical” map in a natural closure of
the space of these maps there are no transitive f -cycles. Instead the
behavior is dominated by the register shifts. This result is illustrated
by an example.

1 Introduction

Consider a continuous function which maps a closed interval of the real line
into itself. This gives us a simple dynamical system with discrete time. The
new state of our system is the image of the old one using the given function.
So each starting state determines a whole orbit. We are interested in the
asymptotic behavior of the orbit of a “typical” point. For us “typical” has a
topological rather than measure theoretic meaning.

A function is piecewise monotone if there is a finite partition of our in-
terval such that the function is monotone on each part. If on each of these
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subintervals the derivative is bigger than some number greater than one, then
we show that the “typical” point is attracted by a transitive f -cycle. This
means a periodic interval in which some orbit is dense. The orbits inside this
transitive f -cycle can be very wild. Moreover such a function does not have
any register shift.

On the other hand for a “typical” function from the slightly larger space
of piecewise monotone functions with derivatives greater than or equal to one
(or strictly greater than one) a “typical” point is attracted by a register shift.
Thus the asymptotic behavior of such an orbit is very nice and if we do not
notice small differences, then it looks like a periodic orbit. It follows that the
“typical” function does not have any transitive f -cycle. So one phenomenon
is replaced by the other.

2 Background

Let I = [0, 1] and let C(I) be the space of continuous functions which map I
into itself. This space will be endowed with the metric ̺ of uniform conver-
gence.

A function f ∈ C(I) is called piecewise monotone if there is an n ≥ 0 and
a set of points 0 = d0 < d1 < · · · < dn < dn+1 = 1 such that f is strictly
monotone on [dk, dk+1] for each k = 0, . . . , n. A point t ∈ (0, 1) is called a
turning point of f if f is not monotone in any neighborhood of t. We denote
the set of the turning points of f by T (f). Let Mn be the set of piecewise
monotone functions with the number of turning points less than or equal to
n. Let c ≥ 0, d > 0 and

Mn,c =

{

f ∈Mn; if f |[a, b] is monotone, then

∣

∣

∣

∣

f(b)− f(a)

b− a

∣

∣

∣

∣

> c

}

,

M̃n,d =

{

f ∈Mn; if f |[a, b] is monotone, then

∣

∣

∣

∣

f(b)− f(a)

b− a

∣

∣

∣

∣

≥ d

}

.

For f ∈ C(I) define fn (n-th iterate of f) inductively by f0(x) = x and
(for n ≥ 1) fn(x) = f(fn−1(x)). The orbit of x ∈ I with respect to f is
the sequence orb(x) = {fn(x)}∞n=0. A closed interval J ⊂ I is called periodic
interval with period per(J) = k ∈ N if fk(J) = J and f i(J) ∩ f j(J) = ∅ for
0 ≤ i 6= j < k. If J is a point, then it is called a periodic point and Per(f)
denotes the set of all periodic points of f . A point x ∈ I is called eventually
periodic if x /∈ Per(f) and fk(x) ∈ Per(f) for some k ≥ 1.

Recall that K =
⋃m−1
k=0 fk(J) (the orbit of a periodic interval J with pe-

riodm) is called an f -cycle with periodm. This f -cycle is said to be transitive
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if there is an orbit of a point which is dense in K. Or equivalently K is tran-
sitive if for any closed S ⊂ K such that f(S) ⊂ S we have either S = K or
int(S) = ∅. Note that any transitive f -cycle must contain a turning point.
Hence a function from Mn can have only n different transitive f -cycles.

Let {Kn}
∞
n=1 be a decreasing sequence (Kn+1 ⊂ Kn) of f -cycles and mn

be a period of Kn. It is easy to see that mn divides mn+1 for each n ≥ 1.
We call the sequence {Kn}∞n=1 splitting if mn+1 > mn for each n ≥ 1. We
say that R ⊂ I is a register shift if there is a splitting sequence of f -cycles
{Kn}∞n=1 such that R =

⋂∞

n=1Kn. We call {Kn}∞n=1 a generator of R. Again
note that any register shift must contain a turning point. Hence a function
from Mn can have only n different register shifts.

Let K be an f -cycle. We define the set of attraction of K by

A(K, f) = {x ∈ I : fn(x) ∈ int(K) for some n ≥ 0}.

If R is a register shift and {Kn}∞n=1 is its generator, then similarly

A(R, f) =

∞
⋂

n=1

A(Kn, f).

