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Registration of Challenging Image Pairs:
Initialization, Estimation, and Decision

Gehua Yang, Student Member, IEEE, Charles V. Stewart, Member, IEEE,

Michal Sofka, Student Member, IEEE, and Chia-Ling Tsai, Member, IEEE

Abstract—Our goal is an automated 2D-image-pair registration algorithm capable of aligning images taken of a wide variety of natural

and man-made scenes as well as many medical images. The algorithm should handle low overlap, substantial orientation and scale

differences, large illumination variations, and physical changes in the scene. An important component of this is the ability to automatically

reject pairs that have no overlap or have too many differences to be aligned well. We propose a complete algorithm including techniques

for initialization, for estimating transformation parameters, and for automatically deciding if an estimate is correct. Keypoints extracted

and matched between images are used to generate initial similarity transform estimates, each accurate over a small region. These initial

estimates are rank-ordered and tested individually in succession. Each estimate is refined using the Dual-Bootstrap ICP algorithm,

driven by matching of multiscale features. A three-part decision criteria, combining measurements of alignment accuracy, stability in the

estimate, and consistency in the constraints, determines whether the refined transformation estimate is accepted as correct.

Experimental results on a data set of 22 challenging image pairs show that the algorithm effectively aligns 19 of the 22 pairs and rejects

99.8 percent of themisalignments that occur when all possible pairs are tried. The algorithm substantially out-performs algorithms based

on keypoint matching alone.

Index Terms—Image registration, feature extraction, iterative closest point, radial lens distortion, decision criteria, keypoint.

Ç

1 INTRODUCTION

THIS paper addresses the problem of developing an
automated image-pair registration algorithm that can

work on a wide variety of image types, scenes, and
illumination conditions. Much of this variety is captured in a
data setof 22 imagepairswehavegathered, someofwhichare
shown in Fig. 1.1 The set includes image pairs taken of indoor
and outdoor scenes, in natural andman-made environments,
at different times of day, during different seasons of the year,
and using different imaging modalities. It includes image
pairswith lowoverlap (e.g., 2percent), substantialdifferences
in orientation (90 degrees), and large changes in scale (up to a
factor of 6.4). A general-purpose registration algorithm
should be able to align each of these image pairs with high
accuracy. Moreover, such an algorithm should be able to
indicate that two images cannot be aligned, either when the
images truly do not overlap or when there is insufficient
information todetermine an accurate, reliable transformation
between images. Such a registration algorithm will have

numerous applications, ranging frommosaic construction to
change detection and visualization.

Three primary technical challenges must be addressed to
solve this problem: initialization, estimation, and decision.

. While automatic initialization is not a significant
problem for aligning images in a video sequence or
for multimodal registration of images taken from
roughly pre-aligned sensors, it is a major concern for
more general-purpose registration.

. In combination with initialization, the estimation
process must tolerate position, scale, orientation, and
illumination differences. Moreover, estimation must
accommodate the possibility that there is no relation-
ship between the intensities for a large fraction of the
pixels in the two images. For example, in the Summer-
Winter pair from Fig. 1, snow on the roofs in winter
produces homogeneous intensity regions, whereas
these roofs appear as dark, textured regions in the
summer image (Fig. 4). Because of this, an effective
estimation technique should automatically and adap-
tively exploit what is consistent between the images.

. Decision criteria are required not only to choose
among different estimates obtained from different
starting conditions, but also to decide when the
images may not be aligned at all. The need for
effective decision criteria is particularly acute when
handling low overlap and large changes in orienta-
tion, illumination, and scale due to the extremely
large search space of initial estimates.

1.1 Related Techniques in Registration

The literature on image registration is large; see [6], [25],
[54] for reviews. We focus our attention here on four classes
of methods that appear most appropriate for the general-
purpose registration problem being addressed.
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1.1.1 Feature-Based Methods and ICP

Our first class of prior techniques is feature-based methods

and the Iterative Closest Point (ICP) algorithm [5], [12], [13].

Starting from an initial estimate, the ICP algorithm itera-

tively 1)maps points (features) from themoving image to the

fixed image, 2) finds the closest fixed image point for each

mapped point, and 3) re-estimates the transformation based

on these temporary correspondences. In registration of range

data, the sensor data points (together with estimated

normals) are the features. In alignment of intensity images,
feature extraction is applied to obtain the points matched in
ICP [11], [22]. There are two common problems with feature-
based methods and ICP: 1) ICP has a narrow domain of
convergence and, therefore, must be initialized relatively
accurately and 2) feature extraction can be unreliable and
overly sensitive to the choice of parameters and the image
content. (We will address both issues.) Finally, several
papers [14], [21], [32] have proposed Expectation Maximiza-
tion (EM) algorithms where multiple correspondences per
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Fig. 1. Some images from our 22-image pair data set. The three “Downtown” images produce three of our test pairs.



feature are simultaneously considered. While this approach
improves the domain of convergence of ICP inmany cases, it
has not been shown to handle the low overlap and high
outlier fractions that occur in our challenging data set. We
discuss this further in Section 7.

1.1.2 Keypoint Indexing Methods

While ICPcorrespondencesarebasedongeometricdistances,
keypointcorrespondencesarebasedonappearancesimilarity
measures. Keypoint methods have received growing atten-
tion because of their demonstrated ability to tolerate low
image overlap and image scale changes. These methods start
with keypoint detection and localization, followed by
computation of the descriptor that summarizes the image in
a region around the keypoint. Existing extraction algorithms
are based on approaches ranging from the Laplacian-of-
Gaussian operator [31], information theory [28], Harris
corners [36], and intensity region stability measures [34]. A
detailed comparison can be found in [38]. Region descriptors
are based on steerable filters [19], moment invariants [20],
shape contexts [3], image gradients [31], and Haar wavelets
[8]. They are usually invariant to similarity or affine
transformations of the image, as well as linear changes in
intensity. A comparison of descriptors can be found in [37].

Keypoint matching has been applied to fundamental
matrix estimation [34], multiview matching [43], [52], regis-
tration [7], and recognition [16], [17]. Often these techniques
use minimal-subset random-sampling methods [7], [34]. (In
essence, this combines our initialization and estimation
steps.) Statistical tests of randomness based on the number
of overall and consistent keypoint matches are then used to
decide if the transformation is correct [7] (the decision
criteria). While this approach has all of the steps needed for
a general-purpose registration system, it has important
limitations for the types of image pairs considered in this
paper. Most importantly, experiments on our data set show
that keypoint indexing and matching methods only produce
a small number of correct matches, occasionally none, and
sometimes fewer than10out of the top50matches. Findingan
accurate estimate in this case is either impossible or requires
an expensive, combinatorial search in candidatematch sets. It
is possible that more sophisticated keypoint detection,
description, and matching methods will make this overall
approach viable for such challenging image pairs, but this is
not the direction taken in this paper.

1.1.3 Mutual Information

The third class of methods is based on mutual information
(MI) [33], [53]. MI registration is primarily designed for
multimodal alignment and has been used extensively in
medical imaging applications [41], but also in other areas as
well [18]. For the current problem, it is less useful than it
might first appear. First, algorithms based on MI [18], [40]
are only estimation techniques and include neither initi-
alization nor decision techniques. The former is usually not
a problem in medical applications and the latter is often left
to human judgment. Moreover, MI minimization proce-
dures are quite sensitive to local minima, a crucial concern
when aligning low-overlap image pairs.

