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Abstract

This paper investigates the family of continuous piecewise monotone
functions which map a closed interval of the real line into itself. For these
maps Preston [1] and Blokh [2] described the asymptotic behavior of the
orbit of a “typical” point. Our results show that if the map is expanding
on its intervals of monotonicity the dominant role is played by transitive
f-cycles. Contrary to this for a “typical” map in a natural closure of
the space of these maps there are no transitive f-cycles. Instead the
behavior is dominated by the register shifts. This result is illustrated
by an example.

1 Introduction

Consider a continuous function which maps a closed interval of the real line
into itself. This gives us a simple dynamical system with discrete time. The
new state of our system is the image of the old one using the given function.
So each starting state determines a whole orbit. We are interested in the
asymptotic behavior of the orbit of a “typical” point. For us “typical” has a
topological rather than measure theoretic meaning.

A function is piecewise monotone if there is a finite partition of our in-
terval such that the function is monotone on each part. If on each of these
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subintervals the derivative is bigger than some number greater than one, then
we show that the “typical” point is attracted by a transitive f-cycle. This
means a periodic interval in which some orbit is dense. The orbits inside this
transitive f-cycle can be very wild. Moreover such a function does not have
any register shift.

On the other hand for a “typical” function from the slightly larger space
of piecewise monotone functions with derivatives greater than or equal to one
(or strictly greater than one) a “typical” point is attracted by a register shift.
Thus the asymptotic behavior of such an orbit is very nice and if we do not
notice small differences, then it looks like a periodic orbit. It follows that the
“typical” function does not have any transitive f-cycle. So one phenomenon
is replaced by the other.

2 Background

Let I =[0,1] and let C(I) be the space of continuous functions which map I
into itself. This space will be endowed with the metric ¢ of uniform conver-
gence.

A function f € C(I) is called piecewise monotone if there is an n > 0 and
a set of points 0 = dp < d1 < -+ < d, < dp4+1 = 1 such that f is strictly
monotone on [dg,dky1] for each k = 0,...,n. A point ¢t € (0,1) is called a
turning point of f if f is not monotone in any neighborhood of ¢. We denote
the set of the turning points of f by T'(f). Let M, be the set of piecewise
monotone functions with the number of turning points less than or equal to
n. Let ¢ > 0,d > 0 and

M, .= {f € My; if f|[a,b] is monotone, then %ij(a) > c} ,
Mnyd = {f € My; if f|[a,b] is monotone, then W > d} .

For f € C(I) define f" (n-th iterate of f) inductively by f°(z) = x and
(for n > 1) f*(z) = f(f"*(z)). The orbit of z € I with respect to f is
the sequence orb(x) = {f™(2)}52,. A closed interval J C I is called periodic
interval with period per(J) = k € N if f*(J) = J and f(J) N fi(J) = 0 for
0 <i#j <k If Jisa point, then it is called a periodic point and Per(f)
denotes the set of all periodic points of f. A point x € I is called eventually
periodic if = ¢ Per(f) and f¥(x) € Per(f) for some k > 1.

Recall that K = UZ;_OI f¥(J) (the orbit of a periodic interval J with pe-
riod m) is called an f-cycle with period m. This f-cycle is said to be transitive
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if there is an orbit of a point which is dense in K. Or equivalently K is tran-
sitive if for any closed S C K such that f(S) C S we have either S = K or
int(S) = 0. Note that any transitive f-cycle must contain a turning point.
Hence a function from M,, can have only n different transitive f-cycles.

Let {K,,}22, be a decreasing sequence (K,+1 C K,) of f-cycles and m,,
be a period of K,. It is easy to see that m, divides m,4; for each n > 1.
We call the sequence {K,}2 ; splitting if m, 11 > m,, for each n > 1. We
say that R C I is a register shift if there is a splitting sequence of f-cycles
{K,}22; such that R =(,_, K,,. We call {K,,}>°; a generator of R. Again
note that any register shift must contain a turning point. Hence a function
from M,, can have only n different register shifts.