Note that
⋂∞

n=1A(Kn, f) =
⋂∞

n=1A(K̃n, f) for any two generators ofR. Hence
A(R, f) is well defined. Finally we define the set

Z(f) = {x ∈ (0, 1); ∃ε > 0 ∀n ≥ 0; fn|(x− ε, x+ ε) is strictly monotone}.

Clearly, A(K, f) and Z(f) are open and A(R, f) is a Gδ set. Moreover if K
is a transitive f -cycle and R is a register shift, then A(K, f) ∩ A(R, f) = ∅
and A(K, f) ∩ Z(f) = ∅. In general it can happen that R ∩ Z(f) 6= ∅ and so
A(R, f)∩Z(f) 6= ∅. (For more details about the facts mentioned above see [1]
or [2].)

Now we can formulate Theorem A on the asymptotic behavior of a point
under a piecewise monotone map.

Theorem A. ([1], [2]). Let f ∈ Mn and K1, . . . ,Kr be transitive f -cycles
and R1, . . . , Rs be register shifts. Then the set

Λ(f) = A(K1, f) ∪ · · · ∪ A(Kr, f) ∪ A(R1, f) ∪ · · · ∪ A(Rs, f) ∪ Z(f)

is of type Gδ dense in I.

The following results give more information about the behavior of a “typ-
ical” orbit of x ∈ I with respect to f ∈ M̃n,1.
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Theorem B.. Let f ∈ M̃n,c for c > 1. Then f has no register shift and
Z(f) = ∅.

If we consider the space (M̃n,1, ̺) we have the following contrary results.

Theorem C.. A typical function from M̃n,1 has no transitive f -cycle and
Z(f) = ∅.

Theorem D.. A typical function from Mn,1 has no transitive f -cycle and
Z(f) = ∅.

3 Residual set in (M̃n,1, ̺)

We start this section with some auxiliary results. We will not prove all of
these facts. Let n ≥ 1 be fixed and M̃n,0 be the closure of Mn in the space
(C(I), ̺).

Proposition 3.1.. (M̃n,0, ̺) is a complete metric space.

Proposition 3.2.. For c ≥ 0 the set M̃n,c is closed in (M̃n,0, ̺).

Proposition 3.3.. For c ≥ 0 the set Mn,c is of type Gδ dense in (M̃n,c, ̺).

Proof. Let [a, b] be an interval in I. Obviously the sets

K±(a, b) = {f ∈ M̃n,c; f
′(x) = ±c for x ∈ (a, b)}

are closed and nowhere dense. Let {[ak, bk]}
∞

k=0 be a sequence of intervals
such that for any interval J ⊂ I there is a k ≥ 0 such that [ak, bk] ⊂ J . Then
Mn,c = M̃n,c \

⋃∞

k=0(K+(ak, bk) ∪K−(ak, bk)) and proof is finished. �

The following assertion is an easy consequence of Propositions 3.1., 3.2.,
and 3.3..

Lemma 3.4.. If f ∈ Mn,1, then Z(f) = ∅ and for a typical function from

M̃n,1 we have Z(f) = ∅.

The following corollary is immediate.

Corollary 3.5.. If f ∈ M̃n,1 and R is a register shift, then int(R) = ∅.

Proof. It suffices to observe that int(R) \ Z(f) is countable for any f ∈
Mn. �
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There exist functions in Mn,c whose turning points are either periodic or
eventually periodic points. Hence let

Pn,c = {f ∈Mn,c; T (f) = A ∪B,

(A ⊂ Per(f)) & (∀x ∈ B ∃k ∈ N; fk(x) ∈ A)}.

Lemma 3.6.. If c ≥ 1, then the set Pn,c is dense in (M̃n,c, ̺).

Proof. Choose an open set U in M̃n,c. By Proposition 3.3. there exists
function f ∈ U ∩Mn,c and if we denote the turning points of f by z1 < z2 <
· · · < zm (m ≤ n), then without loss of generality we can assume that

(∗)f(zi) /∈ {0, 1} for i ∈ {1, . . . ,m}.

