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Abstract 
 

This paper presents a novel approach for registering two sets of 3-D range data points, 

using an optimization algorithm that is both robust and efficient.  The algorithm combines the 

speed of an iterative closest point algorithm with the robustness of a simulated annealing 

algorithm.  Additionally, a robust error function is incorporated to deal with outliers.  

 
Index terms:  Registration, range data, simulated annealing, iterative closest point, optimization, 

model construction. 
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1 Introduction 

We present a novel approach for registering two sets of range data, using an optimization 

algorithm that is both robust and efficient.  The specific problem we are addressing is this:  A 

sensor samples three-dimensional (3-D) points from the surfaces of objects in a scene, from two 

different viewpoints.  The point data are represented in the coordinate system of the sensor at 

each viewpoint.  The goal is to estimate the six degree-of-freedom (DOF) transformation 

between the two sensor viewpoints using only the range data, given an initial guess.  Once the 

transformation is known, the two sets of range data can be registered, or brought into alignment. 

Figure 1 shows an example of range data, taken by a structured light sensor at Sandia 

National Laboratories.  The data illustrates some problems that may be encountered when 

performing registration.  First, the two scans are only partially overlapping; i.e., we do not have 

the case where one scan is only a subset of the other.  The data is noisy, with non-uniform 

spacing, and contains outlier data points (erroneous points that are not on actual surfaces).  

Points that are in the non-overlapping area are also considered to be outliers.  Finally, due to the 

discrete nature of the sampling, one cannot rely on a point to be sampled in the exact same 

position in each scan.  These characteristics make registration a difficult problem. 

  

Figure 1  Two partially overlapping range data scans taken with a structured lighting system at Sandia 
National Laboratories with ~5000 points per scan of a 4x4 ft. corner. 
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Nonetheless, there are many useful applications where registration of range data is an 

important step.  One important application is model construction, where a composite geometric 

model of an object or scene is constructed from a set of range scans taken from multiple 

viewpoints.  Here, in addition to performing the registration step, we must also deal with issues 

such as representation of the model (e.g., surface or volumetric), and merging of the data after it 

has been registered.  An example is shown in Figure 2.  The left two images show surface 

models constructed from the scans shown in Figure 1.  Registration is performed to bring the two 

models into alignment.  These are then merged together to form a final model, as shown in the 

rightmost image.  Since it is relatively easy to construct a surface model from point data and to 

merge the surface models together once they have been registered, we will focus on the 

registration process in this paper. 

   

Figure 2  The left two images show surface models created from the point data in Figure 1.  The rightmost 
images shows the final fused surface model created after registration. 

In some applications, one can precisely calibrate the extrinsic parameters of the sensors 

(i.e., their position and orientation in the world), so that it is not necessary to estimate the 

registration parameters from the range data.  However, in many applications, these are not 

known well enough for the desired task, although a course estimate is often available.  For 

example, a robot moving around in a room may have an estimate of its position and orientation 

from dead reckoning (odometry), but this is usually not accurate enough to create an accurate 
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model of the room.  Therefore, it is necessary to use the data itself to refine the registration 

estimate. 

Due to the importance of registration, much work has been done in the past on this topic 

(a recent review is given by Goshtasby [1]).  Some approaches rely on identifying a set of 

distinctive features in the two range images (such as curvature extrema [2] or surface patches 

[3]), and using the correspondences between them to compute the transformation.  However, the 

accuracy of the registration depends on the accuracy of the extracted features and whether they 

can be reliably extracted from both images.   

Alternatively, one can match the entire data set from one scan with that from the other.  

These approaches commonly use an optimization procedure that starts with an initial guess of the 

registration parameters, and iteratively refines the registration by reducing the error between 

corresponding points in the two scans [4] [5] [6].  Since a point in one scan may not have an 

exact match in the other scan, it is necessary to match it to the closest point on a local surface 

approximation in the other scan.   