Let K be an f-cycle. We define the set of attraction of K by

AK,f)y={zel: f*(z)€int(K) for some n > 0}.

If R is a register shift and {K,,}5° is its generator, then similarly
AR, f) =[] AKn, ).
n=1

Note that (27, A(Ky, f) = N2, A(Ky, f) for any two generators of R. Hence
A(R, f) is well defined. Finally we define the set

Z(f)={z€(0,1); Ie>0Yn>0; f"|(x —e,x + ¢) is strictly monotone}.

Clearly, A(K, f) and Z(f) are open and A(R, f) is a G5 set. Moreover if K
is a transitive f-cycle and R is a register shift, then A(K, f) N A(R,f) =0
and A(K, f)NZ(f) = (. In general it can happen that RN Z(f) # 0 and so
AR, f)NZ(f) # 0. (For more details about the facts mentioned above see [1]
or [2].)

Now we can formulate Theorem A on the asymptotic behavior of a point
under a piecewise monotone map.

Theorem A. ([1], [2]). Let f € M, and K1,...,K, be transitive f-cycles
and Ry, ..., Rs be register shifts. Then the set

A(f) = A(Ky, f)U-- - UA(K,, f)UA(Ry, f)U---UA(Rs, f)U Z(f)
is of type G5 dense in I.

The following results give more information about the behavior of a “typ-
ical” orbit of z € I with respect to f € My, ;.
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Theorem B.. Let f € Mmc for ¢ > 1. Then f has no register shift and
Z(f)=0.

If we consider the space (M, 1, ) we have the following contrary results.

Theorem C.. A typical function from ]\7[,171 has no transitive f-cycle and
Z(f)=0.
Theorem D.. A typical function from M, 1 has no transitive f-cycle and

Z(f) = 0.

3 Residual set in (Mn,l, 0)

We start this section with some auxiliary results. We will not prove all of
these facts. Let n > 1 be fixed and M,, o be the closure of M,, in the space

(€(), o).
Proposition 3.1.. (]\7[,170, 0) is a complete metric space.
Proposition 3.2.. For ¢ > 0 the set Mmc 1s closed in (Mn,m 0).

Proposition 3.3.. For ¢ > 0 the set My, . is of type G5 dense in (M., 0).
PROOF. Let [a,b] be an interval in I. Obviously the sets
Ki(a,b) ={f € My; f'(z) =+c forz € (a,b)}

are closed and nowhere dense. Let {[ag,br]}72, be a sequence of intervals
such that for any interval J C I there is a k > 0 such that [ay,bi] C J. Then
My,e = Mye \ Upeo (K4 (ak, bi) U K_(ay, b)) and proof is finished. O

The following assertion is an easy consequence of Propositions 3.1., 3.2.,
and 3.3..

Lemma 3.4.. If f € M, 1, then Z(f) = 0 and for a typical function from

M,, 1 we have Z(f) = 0.
The following corollary is immediate.

Corollary 3.5.. If f € M,,.1 and R is a register shift, then int(R) = 0.

ProOOF. It suffices to observe that int(R) \ Z(f) is countable for any f €
M, O
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There exist functions in M,, . whose turning points are either periodic or
eventually periodic points. Hence let

Poe={f € Mne; T(f) =AU B,
(ACPer(f)) & (Vo€ BIkeN; fi(z) € A)}.

Lemma 3.6.. If ¢ > 1, then the set P, is dense in (M, ., 0).