Since c ≥ 1, the set
⋃∞

n=0 f
−n(T (f)) is dense in I. Suppose f has at z1 a local

maximum (The opposite case is analogous.) The reader can easily verify that
there exists g1 ∈ U ∩Mn,c such that T (g1) = T (f), g1(zj) = f(zj) for j 6= 1
g1(z1) ≥ f(z1) (see (∗)) and g1(z1) ∈

⋃∞

n=0 g
−n
1 (T (g1)). Obviously we have

gk1 (z1) = zi for some k ≥ 1 and i ∈ {1, . . . ,m}. Moreover g1 can be chosen
such that condition (∗) also holds for g1. So we can repeat this procedure for
z2, . . . , zm and finally we get a function g ∈ U ∩Mn,c such that T (g) = T (f)
and for any z ∈ T (g) there is a k ≥ 1 such that gk(z) ∈ T (g). Hence obviously
g ∈ Pn,c. (See figure 1.) �

Remark 3.1. If c ∈ [0, 1), then the set Pn,c is not dense in (M̃n,c, ̺).

For what follows let Rm be a finite set of disjoint closed intervals such that
the sum of their lengths is less than 1/m. Analogous to the definition of Pn,c
for f ∈ M̃n,1 let f△Rm denote the statement that there is a partition of T (f)
into two disjoint parts Af , Bf such that

(i) for all x ∈ Af there is J ∈ Rm such that x ∈ int(J),

(ii) for all J ∈ Rm there is k ∈ N such that fk(J) ⊂ int(J),

(iii) for all x ∈ Bf there is J ∈ Rm and k ∈ N such that fk(x) ∈ int(J).

Let Hm = {f ∈ M̃n,1; f△Rm for some Rm}.

Lemma 3.7.. The set H =
⋂∞

m=1Hm is of type Gδ dense in (M̃n,1, ̺).
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z1 z2 z3

Figure 1: Functions f and g (dotted).

Proof. By Propositions 3.1. and 3.2. it suffices to show that the set Hm is
open and dense in (M̃n,1, ̺). The first property is clear from (i)–(iii) and in
order to prove the second one we will use Lemma 1.6.

Choose an open set U in M̃n,1. By Lemma 3.6. there is a function f ∈
U ∩Pn,1 such that f(T (f)) ⊂ (0, 1). Let Af = T (f)∩Per(f), Bf = T (f)\Af ,
let Cf = {fk(Af )}∞k=0 and let Df = {fk(Bf )}∞k=0. Set Cf ∪Df = {x1, . . . , xq}
where q = card(Cf ∪ Df ). Then there is a union of disjoint intervals V =
⋃q
i=1(ci, di) such that xi ∈ (ci, di) and

∑q
i=1(di − ci) < 1/m. For 0 < α <

minqi=1{|xi−ci|, |xi−di|} we also have Vα ⊂ V where Vα =
⋃q

i=1[xi − α, xi+α].
Let g ∈ C(I) be such that

(iv) g(x) = f(x) for x ∈ Cf ∪Df ,

(v) T (g) = T (f),

(vi) |g′(x)| = 1 for x ∈ Vα,

(vii) g(x) = f(x) for x ∈ I \ V ,

(viii) g|J is linear for any interval J ⊂ V \ Vα.
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It is easy to verify that g is unique and g ∈ M̃n,1. We can choose V and α small
enough such that g ∈ U . In addition we have Xg = Xf for X ∈ {A,B,C,D}.
Let Rm = {[x − α, x + α]; x ∈ Ag}. From (vi) we have g([x − α, x + α]) ⊂
[g(x)−α, g(x)+α] for any x ∈ Cg ∪Dg and so from (iv)–(vi) for the partition
T (g) = Ag ∪ Bg we have that g△Rm is nearly fulfilled. More precisely it is
fulfilled except for (ii) where we have only fk(J) ⊂ J instead of fk(J) ⊂ int(J).

Observe that Cg is a finite union of orbits of some turning points, so we
can write Cg =

⋃s
i=1 orb(xi) where xi ∈ T (g) and orb(xi) ∩ orb(xj) = ∅ for

any 1 ≤ i 6= j ≤ s. Now we will modify g in a neighborhood of xi in order to
get new function a h and a set Rm such that h△Rm.

Let ki = per(xi) for 1 ≤ i ≤ s. Because xi ∈ T (g) it is easy to see from
(vi) that either

gki([xi − α, xi + α]) = [xi − α, xi] (1)

or

gki([xi − α, xi + α]) = [xi, xi + α]. (2)

Suppose (1). Then obviously for any x ∈ orb(xi)∩T (g) if gk([x−α, x+α]) ⊂
[xi − α, xi + α] for some k ≥ 1, then gk([x − α, x + α]) ⊂ [xi − α, xi]. Hence
for any J ∈ Rm there is k ≥ 0 (we will take the minimal one) and 1 ≤ i ≤ s
such that

gk(J) ⊂ [xi − α, xi]. (3)

Similarly for (2).
Because f ∈Mn,1 we have that

∣

∣

∣

∣

g(ci)− g(xi − α)

ci − (xi − α)

∣

∣

∣

∣

> 1 and

∣

∣

∣

∣

g(di)− g(xi + α)

di − (xi + α)

∣

∣

∣

∣

> 1.