The iterative closest point algorithm (ICP) [5] is a commonly used registration algorithm 

of this type.  The process is designed to register two sets of data points, where one set is a rotated 

and translated subset of the other.  The algorithm uses a closest point estimation to compute 

correspondences.  That is, for every data point from one set, the point from the other data set that 

is geometrically closest is taken as its corresponding point.  (An alternative is to take the closest 

point on a surface approximation to the model points [4].)  The process then repetitively uses the 

absolute orientation algorithm [7] to register the point sets; i.e., to transform one data set so that 

it is aligned with the other.  The absolute orientation algorithm finds the transformation that 
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yields the least squared error distance between corresponding points.  The algorithm steps are as 

follows: 

1. Determine correspondences by computing, for each point of one data set, the closest 

point to the other data set. 

2. Compute the transformation using the absolute orientation algorithm. 

3. Apply the transformation to register the sets. 

4. Repeat steps 1–3 until the change in the error falls below a threshold. 

This process slowly pulls the data points in to the model points, and monotonically decreases the 

error.  However, ICP will only converge to the closest local minimum of the error surface.  Thus, 

the algorithm may never find the global minimum, thus missing the correct registration.   

In our domain, the error function usually has a single global minimum surrounded by 

many local minima.  Figure 3 shows a plot of the error function (to be described in the next 

section) as the registration parameters were varied over 2 of the 6 dimensions (one translational 

and one rotational dimension), using the “corner” data set from Figure 1).  The resulting plot 

clearly shows a number of local minima contained in a larger pit.  Of course, this is only a 2-D 

projection of the true 6-D surface, and there could be many more local minima in 6-D. 

Accordingly a registration algorithm must be able to deal with local minima, such as 

through the use of a stochastic optimization algorithm like simulated annealing (SA) [8].  

Simulated annealing has been used by a number of researchers for registration and model fitting 

[9] [10].  The technique is able to escape local minima, but is extremely slow in converging to 

the global minimum. 

 



Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence Luck, Hoff, Underwood, Little 

6 

 

Figure 3  The error function was plotted as two registration parameters were varied.  

Thus, when dealing with an error surface such as in Figure 3, ICP is efficient but will get 

stuck in local minima, while SA is robust but inefficient.  This suggests the development of a 

hybrid technique in which the two methods are combined so that local minima can be crossed 

while moving to find the global minimum as efficiently as possible.  One way to do this is to use 

SA to provide “good” starting points for ICP.  Rather than exhaustively trying many uniformly 

spaced or randomly placed starting points, SA can more intelligently provide starting points 

closer to the global minimum.  In this way, SA provides “guided” restarts that get ICP out of 

local minima and closer to the actual solution.   Then ICP is used to move efficiently down the 

error surface.   

We developed a hybrid registration algorithm, combining both an efficient local 

minimizer and a robust global search algorithm, to test these concepts.  The algorithm was tested 

on a series of synthetic and real range data sets, and was found to escape local minima while 

remaining efficient.  The algorithm is described below in Section 2, and the results are described 

in Section 3.  Finally, Section 4 offers some concluding remarks. 
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2 Description of System 

Although the focus of this paper is on the optimization problem, we developed a 

complete registration and modeling system.  An overall description of the system is as follows 

(details are covered in [11]):  First, data acquisition is performed to acquire the range scans.  A 

surface model of each scan is created, using a Delaunay triangulation (although other surface 

models could be used).  Using the coarse (dead reckoning) position estimate, the overlapping 

regions of the two sets are estimated and segmented out, using a novel frustum segmentation 

technique.  Next, registration is performed on the segmented regions using the hybrid algorithm, 

which incorporates a robust error function that can deal with up to 50% outliers (outliers are 

erroneous points that are not on actual surfaces, or points that are in the non-overlapping area).  

Finally, the two surface models are stitched together to yield the final model. 