1.1.4 Direct Methods

A fourth class of techniques involves the direct minimization
of intensity differences between images [1]. These methods
work by using intensity differences and image gradients to

compute an update to the estimate of the aligning transfor-
mation and then applying this update to warp one image on
top of the other. Multiresolution techniques are used to
accommodate larger initial misalignments [4]. The approach
has been extended to handle multisensor data by computing
and normalizing derivatives in four directions as the
“intensity” at each pixel [27]. These techniques require good
initialization, althoughcoarse searchesof the translation-only
parameter space have sometimes proven effective [42].
Moreover, direct methods have not yet been demonstrated
on registration problems involving substantial scale and
orientation differences between images. Finally, no decision
criteria are associated with these methods.

1.2 Approach

We propose an end-to-end registration algorithm—actually
a system of algorithms—for aligning pairs of images using
parametric global transformation models, building heavily
on existing techniques. We use our data set both to carefully
evaluate the main components of our algorithm and to
demonstrate its overall effectiveness. The primary novelties
of our work are in the construction of the overall algorithm,
the design and interrelationship of the components, and the
success of the system and the components. As an illustra-
tion of this, the alignment process is driven by image
features extracted using auto-correlation matrices [44],
which have been widely used in Harris corner detectors
and its variants [2], [23], [36]. Our implementation produces
edge-like as well as corner-like features distributed
throughout the images, even in extremely low-contrast
regions. By stressing dense coverage of features in images,
we ensure that features will nearly always be available,
trusting the robustness of the matching and estimation
algorithms, as well as the decision criteria to avoid the
effects of inconsistencies between images. Thus, the novelty
is in tailoring feature extraction for general-purpose
registration rather than feature extraction per se.

As mentioned earlier, the three primary components of
the system are the initialization algorithm, the estimation
technique, and the decision criteria:

. The initialization method uses extraction and match-
ing of keypoints [31]. But, unlike current techniques,
it does not attempt to combine matches in any way.
Instead, each match is used to generate an initial
similarity transformation that is accurate only in a
small region surrounding the matched keypoints
from each image. There are two reasons for this: first,
as suggested above, for challenging image pairs, a
relatively small fraction of keypoint matches is
correct—too small for effective use of minimal-
subset random sampling search techniques. Second,
for the keypoint matches that are correct, our
growth-and-refinement-based estimation procedure
usually aligns the images accurately. Both reasons
will be illustrated experimentally.

. The estimation technique starts with the initial local
regions and associated transformation estimates,
treating each one individually and in succession.
The goal for each region and estimate is to expand the
region to cover the entire overlap between images
while refining the estimate each time the region
changes. This can be thought of as keeping the
estimate close to the optimum as the problem grows
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in complexity. At the same time, as more information
is incorporated, it may be possible to switch to a
higher-order transformation model that more accu-
rately describes the mapping of larger image regions.
These intuitions are realizedbygeneralizing theDual-
Bootstrap ICP algorithm, which we proposed for
retinal image registration [48]. Several generalizations
are needed to make this work. The most important is
the use of generic features, as discussed above, in
place of detected blood vessels to drive registration.
Other enhanced techniques include bidirectional,
across-scalematching between images, region growth
in both images, use of a more general model selection
technique, and an estimation technique that accounts
for variations in feature location uncertainty. It is
interesting to note that these generalizations allow the
newalgorithm to handle some retinal image pairs that
the original algorithm could not.

. The decision technique determines if an estimate
generated by the Dual-Bootstrap algorithm is indeed
a correct alignment of the two images. The technique
combines novel decision criteria that measure
accuracy, consistency, and stability in the alignment.

The overall procedure takes an ordered sequence of initial
estimates (generated from keypoint matching) and applies
Dual-Bootstrap ICP to each in succession. Following the
convergence of each Dual-Bootstrap estimate, the decision
criteria are applied. If the estimate passes these tests, it is
accepted as correct and the two images are considered
registered. Otherwise, the process continues to the next
initial keypoint estimate. It stops with a failure if none
succeed. The complete algorithm will be referred to as the
Generalized Dual-Bootstrap ICP—GDB-ICP for short.

The remainder of this paper describes the details of GDB-
ICP and then evaluates it on our data set of challenging image
pairs (Fig. 1). The experimental analysis demonstrates the
overall performance of the algorithm and explores the
significance of many of the individual components and
design decisions. Importantly, this includes testing not only
on the image pairs that overlap and therefore should be
registered, but also on all possible image pairs, including
thosewith no overlap. The paper concludeswith a discussion
of the strengths and limitations of GDB-ICP and its relation-
ship to other techniques.

2 INITIALIZATION

Our initialization method is based on Lowe’s multiscale
keypoint detector andSIFTdescriptor [31]. This hasproven to
be the most effective in the experimental evaluation of [37].
Wehaveusedbothourown implementationand theoneused
in the above evaluation with approximately equal success.
We have also used affine-invariant multiscale Harris corners
[36] and again the differences in results were minor. The
results reported here used the implementation from [37].

Here is a summaryof the initializationmethod. EachLowe
keypoint is a local maximum of the magnitude of the
Laplacian-of-Gaussian operator in both spatial and scale
dimensions. A neighborhood is established at each keypoint,
with size determined by the keypoint scale and orientation
determined by the local gradient direction. The intensity
gradient vectors within this neighborhood are collected in
histograms to form a 128-component SIFT descriptor vector.
All SIFT vectors are stored in a spatial data structure, one for

each image. Keypoint matching between images occurs by
taking the keypoints from one image and using their
descriptors to index into the data structure for the other
image. The descriptor distance, measured as the Euclidean
distance between vectors, is computed for each candidate
match. The two closest matches for each descriptor are found
and the ratio of the distances to the closest and second closest
is calculated. Lowe establishes an upper bound threshold on
this ratio of 0.8 and considers only matches below this
threshold. Instead, we sort the matches by the ratio and test
the top N in order, stopping when GDB-ICP produces an
estimate that the decision criteria accept or when all
N matches have been tested unsuccessfully. We have found
N ¼ 50 to beagood, conservative choice. The initial similarity
transformation is established from the positions of the two
keypoints, the orientations of their dominant intensity
gradients, and their scales (Fig. 3). The initial bootstrap region
is a square centered at each keypoint location,with halfwidth
30þ 3si, where si is the scale of the ith keypoint out of all
detected ones in the image. This width setting ensures that
there are enough constraints for Dual-Bootstrap to start
successfully for keypoints of various scales.One initial region
is generated on each of the two images, centered at the
keypoint location. Together with the initial transformation,
the initial regionsareprovidedas input to theDual-Bootstrap.

One important consideration is why keypoint descriptors
designed only for invariance to linear changes in intensity
should be useful in multimodal image registration. Indeed,
as we will show experimentally, keypoint matching is the
least successful component of our algorithm. On the other
hand, our algorithm relies on finding only one correct
keypoint match and, in generating this match, the descrip-
tors do not have to match exactly. Instead, they must only
be distinct from other matches. Furthermore, local intensity
differences between analogous keypoints in different mod-
alities are sometimes well-approximated by linear transfor-
mations. These two observations explain why matching of
Lowe keypoints successfully generates at least a few correct
matches on a variety of multimodal pairs.