PRrROOF. Choose an open set U in Mn,a- By Proposition 3.3. there exists
function f € U N M, . and if we denote the turning points of f by 21 < 23 <
-+ <z (m < n), then without loss of generality we can assume that

f(zi) ¢{0,1} for ie{l,...,m}. (%)

Since ¢ > 1, the set |J;—, f~"(T(f)) is dense in I. Suppose f has at z; a local
maximum (The opposite case is analogous.) The reader can easily verify that
there exists g1 € U N M, such that T'(¢1) = T(f), g1(2;) = f(z;) for j # 1
g1(z1) > f(z1) (see (x)) and g1(z1) € U,—o 91 "(T(g1)). Obviously we have
g¥(21) = 2; for some k > 1 and i € {1,...,m}. Moreover g; can be chosen
such that condition (x) also holds for g;. So we can repeat this procedure for
z2,...,2m and finally we get a function g € U N M, . such that T(g) = T'(f)
and for any z € T(g) there is a k > 1 such that g*(z) € T(g). Hence obviously
g € P, . (See figure 1.) O

Remark 3.1. Ifc € [0,1), then the set P, . is not dense in (M, ., 0).

For what follows let R,, be a finite set of disjoint closed intervals such that
the sum of their lengths is less than 1/m. Analogous to the definition of P, .
for f € M, 1 let fAR,, denote the statement that there is a partition of T'(f)
into two disjoint parts Ay, By such that

(i) for all x € Ay there is J € R, such that z € int(J),
(ii) for all J € R,, there is k € N such that f*(J) C int(J),
(iii) for all z € By there is J € R, and k € N such that f*(x) € int(J).
Let H,, ={f € Mnyl; fAR,, for some R,,}.

Lemma 3.7.. The set H = _, Hy, is of type Gs dense in (M, 1, 0).



REGISTER SHIFTS VERSUS TRANSITIVE f-CYCLES 139

Z1 z9 z3

Figure 1: Functions f and g (dotted).

PRrROOF. By Propositions 3.1. and 3.2. it suffices to show that the set H,, is
open and dense in (M, 1, ). The first property is clear from (i)-(iii) and in
order to prove the second one we will use Lemma 1.6.

Choose an open set U in ]\7[,171. By Lemma 3.6. there is a function f €
UNP, ;1 such that f(T(f)) € (0,1). Let Ay =T(f)NPer(f), By =T(f)\ A4y,
let Cr = {f*(Ay)}2, and let Dy = {f¥(Bf)}2,. Set C;UDs = {x1,...,z,
where ¢ = card(Cy U Df). Then there is a union of disjoint intervals V =

¢ 1 (c;i,d;) such that @; € (¢;,d;) and D7 (d; —¢;) < 1/m. For 0 < a <
min? | {|z;—¢;|, |z;—d;|} we also have V,, C V where V,, = UL, [z; — o, z;+ql.
Let g € C(I) be such that

(iv) g(z) = f(a) for @€ CyUD;,
(v) T(g) = T(f),
(vi) g/(@)| = Lfor @€ Vi,
) g(x) = f(2) for weI\V,
)

(vii

(viii) g|J is linear for any interval J C V' \ V,.
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It is easy to verify that g is unique and g € Mml. We can choose V and « small
enough such that g € U. In addition we have X, = X for X € {4, B,C, D}.
Let Ry, = {[zr — o,z + a]; z € A;}. From (vi) we have ¢g([z — o,z + a]) C
[9(z) — o, g(x) + o] for any = € Cy U D, and so from (iv)—(vi) for the partition
T(g9) = Ay U B, we have that gAR,, is nearly fulfilled. More precisely it is
fulfilled except for (ii) where we have only f*(.J) C J instead of f*(J) C int(.J).

Observe that C, is a finite union of orbits of some turning points, so we
can write Cy = |J;_; orb(z;) where z; € T(g) and orb(z;) Norb(z;) = @ for
any 1 <1i # j <s. Now we will modify ¢ in a neighborhood of x; in order to
get new function a h and a set R,, such that hAR,,.