2.1 Finding the Overlapping Regions 

The first step in the registration process is to estimate the overlap between scans, because 

only this overlap will be used for registration.  The process assumes that an initial guess for the 

registration is available, such as through dead reckoning.  This initial guess is used to execute an 

initial registration of the two scans.   We can then identify regions in the two scans that overlap 

using the novel frustum technique described in the next paragraph.  Of course, due to errors in 

the initial registration, the overlapping regions will not overlap perfectly.  However, we assume 

that the initial registration is good enough so that we have at least 50% actual overlap.  We can 

then use the points within these regions to perform the registration. 

The frustum segmentation technique we developed to segment the overlapping regions is 

briefly described here (details are covered in [11]).  To determine the overlapping region for one 

of the scans, we create a frustum (pyramid) using the position of the scanner and the outline of 
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the points visible from the scanner in that position.  The frustum is simply a set of triangles 

extending from the scanner position around the outline of the point set.  Since the Delaunay 

triangulation creates a convex hull around the point set, the frustum is also convex.  Therefore, 

any point within the frustum will be on the inside of each frustum plane.  This frustum is then 

projected onto the points from the second scan, and only points within the frustum are retained as 

part of the overlapping set (Figure 4).  The process is then switched to find the overlapping 

region for the other data set.   We are currently testing a new technique that allows for non-

convex surfaces. 

     

Figure 4  A frustum (pyramid) is drawn from the sensor location to the outline of the observed data points 
(left figure).  The frustum is projected onto the other scan using the initial registration guess (right figure). 

The result of this segmentation process is two sets of points, of which we assume that at 

least 50% are in the common area between the two sets.  The purpose of this step is to cull out 

portions of the range data that we know do not overlap, and therefore reduce the number of 

“outlier”  data points that we have to deal with in subsequent processing.  This allows for 

accurate registration by minimizing a robust error function, described in the next section. 

2.2 Robust Error Function 

The error function, E(T), should be at its minimum when we have the correct registration 

parameters for the transformation T between the scans.  If pi is a point from one scan, then T(pi) 
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is the same point expressed in the coordinate frame of the other scan.  If correctly registered, 

then pi should ideally lie very close to a corresponding point qi from the other scan.  However, 

there is no guarantee that the scanner will sample a data point qi in the exact same place on the 

surface as the original point pi in the first scan.  Therefore, we must match points from one scan 

to a surface model of the other scan [4] [12].  We compute the closest point ci = C(pi, Q) to the 

triangulated surface model of the other data set, and use that as the corresponding point.  The 

error function is based on the squared distances between corresponding points from the two sets, 

( ) 22
ii pTc −=id . 

However, simply taking the mean squared error for all points will result in an error 

function that is susceptible to the effect of outliers.  In other words, incorrectly matched points 

that have a large error distance will have a large effect on the total score.  To avoid this, a robust 

estimation scheme is needed [13]. 

There are many approaches to robust estimation.  One approach is to use the least median 

of squares (LMS) estimator [14].  In this way, up to 50% of the points can be outliers.  Another 

approach is to weight each point, so that points with large errors contribute a small amount to the 

total score.  The error function is then calculated as: 

 ( ) ∑
=

=
N

i
ii dw

N
E

1

21T  (1) 

For example, Zhang [15] dynamically computes a threshold based on the distribution of 

the distances, such that points beyond the threshold are assigned a weight of zero.  We use a 

similar approach, using weights wi that are dependent on the median of the squared distances 

from each data point to the surface model.  However, we do not let weights go to zero for 

outliers.  We define a threshold ( )2*2 idmediant = , and assign weights as follows: 
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Accordingly good points have a weight of 1, but outliers are weighted such that they 

contribute a constant amount to the error (Figure 5).  In this way, we can have up to 50% outliers 

without affecting the value of the threshold t.  We have found that the resulting error function 

can achieve excellent registration even in the presence of outliers of up to 50% of the data.  

di
2  

wi di
2 

t 

t 

 

Figure 5  The error contribution from a single point, wi di
2, as a function of the squared distance, di

2. 