3 FEATURE EXTRACTION

The Dual-Bootstrap procedure is feature-driven for two
reasons. First, matching image features provides direct
measurement of the geometric alignment error. This is
needed to compute the statistics that drive the growth,model
selection, and decision processes. The second reason is
motivated by the changes seen between images that must
be aligned.Muchof the image texture anddetailsmay change
between images—e.g., snow covering rooftops, leaves miss-
ing, textured regions falling into deep shadows—but
structural outlines usually remain unchanged (Fig. 4). These
outlines, large or small, can be captured by properly
extracted features.

As discussed in the introduction, the primary considera-
tion in designing the feature extraction method is not
obtaining a complete or a perceptually-significant set of
features. It is solely to extract features useful for driving the
alignment process. Because of this, our goal is a feature-
extraction method that 1) does not depend on thresholds or
parameters that must be tuned to individual image content,
2) produces repeatable features, and 3) distributes features
throughout the image rather than concentrating them in the
image regions of highest contrast.
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Two different types of features are extracted—corner
points and face points. Corner points provide two constraints
on registration, whereas face points, because of tangential
position ambiguity, provide only one.On the other hand, face
points are more densely distributed. We will evaluate the
contribution of each feature type to the registration process in
the experimental section. Both corners and face points are
extracted in scale-space with scale increasing in half-octave
steps (e.g., scales 1;

ffiffiffi

2
p

; 2; 2
ffiffiffi

2
p

; . . . ), with no combination
across scales. Features at all scales are used simultaneously
during registration. The following details of the feature-
extraction algorithm are presented for a single scale.

We use a single response measure for both feature types.
At each pixel location x at scale �, the intensity gradient,
rIðxÞ, is computed.Aweightedneighborhoodouter product
(auto-correlation) matrix is then computed,

MðxÞ ¼
X

y2NðxÞ
wðx� yÞ ðrIðyÞÞðrIðyÞÞ>; ð1Þ

where w is a Gaussian weight function with standard
deviation � and the neighborhood size is approximately 3�.
Next, the eigen-decomposition is computed: MðxÞ ¼
P

i¼1;2 �iðxÞ�iðxÞ�iðxÞ>,with�1ðxÞ � �2ðxÞ. Potential corners
are at pixels where �1ðxÞ=�2ðxÞ > ta. This criterion is similar
to the Harris and Stephens corner detector [23]. Potential face
points are at pixels forwhich �1ðxÞ=�2ðxÞ � ta. Decision value
ta has been experimentally set to 0.1, although the choice of
values is not crucial. A strength is assigned to each point:
mðxÞ ¼ traceðMðxÞÞ.

The next step is designed to make the final selection of
feature points adaptive to local image contrast. First, a very
low threshold, tm ¼ 1, is applied to the strength to eliminate
points that are obviously noise. The result is illustrated in
Fig. 5a. The next step, local pruning, starts by computing the
median �m and median absolute deviation (MAD) [49] �m of
the strength values mðxÞ in a coarse set of overlapping
neighborhoods (30� 30 pixels) throughout the image. Then,
pixels with mðxÞ < �m þ 0:5�m are eliminated from further
consideration. As the final preliminary step, nonmaximum
suppression is applied at each point—in 2D for potential
corner points and in 1D, along thedirection of the eigenvector

�2, for face points—and surviving point locations are
interpolated to subpixel accuracy. Fig. 5b shows an example
result.

The final steps are to extract the actual features, generating
corners and face points independently. Points surviving the
previous step are sorted bymðxÞ values. The highest strength
point is labeled as a feature. Remaining points within a small
neighborhood are eliminated. This continues until a max-
imum number of features—determined from the size of the
images—is extracted or the list is exhausted. This produces a
set of features which we call the matchable features (Fig. 5c).
The procedure is repeated starting from the noise threshold-
ing step with the elimination neighborhood doubled in size,
half the allowed number of features, and a threshold
requiring mðxÞ > 2tm. This produces a set of driving features
(Fig. 5d). As will be explained later, driving features are
transformed and matched against matchable features, simi-
larly to [46]. Since driving features must pass stricter criteria
thanmatchable features, it is less likely that a driving feature
inone imagewill bemissedas amatchable feature in theother
due to random effects.

An example of extracted driving and matchable feature
sets at different scales is shown in Fig. 6. Features are
spread throughout the image and summarize the local
image structure: A corner is placed in regions containing
substantial intensity variations in all directions; a face point
occurs where the region contains variation in one direction.

4 GDB-ICP ESTIMATION

The estimation step of the Generalized Dual-Bootstrap ICP
(GDB-ICP) algorithm startswith an initial similarity transfor-
mation generated from keypoint matching, together with the
initial bootstrap region surrounding the keypoint location in
each image. The algorithm iterates steps of 1) refining the
current transformation inside the current bootstrap regionR,
2) applying model selection to determine if a more sophisti-
cated model may be used, and 3) expanding the region,
growing inversely proportional to the uncertainty of the
mappingontheregionboundary (Fig. 2).Theentirealgorithm
is outlined in Fig. 7.
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Fig. 2. Example steps of the Dual-Bootstrap growth and refinement process on the Day-Night Summer pair. The checkerboard images above show
the alignment results and bootstrap region for iterations 0, 3, 6, and 9. The yellow rectangle outlines the bootstrap region in one image. Within this
region, where the computation is concentrated, the alignment is generally accurate. Outside the region, especially for the small regions early in the
computation, the alignment tends to be inaccurate. As the bootstrap region expands, more and more of the images are accurately aligned. The final
alignment is shown in Fig. 10. (a) Initialization. (b) Third iteration. (c) Sixth iteration. (d) Ninth iteration.



4.1 Notation

The two images are Ip and Iq. The matchable corner and face
points are Pc ¼ fpcg and Pf ¼ fpfg from Ip and Qc ¼ fqcg
andQf ¼ fqfg from Iq. Driving feature sets are subsets ofPc,
Pf , Qc, and Qf . Points from all scales are combined to form
these sets. Abusing notation, p and q represent both the
feature and its location. Each featurehas associatedwith it the
scale, s, at which it was detected and each face point has a
normal direction, ��.

The forward transformation of point locationx from Ip onto
Iq is Tðx; ��pqÞ, where ��pq is the parameter vector to be

estimated. An estimate is �̂�pq and its covariancematrix is �̂��pq .

The backward transformation from Iq onto Ip isTðx; ��qpÞ, with

an estimate �̂�qp and covariance estimate �̂��qp . Finally, the

regions over which the transformation is being estimated are

called the “bootstrap” regions and are denoted by Rp on

image Ip and Rq on image Iq. Each is defined as an axis-

aligned rectangular box on its own image.

4.2 Matching within the Bootstrap Region

The transformation is refined within current bootstrap

regions Rp and Rq, ignoring everything else in the two

images. Recall that, in standard ICP, the current transfor-

mation is used to generate a new set of correspondences; in

turn, these correspondences are used to generate a new

transformation and this process iterates. By contrast, GDB-

ICP proceeds to model selection and region growing before

selecting a new set of matches.
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Fig. 5. Intermediate results of the feature extraction process: (a) Initial
corners (shown with circles) and face points (shown with line segments
along the eigenvector corresponding to the larger eigenvalue) after
applying the threshold tm (only one of every three is shown in this
display because they are so dense), (b) corners and face points after
adaptive local pruning, (c) “matchable” corners and face points, and
(d) “driving” corners and face points.