Let k; = per(z;) for 1 <14 < s. Because z; € T(g) it is easy to see from
(vi) that either

9" ([zi — a, i + a]) = [1; — a, 3] (1)

or

9" (2 — a, i + a) = [i, 2 + 0. (2)

Suppose (1). Then obviously for any x € orb(z;) NT(g) if ¢*([zr —a,x+a]) C
[z; — o, z; + o] for some k > 1, then ¢*([x — o,z + a]) C [2; — a, z;]. Hence
for any J € R, there is k > 0 (we will take the minimal one) and 1 <1i < s
such that
g"(J) C [z — o, 2] (3)
Similarly for (2).
Because f € M, ; we have that

9(di) — g(zi + @)
di — ({EZ —+ Oé)

’g(cz') —g(xi —a)
o~ (zi—a)

>1 and ‘

So there is 0 < A < min{e, (z; — &) — ¢;,d; — (x; + «)} such that for any
1<1<s

9(di) — g(zi + @)

g(ci) — g(z; — a)

1 d
(1171'—01+/\)—Ci > an

> 1. (4)

Now we can define function h and a new set R,,. Let
(ix) h(z) = g(z) for any z € I\ J]_,(ci, d;),

(x) i

1

(xi) i

i

, then h(z) = g(z+ A) for any = € [z, —a — A\, z; + a — A,
, then h(z) = g(z — A) for any = € [z, —a+ A\, z; + a + A,

, then h is linear on [¢;, x; — o — A\] and [z; + a — A, d;],

(1)
£(2)
(1)
f (2), then h is linear on [¢;, z; — a + A] and [x; + a + A, d;],
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Figure 2: Functions g and h (dotted).

and in R,, we replace interval [x; — a,x; + o] by [z; —a — A\, z; + a — A] in
case (1) and by [x; — a + A\, 2; + a + A] in case (2). (See figure 2.)

From (4) it follows that h € M, ; and we can choose A > 0 small enough
such that h € U.

Forl1<i<slet z; =a; —Aand J; = [x; —a — \,z; + a — A] in case (1)
orz; =z; + Aand J; = [x; — a+ A\, x; + o+ A] in case (2).

Let B, = By and Ay, = (A, \U;_, zi) U{z}{_,. We have T'(h) = A, UB,,
and Ay N By, = . Moreover, for any « € By, there is k > 1 (we will take the
minimal one) such that g¥(x) = x; for some 1 < i < s. But then h¥(z) = z;
and z; € intJ for some J € R,,. So condition (iii) is fulfilled and condition
(i) is obvious. Only (ii) remains.

From (3) we have that for any J € R,, there is k > 0 such that h*(J) C J;
for some 1 <4 < s. But h(J) = g(J) for any J # J; and h(J;) = g([z; — a, 2+
a]). Hence if J = J;, then h*(J;) C int(J;) by (1), (2). If J # J; and
x € JN Ap, then h¥ (J) C [z —a+ N\, 2+ a — A] C int(J) by (vi), (x). So we
have hAR,,. [l
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4 Proofs of Theorems

Theorem B.. Let f € Mmc for ¢ > 1. Then f has no register shift and
Z(f)=0.

PROOF. (Compare with [3].) By Lemma 1.4 and Corollary 1.5 it suffices to
show that there is 7 > 0 such that the length of f*(J) is greater than 7 for
any interval J C I and a suitable k¥ € N (k = k(J)). Let ¢ > 2. Then
any interval mapped by f™ will expand while it does not contain at least two
points of T'(f™). O

Theorem C.. A typical function from ]\7[,171 has no transitive f-cycle and

Z(f)=0.

PROOF. Consider f € H (see Lemma 3.7.). Assume that f has a transitive
f-cycle K. Then K NT(f) # 0. And by (i)—(iii) there exists a closed nonde-
generate interval J C K such that f¥(.J) C J for some k € N and orb(J) # K.
But this contradicts our assumption that K is transitive f-cycle. Second part
follows from Lemma 3.4.. O

Theorem D.. A typical function from M, 1 has no transitive f-cycle and

Z(f) = 0.