So there is 0 < λ < min{α, (xi − α) − ci, di − (xi + α)} such that for any
1 ≤ i ≤ s

∣

∣

∣

∣

g(ci)− g(xi − α)

(xi − α+ λ)− ci

∣

∣

∣

∣

> 1 and

∣

∣

∣

∣

g(di)− g(xi + α)

di − (xi + α− λ)

∣

∣

∣

∣

> 1. (4)

Now we can define function h and a new set Rm. Let

(ix) h(x) = g(x) for any x ∈ I \
⋃s

i=1(ci, di),

(x) if (1), then h(x) = g(x+ λ) for any x ∈ [xi − α− λ, xi + α− λ],
if (2), then h(x) = g(x− λ) for any x ∈ [xi − α+ λ, xi + α+ λ],

(xi) if (1), then h is linear on [ci, xi − α− λ] and [xi + α− λ, di],
if (2), then h is linear on [ci, xi − α+ λ] and [xi + α+ λ, di],
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α α α α α α
c3 x3 d3 c1 x1 d1 c2 x2 d2

Figure 2: Functions g and h (dotted).

and in Rm we replace interval [xi − α, xi + α] by [xi − α − λ, xi + α − λ] in
case (1) and by [xi − α+ λ, xi + α+ λ] in case (2). (See figure 2.)

From (4) it follows that h ∈ M̃n,1 and we can choose λ > 0 small enough
such that h ∈ U .

For 1 ≤ i ≤ s let zi = xi − λ and Ji = [xi − α− λ, xi + α − λ] in case (1)
or zi = xi + λ and Ji = [xi − α+ λ, xi + α+ λ] in case (2).

Let Bh = Bg and Ah = (Ag \
⋃s

i=1 xi)∪{zi}si=1. We have T (h) = Ah ∪Bh
and Ah ∩ Bh = ∅. Moreover, for any x ∈ Bh there is k ≥ 1 (we will take the
minimal one) such that gk(x) = xi for some 1 ≤ i ≤ s. But then hk(x) = xi
and xi ∈ intJ for some J ∈ Rm. So condition (iii) is fulfilled and condition
(i) is obvious. Only (ii) remains.

From (3) we have that for any J ∈ Rm there is k ≥ 0 such that hk(J) ⊂ Ji
for some 1 ≤ i ≤ s. But h(J) = g(J) for any J 6= Ji and h(Ji) = g([xi − α, xi+
α]). Hence if J = Ji, then hki(Ji) ⊂ int(Ji) by (1), (2). If J 6= Ji and
x ∈ J ∩ Ah, then hki(J) ⊂ [x− α+ λ, x+ α− λ] ⊂ int(J) by (vi), (x). So we
have h△Rm. �
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4 Proofs of Theorems

Theorem B.. Let f ∈ M̃n,c for c > 1. Then f has no register shift and
Z(f) = ∅.

Proof. (Compare with [3].) By Lemma 1.4 and Corollary 1.5 it suffices to
show that there is η > 0 such that the length of fk(J) is greater than η for
any interval J ⊂ I and a suitable k ∈ N (k = k(J)). Let cm > 2. Then
any interval mapped by fm will expand while it does not contain at least two
points of T (fm). �

Theorem C.. A typical function from M̃n,1 has no transitive f -cycle and
Z(f) = ∅.

Proof. Consider f ∈ H (see Lemma 3.7.). Assume that f has a transitive
f -cycle K. Then K ∩ T (f) 6= ∅. And by (i)–(iii) there exists a closed nonde-
generate interval J ⊂ K such that fk(J) ⊂ J for some k ∈ N and orb(J) 6= K.
But this contradicts our assumption that K is transitive f -cycle. Second part
follows from Lemma 3.4.. �

Theorem D.. A typical function from Mn,1 has no transitive f -cycle and
Z(f) = ∅.