Fig. 4. Examples of substantial variations between image regions due to

illumination differences, scale differences, and physical changes (snow).

Fig. 3. Initial keypoint match and side-by-side alignment for a summer-
winter pair. The image region on the right has been scaled by a factor of

2.25 and there are substantial illumination, blurring, and physical changes

(snow) between the regions.

Fig. 6. Example of “matchable” and “driving” features and bidirectional matching. In matching, “driving” features from the (a) (cropped) winter image
are mapped onto the (b) summer image and matched against the “matchable” features. Symmetrically, “driving” features from the (c) summer imag

are mapped onto the (d) winter image and matched against the “matchable” features. Although not illustrated in this figure, matching may occur

between features at different scale-space scales.



GDB-ICP uses bi-directional matching. This provides
more constraints and helps to produce more numerically
stable estimates, especially for small bootstrap regions. A
driving feature p is mapped from Ip to Iq, producing
p0 ¼ Tðp; �̂�pqÞ. The three closest matchable features (of the
same type) top0 are found in Iq and the bestmatching feature,
q, is chosen from among these three based on a similarity
measure described below. The correspondence pair ðp;qÞ is
added to match sets Cpqc (corners) or Cpqf (faces). Reversing
order, thepair ðq;pÞ is also added toeitherCqpc orCqpf . The same
procedure is used in the opposite direction to generate
correspondences between driving features from Iq and
matchable features from Ip. Once these matches are gener-
ated, the forward and backward transformation estimates �̂�pq

and �̂�qp are calculated. Since these use the same set of
constraints, just with the feature roles reversed, the two
transformation estimates are close to being inverses of each
other (typical rootmean square error of 0.1 pixels or less). The
remainder of the discussion focuses on the calculation of �̂�pq

using Cpqc and Cpqf .
A similarity measure is used both in choosing between

matches for a feature and in weighting the chosen match
during estimation. For corners, it depends only on the
feature scales, but, for face points, it depends on orienta-
tions as well. For a feature point p, let sp0 be the feature scale
after the transformation is applied. For a face point, let ��p0

be the transformed normal direction. The similarity
measures for a prospective match with q, with scale sq
and (for a face point) normal ��q, are

wc ¼ minðsp0=sq; sq=sp0Þ and

wf ¼ minðsp0=sq; sq=sp0Þ � j��>p0��qj

for corners and face points, respectively. This biases the
selection toward features at similar (mapped) scales and
orientations and allows for contrast reversals in face point
matches as well.

4.3 Estimation

Estimation is applied to the currentmodel and, as thebasis for
model section (Section 4.4), to higher-order models under
consideration. This section describes estimation for a single
model.

Before defining the transformation estimate objective
function, we need to define the error distances. For corner
points, these are Euclidean distances, whereas, for face
points, these are normal distances:

dcðp;q; ��pqÞ ¼ kTðp; ��pqÞ � qk=sq and

dfðp;q; ��pqÞ ¼ jðTðp; ��pqÞ � qÞ>��qj=sq:

In each case, the distance is normalized by the scale at
which the feature is detected, reflecting the fact that feature
location uncertainty increases with increasing scale. This
makes distances of features at different scales approxi-
mately comparable.

Combining the foregoing, the objective function for

estimating transformation parameters ��pq from a fixed set

of correspondences is

Eð��pq; Cpqc ; Cpqf Þ ¼
X

ðpi;qiÞ2Cpqc
wc;i�ðdcðpi;qi; ��

pqÞ=�cÞ

þ
X

ðpi;qiÞ2Cpqf

wf ;i�ðdfðpi;qi; ��
pqÞ=�fÞ;

ð2Þ
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Fig. 7. Outline of the generalized dual-bootstrap algorithm.



where �ð�Þ is the Beaton-Tukey [26], [35], [49] robust loss
function

�ðuÞ ¼
a2

6
1� 1� ðuaÞ

2
� �3

� �

; juj � a

a2

6
; juj > a:

8

<

:

ð3Þ

Following standard usage, the constant a is set to 4, which
means that normalized alignment error distances beyond 4�
have a fixed cost. The parameters �c and �f are the robust
alignment error scales (standard deviations) for the normal-
ized distances of corners and faces.

Objective function (2) is minimized using the Iteratively-
Reweighted Least-Squares (IRLS) technique from the robust
statistics literature [35], [49], which alternates computation of
1) the distance-based weight wd;i for each correspondence, i,
based on fixed transformation parameters with 2) weighted
least-squares reestimation of the parameters from

F ð��pq; Cpqc ; Cpqf Þ ¼
X

ðpi;qiÞ2Cpqc
wd;iwc;id

2
cðpi;qi; ��

pqÞ

þ
X

ðpi;qiÞ2Cpqf

wd;iwf;id
2
fðpi;qi; ��

pqÞ:
ð4Þ

The distance-based robust weight factor for corners is
wd;i ¼ wðdcðpi;qi; ��

pqÞ=�cÞ=�2c , where wð�Þ, derived from the
Beaton-Tukey robust loss function, is

wðuÞ ¼ 1� ðuaÞ
2; juj � a

0; juj > a:

�

An analogous computation produces the weights for face
points. Normalization factors 1=�2

c (for corners) and 1=�2f
(for face points) make corners and face points comparable.

The robust standard deviation, �c, for corner matches is
recomputed once (per correspondence set and Dual-Boot-
strap iteration) from the weights and current transformation
estimate as

ð�cÞ2 ¼
X

ðpi;qiÞ2Cpqf

wd;iwc;id
2
cðpi;qi; �̂�

pqÞ =
X

ðpi;qiÞ2Cpqc
wd;iwc;i;

with a similar computation for face matches. At the start of
the Dual-Bootstrap procedure for a given initial transforma-
tion, the MUSE algorithm [39] is used to estimate �c and �f
from the first set of matches, since weights are unavailable.

Finally, the computation of the weighted least-squares
estimates from (4) and the associated covariance matrix of
the parameter estimates, which is needed for the region
growth and the decision criteria, use standard techniques.
In particular, for the transformation models that are
unconstrained and linear in their parameters, �̂� is obtained
in closed-form using linear weighted least-squares. The
covariance matrix, �̂��pq , of the estimate is the inverse of the
Hessian of (4). Usually, this must be multiplied by a noise
variance term, but this is already built into the distance-
based robust weights wd;i. For constrained or nonlinear
models, such as planar homography or planar homography
plus radial-lens distortion terms, Levenberg-Marquardt is
used, with the pseudo-inverse of the Hessian giving the
covariance matrix, �̂��pq (see [24, Chapter 4]).

4.4 Model Hierarchy and Model Selection

The goal ofmodel selection is to select themodel from a set (a
hierarchy) of transformation models that best describes the

alignment in the current bootstrap region. As the region
expands, model selection is applied to choose between the
model used for the previous bootstrap region and the
remaining, high-ordermodels.Model selectionmust be done
carefully. Switching to a higher-order model too early,
especially when the region is small and there are insufficient
constraints, may lead to overfittings and distortions in the
estimate. Switching too late causes an increase in mapping
errors and results in an increase inmismatches. In either case,
incorrect model selection may drive the estimate into a local
minimum representing an incorrect alignment.