PROOF. The assertion easily follows from Propositions 3.1.-3.3. and Theorem
C. O

5 Construction of a Function From ), ; That Has No
Transitive f-cycle

Let A= {a;}72, and p; = H;Zl a;. We say that function f has an A-register
shift if there is a sequence {J;}52; of subintervals of I such that J; is periodic
with per(J;) = p; and J;41 C J; for all ¢ € N.

We denote by |S| the Lebesgue measure of a set S, by conv(S) the convex
hull of S and by d(S1, S2) the distance between the sets Sy, S2. Moreover, we
say S1 < Se if x <y for any x € 51, y € Ss.

Lemma 5.1.. For any A = {a;}52, there is f € My 1 such that f has A-re-
gister shift.

PRrROOF. Fix an A = {a,};2,. Without loss of generality we can assume that
a; is a prime number for all 7 € N.
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Let a € N be prime. If a > 2, then define ¢: {1,...,a} — {1,...,a} by

1
v(1) = 2a+1),
P(i) =a+2—1i for 1<i§%(a+1),
Y(i)=a+1—1i for %(a+1)<i§a,

and if a = 2, then simply ¥ (1) = 2 and ¥(2) = 1.
Let {I#}%_, be the set of subintervals of I = [0,1] such that

I = conv (O If) ,
i=1

|13 = |17 for 1<14,5<a,
It < I for 1<i<a,
d(Ig,I,L{1+1) < d(I’Z(Z)7I’l7J(’L+1)) fOI' 1 S 7 < a.

Of course this is possible only if a > 2. If a = 2 let I3 = [0, 3], I? = [2,1].
This change in order of indexing saves some troubles when a = 2.

We can assume that > 7, [I¢| < 2. Let g, be a continuous function such
that

o g, (If) = Ii(i) forl1 <i<a,

o go|I¢ is linear for ¢ # 2,

® go|J is linear for any interval J C I with JNI¢ =0 fori=1,...,a,
e we do not specify g,|I¢,

e g, can have only one turning point.

(See figure 3.)

Let f € C(I) and f*(x) = f(1—x) for z € I. (The graph of f* is symmetric
to the graph of f in the axis z = 3.)

Now for i > 1 let f; be a function such that f; = g,, and moreover f;|I5°
“looks like” function f; ; (this mean that hy o f;|I3* o ho = ff | where h; is
linear increasing mapping from I7¢ onto I and hy is linear increasing mapping
from I onto I3").

Henceforth, if we say “slope” we mean in fact “absolute value of the slope”.

Claim. Function f; has the following properties:
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Figure 3: Possible functions g2, g3 and gs.

(1) filJ is linear with slope greater than 1 for any interval J C I such that
JNIF =0 foralli=1,..., a4,

(2) If Ai ={a;}52,;, then f; has A;-register shift,
(3) Ai-register shift of f1 is generated by {J;}32, where |orb(J;)| < (3)7,
(4) f; has a unique turning point.

PROOF. Part (1) is obvious because g,(0) > 0 and so there is no difficulty even
if a; = 2. Interval I3 is periodic with period a; and f;** |} is exactly function
fi+1 because I Ja is mapped once by f;|I5* which is f; |, once by the order
preserving linear homeomorphism f;|I7* (or zero times if a; = 2) and a; — 2
times by the order reversing linear homeomorphism f;|I7* for 2 < j < a; (or
once by f;|I" if a; = 2). Hence we have part (2). Parts (3) and (4) are
obvious. O

Therefore f; € ]\;[1,1 and it has an A-register shift. Let Jy = I, J; = I3*
and J; be the interval corresponding to I3* if we consider only f1|J;—1. More
precisely J; is a periodic interval with period p; such that J; N T(f;) # 0.

Here is our strategy for obtaining a function f € Mj ; such that f has an
A-register shift.

1. Let Fy = f1. Then {J;}$2, is our sequence of periodic intervals which
generate A-register shift. Moreover F}|J is linear with slope greater than
1 for any interval such that J Norb(J;) =0 (see Claim).