Proof. The assertion easily follows from Propositions 3.1.–3.3. and Theorem
C. �

5 Construction of a Function From Mn,1 That Has No

Transitive f-cycle

Let A = {aj}∞j=1 and pi =
∏i

j=1 aj . We say that function f has an A-register
shift if there is a sequence {Ji}

∞
i=1 of subintervals of I such that Ji is periodic

with per(Ji) = pi and Ji+1 ⊂ Ji for all i ∈ N.
We denote by |S| the Lebesgue measure of a set S, by conv(S) the convex

hull of S and by d(S1, S2) the distance between the sets S1, S2. Moreover, we
say S1 < S2 if x < y for any x ∈ S1, y ∈ S2.

Lemma 5.1.. For any A = {ai}∞i=1 there is f ∈ M1,1 such that f has A-re-
gister shift.

Proof. Fix an A = {ai}∞i=1. Without loss of generality we can assume that
ai is a prime number for all i ∈ N.
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Let a ∈ N be prime. If a > 2, then define ψ : {1, . . . , a} → {1, . . . , a} by

ψ(1) =
1

2
(a+ 1),

ψ(i) = a+ 2− i for 1 < i ≤
1

2
(a+ 1),

ψ(i) = a+ 1− i for
1

2
(a+ 1) < i ≤ a,

and if a = 2, then simply ψ(1) = 2 and ψ(2) = 1.
Let {Iai }

a
i=1 be the set of subintervals of I = [0, 1] such that

I = conv

(

a
⋃

i=1

Iai

)

,

|Iai | = |Iaj | for 1 ≤ i, j ≤ a,

Iai < Iai+1 for 1 ≤ i < a,

d(I
a
i , I

a
i+1) < d(I

a
ψ(i), I

a
ψ(i+1)) for 1 ≤ i < a.

Of course this is possible only if a > 2. If a = 2 let I22 = [0, 13 ], I
2
1 = [ 23 , 1].

This change in order of indexing saves some troubles when a = 2.
We can assume that

∑a

i=1 |I
a
i | ≤

2
3 . Let ga be a continuous function such

that

• ga(I
a
i ) = Ia

ψ(i) for 1 ≤ i ≤ a,

• ga|I
a
i is linear for i 6= 2,

• ga|J is linear for any interval J ⊂ I with J ∩ Iai = ∅ for i = 1, . . . , a,

• we do not specify ga|Ia2 ,

• ga can have only one turning point.

(See figure 3.)
Let f ∈ C(I) and f∗(x) = f(1−x) for x ∈ I. (The graph of f∗ is symmetric

to the graph of f in the axis x = 1
2 .)

Now for i ≥ 1 let fi be a function such that fi = gai and moreover fi|I
ai
2

“looks like” function f∗
i+1 (this mean that h1 ◦ fi|I

ai
2 ◦ h2 = f∗

i+1 where h1 is
linear increasing mapping from Iaiai onto I and h2 is linear increasing mapping
from I onto Iai2 ).

Henceforth, if we say “slope” we mean in fact “absolute value of the slope”.

Claim. Function fi has the following properties:
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Figure 3: Possible functions g2, g3 and g5.

(1) fi|J is linear with slope greater than 1 for any interval J ⊂ I such that
J ∩ Iaii = ∅ for all i = 1, . . . , ai,

(2) If Ai = {aj}∞j=i, then fi has Ai-register shift,

(3) A1-register shift of f1 is generated by {Ji}∞i=1 where |orb(Ji)| ≤ (23 )
i,

(4) fi has a unique turning point.

Proof. Part (1) is obvious because ga(0) > 0 and so there is no difficulty even
if ai = 2. Interval Iaij is periodic with period ai and f

ai
i |Iaij is exactly function

fi+1 because Iaij is mapped once by fi|I
ai
2 which is f∗

i+1, once by the order
preserving linear homeomorphism fi|I

ai
1 (or zero times if ai = 2) and ai − 2

times by the order reversing linear homeomorphism fi|I
ai
j for 2 < j ≤ ai (or

once by fi|I
ai
1 if ai = 2). Hence we have part (2). Parts (3) and (4) are

obvious. �

Therefore f1 ∈ M̃1,1 and it has an A-register shift. Let J0 = I, J1 = Ia12

and Ji be the interval corresponding to Iai2 if we consider only f1|Ji−1. More
precisely Ji is a periodic interval with period pi such that Ji ∩ T (f1) 6= ∅.

Here is our strategy for obtaining a function f ∈ M1,1 such that f has an
A-register shift.

1. Let F1 = f1. Then {Ji}∞i=1 is our sequence of periodic intervals which
generate A-register shift. Moreover F1|J is linear with slope greater than
1 for any interval such that J ∩ orb(J1) = ∅ (see Claim).