Two different model hierarchies are used in GDB-ICP.
One, used for retinal images, is a hierarchy moving from
similarity to a reduced quadratic to a quadratic model (see
[48] for details). The second, used for natural images, is a
hierarchy of similarity, affine, homography, and homo-
graphy plus radial lens distortion (HRD). The HRD model
is defined as

Tðp; ��Þ ¼ DðTHðDðp; kpÞ;hÞ; kqÞ;
where ��> ¼ ðh>; kp; kqÞ, THðx;hÞ is the usual planar homo-
graphy (h is a 9-component vector formed from the
3� 3 homography matrix) and Dðx; kÞ ¼ ð1þ kkx� x0k2Þx
is the radial distortion function, given image center x0,
assumed to be the center of the pixel array. This model is
important for accurate alignment of digital photographs
taken with off-the-shelf cameras.

Model selection techniques have been studied extensively
in the literature [9], [10], [29], [50]. In our earlierwork [48], we
used a Bayesian technique derived in [9] that depends on
computing the determinant of the parameter-estimate covar-
iance matrix, �̂��pq . For homographies, this is problematic
because �̂��pq is not full rank. Rather than developing an
appropriate projection onto a full-rank covariance, we have
replaced the Bayesian criteria with a modified version of
Akaike Information Criteria (AIC), derived from the Kull-
back-Leibler measure, and found it to be quite effective [10,
Chapter 2]. Using our robust objective function (2) and taking
advantage of having transformation estimates andmatch sets
available in both directions, a second-order Akaike Informa-
tion Criteria may be written as

I ¼ � 2 jCpqc j logð�pq
c Þ þ jCpqf j logð�pq

f Þ þ Eð�̂�pq; Cpqc ; Cpqf Þ
h i

� 2 jCqpc j logð�qp
c Þ þ jCqpf j logð�qp

f Þ þ Eð�̂�qp; Cqpc ; Cqpf Þ
h i

þ 2nl=ðn� l� 1Þ;

ð5Þ

where l is the degrees of freedom in the current model,
n ¼ 2jCpqc j þ 2jCqpc j þ jCpqf j þ jCqpf j is the effective number of
constraints (each corner match provides two constraints,
while each face point match provides one), and the term
2nl=ðn� l� 1Þ adjusts for small sample bias [10, p. 51].

Expression (5) is evaluated for each candidate model
using a fixed set of matches found using the transformation
estimate of the best model from the previous Dual-Boot-
strap iteration. The final objective function value of (2) (after
IRLS converges) is used for each model to evaluate
expression (5). The model that minimizes (5) is chosen as
the current model and its estimated parameters become the
current parameters. Model selection is turned off once the
selection procedure reaches the highest-order model.
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4.5 Region Growth

Region growth, illustrated in Fig. 2, is based on the
uncertainty in the transformation estimate, represented by
the covariance matrix �̂��pq . Expansion of the axis-aligned
rectangle representing the current bootstrap region is
inversely proportional to the transfer error—the error in
applying the estimated transformation to points on the
boundary of the bootstrap region. The following is a
summary of the details of this procedure taken from [48].
Subsequently, a simple modification is given to make the
algorithmmore effective in registering imagepairswith large
scale variations.

Let the center of the bootstrap region be y0, let a point
location centered on one of the four sides of the region be y,
and let ��y ¼ ðy� y0Þ=ky� y0k be the outward-pointing
normal to the rectangle. The mapping error covariance at
the mapped point y0 ¼ Tðy; �̂�pqÞ is computed from the
Jacobian of the mapping, Jy ¼ @Tðx; ��Þ=@�� evaluated at x ¼
y and �� ¼ �̂�pq, togetherwith the covariance of the transforma-
tion parameters

�y0 ¼ Jy�̂��pqJ
>
y : ð6Þ

The outward growth rate is inversely proportional to the
error variance in the mapped outward normal direction, ��y0 ,

�y ¼ 	
ðy� y0Þ>��y

maxð1; ��y0�y0��y0Þ
;

where 	 ¼ 2:0 is a fixed constant. The new center of the side
is given by ŷ ¼ y0 þ ð1þ �yÞðy� y0Þ. The new region is
obtained after all of the side centers are updated with the
above method.

The extension made here is to form and grow bootstrap
regions independently in each image, Ip and Iq. Each of the
two initial regions is determined from the corresponding
keypoint locations and scales, as described in Section 2. The
above procedure is applied separately for the two regions at
each Dual Bootstrap iteration separately. These regions are
implicitly kept relatively consistent through the use of bi-
directional matching, which keeps the transformations close
to being inverses of each other and the covariance matrices
commensurate with each other. Keeping separate regions in
the two images is important for handling large scale
differences between images.

5 DECISION CRITERIA

Once the GDB-ICP refinement procedure just described
expands to cover the apparent overlap between images
(based on the estimated transformation) and the refinement
process has converged, the final alignment is tested for
correctness. If this confirms that the transformation is
correct, the images are considered to be aligned and the
algorithm stops. Otherwise, GDB-ICP is restarted on the
next keypoint match.

Three tests—accuracy, stability, and consistency—form
the decision criteria. The tests are applied in each direction
using the final match sets. A transformation that passes all
three tests in both directions is accepted as correct.

Accuracy is measured as the weighted average error

eð�̂�; CfÞ, computed on the final face matches, Cf . Face points
are used because their positions (along the normal direction)

are more accurate than corner points. Using the measures
introduced above, accuracy is


eð�̂�pq; CfÞ ¼
X

ðpi;qiÞ2Cf
wf;iwd;idfðpi;qi; �̂�

pqÞÞ

0

@

1

A

�

X

ðpi;qiÞ2Cf
wf;iwd;i

0

@

1

A:
ð7Þ

Stability is measured by the error covariance—the map-
ping transfer error introduced in the context of region growth
in Section 4.5. To check this, points are uniformly sampled in
the overlap area between aligned images. For each sample
point yi, the mapping error covariance�y0

i
is computed from

(6). The overall measure is 
tð�̂�; �̂��Þ ¼ maxi traceð�y0
i
Þ. This

is particular effective at avoiding incorrect low-overlap
transformations.