2. Assume that F},|J is linear with slope greater than 1 for any interval J
such that JNorb(J,) = . We will modify F}, on the set orb(J,—_1) such
that we will obtain new intervals J; for ¢ > n and our modified function
F,+1 will be linear with slope greater than 1 on any interval J such that
JN Orb(Jn+1) = @



REGISTER SHIFTS VERSUS TRANSITIVE f-CYCLES 145

v
M

W

Figure 4: Tllustration how to get Fy, Fy, F5 for A= {2,2,2,...}.

3. Finally we will get function f = nh_)rrgo F,.

Fix n € N. Let orb(J,) = {I]'}/", where I = J, and F,(I") = I,
(Fo(Iy,) = IT'). Let orb(Jnt1) equal the set of intervals {I; ; = [a;;,bi ]}
where 1 < ¢ < p,, 1 < j < apt1, Liyy C I]' and b;; < a41. Of course
Izn = [al717bl7an+1]'

We have that |I]'| = |I7| for any 4, j and F,,[I}* is either linear with slope
+1 (if ¢ > 1) or “looks like” function f,41 or f; ; (if i = 1). (All this is true
for n = 1 and our modification will preserve these properties.)

Let Fp41|S = F,|S for S = I\ orb(J,—1) and we will define F,;1 on
orb(J,—1). Take ¢ > 1 and new intervals I C orb(J,_1) such that Ij = I},
I C Iy for 1 < i < pyi, |IF 4| = eI} for 2 < i < p; and |I7] = c|I}].
We can choose ¢ so small that the intervals I are pairwise disjoint. Let
Fn+1(I- )= I;‘Jr1 (Fnt1(Ip,) = I7) and let F, 41 be linear outside the intervals

. Choose a7 ;, b ; € I such that

I’L* [ zlvbran+1]
;<bi;<aiq <bijq for 1<j<any,
bﬂ'ﬁ‘_ fj:b',j—ai,j for 1<j <anta,
1]+1 b = k(al j+1 — bi,j) for 1 <j<anpt1
for some constant k£ > 1 and let I;'; = [a] ;, b} ;]. Now we can complete the

definition of Fj, 1.

If F,(1; ;) = Lix1,s, then Fp 44 (IZ*]) = I}, ; and the graph of Fy,1 on [},
will be the same as the graph of F,, on I; ;. (It will be linear with slope 1
unless I; j = Jp41 when it will “look like” fy, 4o or fn+2.) And let Fj, 41 be

linear outside the intervals I;';. (See figure 4.)
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So Fp+1 is completely defined. Let the new J, = Iy, Jo41 = I7 (where
old J, 1 = If,) and J; for i > n + 2 be given by F}}1'|I . Moreover, the
slopes of F,, 11 may be decreased comparing to the slopes of F), only on the
set (orb(J,—1)\ orb(J,))U(J,, \ orb(J,+1)) where they were bigger than 1 and
so it is possible to choose ¢ > 1 such that the changes are small enough and
the slopes remain greater than 1. And finally it is obvious that the slopes of
F, 41 on the set orb(J,) \ (orb(Jy4+1) U Jp,) are now greater than ¢. Hence we
made the required modification.

Moreover we can choose ¢ > 1 sufficiently small such that |orb(J,,)| in-
creases during this modification no more than twice. And obviously for i > n
lorb(J;)| remains the same. So we made modification on an invariant set
S where |S| < 2(3)"7! and this set remains invariant. This proves that

lim F,, = f exists and is continuous. It is obvious that f € M;; and f has
n— o0

an A-register shift. O
Corollary 5.2.. The function f from Lemma 5.1 has no transitive f-cycle.

PROOF. Each register shift and transitive f-cycle are disjoint and they must
contain a turning point. But our f has only one turning point and a register
shift. O

Remark 5.1. For the construction of f € M, . for c € [0,1], see [1], [4].
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