2. Assume that Fn|J is linear with slope greater than 1 for any interval J
such that J ∩orb(Jn) = ∅. We will modify Fn on the set orb(Jn−1) such
that we will obtain new intervals Ji for i ≥ n and our modified function
Fn+1 will be linear with slope greater than 1 on any interval J such that
J ∩ orb(Jn+1) = ∅.
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Figure 4: Illustration how to get F1, F2, F3 for A = {2, 2, 2, . . .}.

3. Finally we will get function f = lim
n→∞

Fn.

Fix n ∈ N. Let orb(Jn) = {Ini }
pn
i=1 where In1 = Jn and Fn(I

n
i ) = Ini+1

(Fn(I
n
pn
) = In1 ). Let orb(Jn+1) equal the set of intervals {Ii,j = [ai,j , bi,j ]}

where 1 ≤ i ≤ pn, 1 ≤ j ≤ an+1, Ii,j ⊂ Ini and bi,j < ai,j+1. Of course
Ini = [ai,1, bi,an+1

].

We have that |Ini | = |Inj | for any i, j and Fn|Ini is either linear with slope
±1 (if i > 1) or “looks like” function fn+1 or f∗

n+1 (if i = 1). (All this is true
for n = 1 and our modification will preserve these properties.)

Let Fn+1|S = Fn|S for S = I \ orb(Jn−1) and we will define Fn+1 on
orb(Jn−1). Take c > 1 and new intervals I∗i ⊂ orb(Jn−1) such that I∗2 = In2 ,
Ini ⊂ I∗i for 1 ≤ i ≤ pi, |I∗i+1| = c|I∗i | for 2 ≤ i < pi and |I∗1 | = c|I∗pi |.
We can choose c so small that the intervals I∗i are pairwise disjoint. Let
Fn+1(I

∗
i ) = I∗i+1 (Fn+1(I

∗
pi
) = I∗1 ) and let Fn+1 be linear outside the intervals

I∗i . Choose a
∗
i,j , b

∗
i,j ∈ I∗i such that

I∗i = [a∗i,1, b
∗

i,an+1
],

a∗i,j < b∗i,j < a∗i,j+1 < b∗i,j+1 for 1 ≤ j < an+1,

b∗i,j − a∗i,j = bi,j − ai,j for 1 ≤ j ≤ an+1,

a∗i,j+1 − b∗i,j = k(ai,j+1 − bi,j) for 1 ≤ j < an+1

for some constant k > 1 and let I∗i,j = [a∗i,j , b
∗
i,j ]. Now we can complete the

definition of Fn+1.

If Fn(Ii,j) = Ii+1,s, then Fn+1(I
∗
i,j) = I∗i+1,s and the graph of Fn+1 on I∗i,j

will be the same as the graph of Fn on Ii,j . (It will be linear with slope 1
unless Ii,j = Jn+1 when it will “look like” fn+2 or f∗

n+2.) And let Fn+1 be
linear outside the intervals I∗i,j . (See figure 4.)
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So Fn+1 is completely defined. Let the new Jn = I∗1 , Jn+1 = I∗1,s (where

old Jn+1 = I∗1,s) and Ji for i ≥ n + 2 be given by F
pn+1

n+1 |I∗1,s. Moreover, the
slopes of Fn+1 may be decreased comparing to the slopes of Fn only on the
set (orb(Jn−1)\orb(Jn))∪ (Jn \orb(Jn+1)) where they were bigger than 1 and
so it is possible to choose c > 1 such that the changes are small enough and
the slopes remain greater than 1. And finally it is obvious that the slopes of
Fn+1 on the set orb(Jn) \ (orb(Jn+1) ∪ Jn) are now greater than c. Hence we
made the required modification.

Moreover we can choose c > 1 sufficiently small such that |orb(Jn)| in-
creases during this modification no more than twice. And obviously for i > n
|orb(Ji)| remains the same. So we made modification on an invariant set
S where |S| ≤ 2(23 )

n−1 and this set remains invariant. This proves that
lim
n→∞

Fn = f exists and is continuous. It is obvious that f ∈ M1,1 and f has

an A-register shift. �

Corollary 5.2.. The function f from Lemma 5.1 has no transitive f -cycle.

Proof. Each register shift and transitive f -cycle are disjoint and they must
contain a turning point. But our f has only one turning point and a register
shift. �

Remark 5.1. For the construction of f ∈ M̃n,c for c ∈ [0, 1], see [1], [4].
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