The consistency measure is derived from the orientation
differences of the face point match set Cf after the application
of the transformation estimate �̂�. Thesedifferences,measured
in absolute angle difference, are put into a histogram hð�̂�; CfÞ
of the range ½0; �=2�. (Absolute angle differences greater than
�=2 are subtracted from �, effectively accommodating
intensity reversals.) If the transformation is incorrect, this
angle difference will tend toward being uniformly distrib-
uted, whereas, if the images are well-aligned, the histogram
will tend to have a strong peak near 0 degrees (Fig. 8). The
consistency measure is based on the Bhattacharyya measure
against an exponential distribution. The probability density
function of an exponential distribution is fðx;�Þ ¼ �e��x for
x � 0. We use � ¼ 4:7, which dictates that 70 percent of the
face point matches have orientation differences no greater
than10degrees.This exponentialdistribution,denotedas e, is
represented as a second histogram. Then, the consistency
measure 
cð�̂�; CfÞ is


cð�̂�; CfÞ ¼ 1�
X

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hið�̂�pq; CfÞei
q

; ð8Þ

where i indexes the histogram bins.
To make a decision with these measures—
e, 
t, and


c—lower and upper thresholds are introduced for each:
ZL
e � ZH

e for 
e, Z
L
t � ZH

t for 
t, and ZL
c � ZH

c for 
c. When

e � ZL

e , 
t � ZL
t , and 
c � ZL

c , the transformation estimate is
accepted as correct. When 
e > ZH

e , 
t > ZH
t , or 
c > ZH

c , the
transformation is rejected. Otherwise, the transformation is
saved. If all initial transformations have been tested and none
have been accepted, the saved transformation with the
minimum value of alignment error 
e is accepted. If there
are no saved transformations, the algorithm rejects the image
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Fig. 8. Example histograms of the orientation difference of a set of face

point matches from (a) correct and (b) incorrect alignments using the

Summer-Winter pair.



pair, indicating that it cannot be aligned. Transformations
tend to fall into the “saved” category for image pairs that
involve significant changes or that cannot be precisely
aligned using the final transformation model.

These thresholds are fixed at ZL
e ¼ 1, ZH

e ¼ 2, ZL
t ¼ 0:3,

ZH
t ¼ 1, ZL

c ¼ 0:09, and ZH
c ¼ 0:2 for all experiments here.

For efficiency, the algorithm also applies a set of higher
thresholds, starting after the third Dual Bootstrap iteration
when the estimate has begun to stabilize, in order to
identify and terminate estimates that are clearly wrong. We
refer to this step as the early termination criteria.

6 EXPERIMENTS

This section presents experiments designed to illustrate the
overall performance of GDB-ICP (Section 6.2), compare it to
minimal-subset random samplingmethods (Section 6.3), and
analyze in detail themost important aspects of the algorithm.
The focus of the latter is on the success of growth and
refinement (Section 6.4), the choices of features andmatching
criteria (Section 6.5), and the effectiveness of the final decision
criteria (Section 6.6)—thenewest aspects of the algorithm. See
[48] for analysis that shows the significance of the Dual-
Bootstrap refinement, growth, and model selection proce-
dures in the context of retinal image registration.

6.1 Data Set

All experiments use the data set of 22 image pairs discussed
in Section 1. This set was constructed from our own digital
photographs, from pairs found on the Web, and from
challenging pairs suggested by colleagues. Many easier
pairs have been left out in order to keep the tests
manageable. As an example of this, we included one pair,
with 2 percent overlap (the “Dashpoint” pair here), from the
test suite of [8] (GDB-ICP registers all overlapping pairs
from this suite). On the other hand, some types of pairs,
such as PET-CT images, which have no common geometric
structure, have been purposely left out. We discuss this
more in Section 7. The results are clearly conditioned on the
data set, but the range of challenging pairs shown should be
suggestive of the broad effectiveness of our algorithm. In
order to allow the community to test GDB-ICP beyond the
experiments presented here, an executable version of the
software has been posted on the Web.

The images range in size from 676� 280 to 2; 500� 2; 500.
Image pairs overlap as little as 2 percent, differ in scale by a
factor as high as 6.4, and differ in orientation by as much as

90 degrees. Five pairs are multimodal (retina angiogram
versus red-free photograph, two infrared versus video
airport scenes, pan-chromatic and infrared satellite images,
and proton density versus T1 weighted brain MRI slices).
Four pairs involve substantial illumination changes and two
other pairs are of different seasons. The selection of scenes
includes aerial, urban, landscape, indoor, and medical. On
theMelanoma andEO-IR 1 pairs, the intensity of one image is
negatedbeforekeypointgeneration sinceSIFT isnot invariant
to intensity reversal. Finally, the retinal images involve
quadratic transformations, whereas the others involve the
use of the homography or the homography plus radial lens
distortion (HRD) models. The choice of final model is
specified by a command-line argument. All other parameter
settings are fixed for these experiments.

6.2 Overall Results

GDB-ICP successfully aligned 19 of all 22 image pairs in our
data set with alignment error less than a pixel. Success is
defined here as no visible misalignments between homo-
logous structures following application of the transforma-
tion, as judged independently by a graduate student who is
not one of the authors. The successful transformations, one
for each pair, are labeled as “verified” transformations to be
used in subsequent experiments. Example alignments are
shown in Fig. 10; complete results are posted at our Web
site, including animations. Interestingly, for pairs “Brugge,”
“Brugge Square,” and “Brussels,” the 10 degree-of-freedom
“Homography plus Radial lens Distortion” (HRD) model
eliminated small, but visible misalignments produced by
using only a homography (see Fig. 9 for details).

Table 2 shows, for each pair, the index number of the first
keypoint match in the rank ordering for which the algorithm
succeeded, the index of the same successful keypoint match
amongonly those consistentwith theverified transformation,
the final alignment error, and the chosen transformation
model. A consistent keypoint match is somewhat arbitrarily
defined to have a location error of less than six pixels, a scale
ratio within the interval 0.8 to 1.25 (one step in scale space),
and an orientation difference of 15 degrees, all computed
following application of the verified transformation. Intui-
tively, these arematches that appear to be geometrically close
to correct. The remaining keypoint matches are labeled
“inconsistent.” As can be seen from the table, inmost cases, a
consistent match appears among the first five in the rank
ordering and, in 15 cases, GDB-ICP successfully refined this
initial transformation to a verified final transformation.
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Fig. 9. (a) shows a checker mosaic of the Brugge Square pair using the homography model in which there are places, notably inside the boxes, that
have misalignments. Column (b) shows zoom-in of the boxes. Column (c) shows the same area after using the Homography with Radial lens
Distortion (HRD) model. The window frames and letters are now well aligned.



GDB-ICP failed for three pairs. In each case, manual
specification of three initial correspondences in a small initial
region and computation of an initial estimate of an affine
transformation followedbyapplicationof theDual-Bootstrap
growth and refinement procedure led to a verified transfor-
mation. This indicates that the failures are causedbykeypoint
detection and matching, by keypoint-based initialization, or
by the early stages in the Dual-Bootstrap growth and
refinement procedures. In one case in particular—Capital
Region—the projective distortions are too severe to be
handled starting from a local similarity transformation.

Image sizes and timing results are summarized in

Table 1. Clearly, algorithm speed is mostly affected by

image size and matching difficulty. The failures and the

image pairs which require testing of all 50 keypoint matches

(because no match provided results below the lower

decision thresholds) are the only ones other than the huge

“Satellite” pair requiring more than a minute.

6.3 Comparison to Keypoint Matching Algorithms

As one indication of the significance of these results, the
publicly available code for the Autostitch keypoint matching
algorithm [7] (with default parameters) produced five
alignments (“Boston,” “Boston Library,” “Eiffel,” “Brugge
Square,” and “Brussels”). The latter three have visible
misalignments, partly due to the fact that the homography
is insufficient for thesepairs.On the other 17pairs,Autostitch
failed altogether.We obtained slightly better results with our
own implementation using RANSAC and other random-
sampling-based algorithms [39], [51], registering Grand
Canyon 1 andWhite board pairs. The failures are due to both
thesmallnumberandthesmall fractionofconsistentkeypoint
matches, as shown in the last three columns of Table 2.

6.4 Success of the Growth and Refinement
Procedure

The following experiment shows the effectiveness of starting
from individual keypoint matches rather than combining
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Fig. 10. Final alignment checkerboard images.



them, as in a random-sampling approach. We use the top
50 keypoint matches of the 19 pairs that GDB-ICP aligned.
The GDB-ICP estimation process is applied to each of these
keypoint matches, without any decision criteria. The result-
ing “test” transformation estimate is then compared to the
verified transformation. Those that agree to within an
average distance of less than two pixels in the overlap region
between images are considered correct.

Among the 19 pairs of images, there are 781 keypoint
matches in total (somepairs have fewer than 50matches), 489
are “consistent” and 292 “inconsistent.” Among the 489 con-
sistent ones, 397 led to correct final transformations, while
21 of 292 labeled “inconsistent” led to correct final transfor-
mations, resulting in a total of 418 correct alignments.
Examination of the 21 shows that the estimation procedure
recovered from initial location errors as high as 12 pixels and
orientation differences as much as 18 degrees.

To interpret the significance of these results, based on a
probability of Pa ¼ 397=489 � 0:81 of succeeding from a
consistent keypoint match, the overall probability of GDB-
ICP producing a correct alignment given n consistent
matches is 1� ð1� PaÞn, which is 99.3 percent when there
are justn ¼ 3 consistentmatches. By contrast,minimal subset
random sampling techniques require four matches just to
instantiate a transformation. Clearly, GDB-ICP can succeed
despite an extremely small number of keypoint matches.

6.5 Choice of Features and Matching

The next set of experiments evaluates several variations on
the choice of features, the scale of the features, and the
directionality of matching. This is important to show the
influence of these design decisions on the performance of the
overall algorithm. These experiments show that face points
and bidirectional matching are important and indispensable.
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TABLE 1
Timing Results in Seconds

The first two columns are the image-pair name and the dimension of the larger image. The next two columns are the number of iterations and the
time that the Dual Bootstrap growth-and-refinement procedure spent on the keypoint match that led to the successful alignment. The last two
columns are the total number of keypoint matches tried and the total time used before GDB-ICP terminates. The performance is measured on a
Pentium 4 3.2 GHz PC with 2 GB memory.



Just as in the previous test, we evaluate all 50 keypoint
matches from the 19 pairs GDB-ICP succeeds upon. We
study the change in the aforementioned 418 successes with
changes in the feature extraction and matching. We also
determine whether one of these changes causes the entire
GDB-ICP to fail on a pair on which it originally succeeded.

The tests are summarized in Table 3, which shows
several important results. First, using corner points alone
without face points results in a 39 percent drop in the
number of successful initial keypoint matches and a loss of
eight successful pairs. Apparently, corners are not widely
enough and densely enough distributed for GDB-ICP to
succeed consistently on our challenging data set. Using
faces alone, the drop is only 4 percent and no pairs are lost.

Interestingly, using forward matching alone instead of
bidirectional matching causes the loss of 15 percent of the
successful keypoint initializations and two of the most
difficult pairs—EO-IR 1 and Melanoma. In a related result,
not shown in Table 3, the percentage of driving features that
are mapped to within two standard deviations of their
corresponding matchable features, thereby creating “inlier”

correspondences, ranges from 58 percent to 83 percent. This
indirectly justifies 1) the ability of GDB-ICP to adapt to
substantial differences between images and 2) the decision to
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TABLE 2
Summary Statistics on All Pairs from Our Data Set

The second to fifth columns show the performance of GDB-ICP: The index (starting from 1) of the first successful keypoint match in the rank-ordered
list, the index of the same successful keypoint match among only the consistent keypoint matches, the final alignment error, and the choice of final
transformation model—Homography (H), Homography with Radial lens Distortion (HRD), and Quadratic (Q). The last three columns show keypoint
statistics which help to explain why RANSAC-based algorithms are less successful: the total number of keypoint matches (Lowe’s similarity ratio
< 0.8), the number whose positions are within 6.0 pixels following application of the verified transformation, and the ratio between the two. On the
“Retina” pair, GDB-ICP succeeded on an “inconsistent” keypoint match—one with 8.0 pixels of position error.

TABLE 3
GDB-ICP Success Numbers Based on Varying

the Feature Set and the Matching

The second column is the number of initializations (keypoint matches)
that led to successful alignments, while the third column is the pairs for
which at least one initialization succeeded.



push feature extraction toward covering asmuch of an image
as possible, trusting the rest of the algorithm to automatically
determine which features are consistent between images.

The final test, shown on the right in Table 3, explores
multiscale feature extraction. Using scale 1.0 (standard
deviation ofGaussian smoothing) results in a loss of 5 percent
initializations and three image-pairs—EO-IR 1, Melanoma,
and Grand Canyon 2. When the single scale at which the
features are extracted is increased, the success rate drops
slowly. Finally, when using features combined across scales,
similarly to the scale-space detection technique of many
keypoint matching algorithms [30], [36], there is a 7 percent
drop in the number of successful initializations, but no loss of
any pairs.

6.6 Decision Criteria

To analyze the strength of the three-component decision
criteria, we compared them with simplified versions. The
results show that all three components of the decision
criteria are necessary, that bi-directional decision increases
robustness, and that the complete decision criteria are
effective in distinguishing correct alignments from incorrect
ones, even in the presence of low overlap, scale differences
and physical changes.

One of the simplified versions is the use of alignment error
alone, a natural measure for registration based on geometric
constraints, and the one used in [11], [48] for retinal image
registration. We then considered the importance of the three
criteria by leaving each out in turn. Finally,we considered the
effect of several other aspects of the decision criteria. In these
experiments, all 42 � 41 ¼ 1; 722 possible ordered pairs of
images are used, with both orderings used for each pair
because each can produce different initial keypoint matches
(see Section 2 for details) and therefore different initializa-
tions. The final model is always the homography (for speed
considerations). Alignments passed by themodified decision
criteria were examined by a graduate student (not one of the
authors) to determine correctness. This turned out to be
crucial because this test discovered some small overlaps in
our image set that we did not realize existed. Based on this
human judgment and based on our verified results, the
decisions made by GDB-ICP under various decision criteria
could be classified as True Positives (TP), False Positives (FP),
True Negatives (TN), and False Negatives (FN). No changes
were made in the parameter values of the decision criteria
throughout the experiment.

The results are summarized in Table 4. The first observa-
tion concerns the effectiveness of the full decision criteria.
The six false negatives come from the three pairswhichGDB-
ICP is known to fail on. The three false positives are image
pairs that appeared locally consistent, with one of the regions
having very low contrast. On the other hand, most such pairs
are rejected. In fact, 99.8 percent of the incorrect pairs are
rejected. Stated evenmore strongly, among the 1,671 rejected
pairs, there are 1; 671� 50 ¼ 83; 550 incorrect initializations,
including many with low overlap, all of which are rejected.

As seen in the next four rows of the table, when using only
part of the criteria, the number of false positives increases
significantly—jumping to 158 for use of the accuracy
measure only, butwith fewerwhen twoof the threemeasures
are used. These false positives are due to locally consistent
structures, especially near image boundaries (producing
apparent low-overlap between images). These experiments
show convincingly that all three decision criteria are
important. Finally, when the decision criteria are applied

only in the forward direction—from themoving image to the
fixed image—the false positive rate increases substantially.

7 DISCUSSION

The experiments on our challenging data set have demon-
strated that GDB-ICP is a powerful registration algorithm,
capable of aligning a wide variety of image pairs. Overall,
our experience with this data set and with other pairs
shows that GDB-ICP succeeds when keypoint matching
produces a small number of consistent matches, when there
is sufficient common structure between the images to drive
the dual-bootstrap process and the decision criteria, and
when the similarity transformation is a reasonable initial
model. In this section, we examine this success, using the
experiments to show how the design of the algorithm
allows it to handle the image registration challenges
outlined in Section 1. We also discuss some limitations of
the algorithm. We conclude this section by reexamining
several individual components of the algorithm.

Our experiments have shown that GDB-ICP can succeed
with as fewasone consistent keypointmatchandwith as little
as 58 percent correct matches between the driving features of
one image and the matchable features of the other. Remem-
bering that matchable features must pass less stringent tests
than driving features and recalling that contrast reversals are
ignored by thematching process, this result explainswhy the
algorithm does so well with substantial changes in image
illuminationandstructure andeven changes inmodality. The
tolerance for differences in feature extraction andmatching is
allowed in the algorithm because the decision criteria can be
trusted to reject nearly all incorrect alignments. The effec-
tiveness of the decision criteria is also crucial to the
algorithm’s success in handling low-overlap pairs. Using
the criteria, GDB-ICP accepts a small number of correct, low-
overlap alignments while rejecting the extremely large
number of low-overlap alignments generated by incorrect
keypoint matches. Finally, the ability to generate matches
across scales is crucial to handling substantial differences in
scale.2 While another recent algorithm has shown the ability
to handle large scale variations [15], it has not been
demonstrated in as challenging a context as our data set.
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2. After these tests were completed, we tested a pair with a zoom factor
of 9.5 and GDB-ICP succeeded.

TABLE 4
Effects of Varying the Decision Criteria

When Applying GDB-ICP to All Possible Pairs

TP stands for true positives, TN for true negatives, FP for false positives,
and FN for false negatives. See text in Section 6.6 for details.



Despite the demonstrated success, GDB-ICP does have
limitations:

. It cannot handle extreme appearance differences
between image pairs. In our data set, this is mostly
due to initial keypoint matching, but we anticipate
that the algorithm will fail on other multimodal pairs
such as PET-CT pairs, where it is unlikely that the
features will capture enough structural similarity.
Still, GDB-ICP did succeed on all but one of the
multimodal pairs in our data set because multimodal
images often do have sufficient common structure.
Intuitively, the structural and textural differences
between the color image and the fluorescein angio-
gram in the “Melanoma” pair put it near the limit of
what GDB-ICP can handle.

. Currently, the decision criteria do not eliminate
incorrect alignments of an image-wide repetitive
structure such as a checkerboard. On the other hand,
if only a moderate fraction of a scene involves
repetitive structure, the decision criteria make the
right decision: Although incorrect alignments in the
repetitive region will appear accurate, these produce
inconsistent matches image-wide. An example of
this occurs in the “Brussels” pair of our data set.

. As a 2D registration algorithm, GDB-ICP currently
only tolerates a small amount of parallax. In a similar
vein, it is currently limited to global transformation
models.

. There is no convergence proof in the overall algo-
rithm, just as there is no convergence proof in the ICP
using anything but Euclidean match distances. In
practice, however, in thousands of tests, GDB-ICP has
always converged. One reason for this is that both
region growth and model selection are monotonic.

. Finally, GDB-ICP, while consistently running in less
than a minute for two mega-pixel image pairs, is still
somewhat slow.

All of these issues are topics of our ongoing work.
Finally, we make a few observations about the individual

components of GDB-ICP:

. The experiments show the importance of using
multiscale face point (edge-like) features during the
alignment process instead of more sparse features
such as corners, even when corners are detected at
multiple scales.

. While it is straightforward to replace Lowe’s LoG
keypoint detector and SIFT descriptor [31] with other
current keypoint techniques [37], [38], it would be
surprising if this would improve keypoint matching
substantially on our data set. Still, a thorough
exploration of this question is worthy of future study.

. As shown in our earlier work [48] and reinforced by
our results here, the combination of re-estimation and
model selection in the bootstrap region keeps the
estimate close to the local minimum while gradually
increasing the problem complexity through region
growth. This allows a technique as simple and
efficient as our robust version of ICP to succeed as
the core refinement procedure on the vast majority of
the initializations. More sophisticated procedures,
such as EM-ICP and RPM [14], [21], which simulta-
neously considermultiple per featurematches during

registration, might be considered in place of ICP. In
the context of the Dual-Bootstrap approach, however,
our informal experiments with the central idea of
these methods—multiple matches per feature—
showed that, because of the large number of outliers,
even in the bootstrap regions, refinement must
heavily rely on the distance to the nearest matching
feature. These observations pushed us back toward
robust ICP instead of EM-ICP or RPM. Still, a
definitive answer to the question of the optimal core
refinement procedure working within the context of
the overall Dual-Bootstrap algorithm is beyond the
scope of this paper.

. The axis-aligned, rectangular shape of the region is a
simple, efficient representation. The new use of two
independent regions introduced here is important for
handling large differences in scale. Region models
more sophisticated than our rectangular model could
be developed—e.g., ones encompassing only the
points where the trace of the transfer error covariance
matrix isbelowathreshold—buttherectangularshape
has proven sufficient for all our experiments and has
not been the cause of an algorithm failure. Note that
other region growth techniques have recently been
proposed in the literature [17], [47].Oursdiffers in that
its growth is monotonic and is controlled by the
uncertainty in the transformation estimate.

. The three-part decision criteria have proven to be
essential for handling the challenging image pairs
studied here. Other techniques include Brown and
Lowe’s combinatorial analysis of keypoint matches
[7] and Belongie et al.’s use of distance, brightness
variation, and bending energy for recognition [3].
Clearly, keypoint-based measures alone are insuffi-
cient. Measures based on intensity variation or
gradient magnitude differences [45] are not appro-
priate for the range of appearance variation seen
here. Finally, although our three-part criteria have
proven highly successful, they are not perfect and
further improvements are possible.

8 SUMMARY AND CONCLUSION

This paper has presented the fully-automatic Generalized

Dual-Bootstrap ICP (GDB-ICP) image registration algorithm

designed to handle a wide variety of image pairs, including

those showing scale changes, orientation differences, low

overlap, illumination differences, physical changes, and

different modalities. Building extensively on existing work,

the algorithm is in fact a series of algorithmsdesigned towork

together to solve the problem. Extensive experiments on a

22 image-pair data set representative of these challenges have

shown the effectiveness of the design and demonstrated that

a broadly applicable, fully automatic image registration is

possible. The experiments have also highlighted areas of

potential improvement. The most important of these is

initialization, especially when there are large appearance

variations between images caused by physical or illumina-

tion changes or differences in imagemodalities. Despite this,

the experiments reported here and experience by both our

group and others who have tested the GDB-ICP executable

demonstrate that it is effective enough for widespread use.
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