The error function assures that errors contributed by outliers do not grow without bound, 

but are limited to a small but positive amount.  The reason we do not give a zero weight to 

outliers is that if we did, the algorithm may tag entire surfaces as outliers.  For instance, consider 

the case of a scene consisting of three orthogonal planes, such as the corner of a room.  If the 

error is allowed to go to zero, the lowest error score for the corner of a room is achieved when 

two planes are aligned and the third is hovering above the threshold.  This occurs because in this 

position the hovering points will have an error of zero, but if aligned correctly the points would 

contribute a small amount of error due to noise in the data.   

2.3 Optimization Algorithm 

As previously stated, the novel hybrid optimization algorithm is a combination of the ICP 

and SA algorithms.  The form of SA used is a variation of the Nelder-Mead downhill simplex 

method, which incorporates a random variable to overcome local minima [16].  A simplex is 

simply a set of N+1 guesses, or vertices, of the N-dimensional state-vector sought and the error 
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associated with each guess.  In our case we have N=6 corresponding to the six degrees of 

freedom of the registration parameters.  The simplex attempts to walk downhill by replacing the 

vertex associated with the highest error by a better point.  The algorithm uses a random element, 

based on a "temperature" parameter, to escape local minima.  This is done by subtracting a 

random amount, scaled by the temperature, from each tested replacement point.  Therefore while 

any move that is a true downhill step will be accepted, some additional uphill steps will also be 

accepted.  At high temperatures most moves are accepted and the simplex roams freely over the 

search space.  At lower temperature only smaller uphill steps can be accepted.  As the 

temperature is slowly lowered the simplex crawls out of local minima and converges upon the 

global minimum.  

The ICP algorithm used is the standard algorithm described earlier, with the exception of 

one modification.  We need to have both ICP and SA operate on the same error surface.  To do 

this the algorithms must use the same error function.  Recall that the robust error function 

incorporated into the SA algorithm weights each distance so that outlier points have a lesser 

effect.  ICP repetitively calls the absolute orientation algorithm to calculate the transformation 

parameters.  Accordingly the absolute orientation algorithm had to be modified to include 

weighting of the point pairs.  The weights are determined by the robust error function, and are 

incorporated into the absolute orientation algorithm as described by Horn [7].  The result is that 

ICP operates on the same error surface as SA. 

Our hybrid algorithm alternates between the SA and ICP algorithms described above.  

Effectively, SA is used to find good starting points for ICP.  In other words, ICP does the 

majority of the work, but when trapped in a local minima SA will attempt to traverse the minima 

and choose a new starting point for ICP.  A flow chart is shown in Figure 6. 
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Figure 6  Flow chart for the hybrid algorithm. 

The process starts by running ICP from the original position, which will converge to the 

nearest local minima.  If the error score is below a pre-set error threshold (discussed below), then 

the algorithm stops.  Otherwise, SA is used to search about the error surface for a point with a 

lower error score.  The starting point for SA is initialized to the point at which ICP stopped.  SA 

will continue until a better point is found, where it relinquishes control to ICP, or until the 

temperature falls below a minimum temperature threshold, indicating that SA has run long 

enough and was unable to find a better point.   

One issue is how to set the error threshold in the algorithm above.  By setting the 

threshold, we assume that we can recognize when ICP has found the global minimum and we 

should therefore stop searching.  This speeds up the process by preventing additional searching 

by SA for better starting points.  The threshold can be set by estimating the lowest expected error 

that one would have for two scans in perfect registration.  This is dependent on the accuracy of 

the scanner.  Of course, one can always use zero for the threshold in which case the algorithm 

will still find the global minimum, but waste some additional time searching for a better solution. 
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Figure 7 depicts how this process moves across the error surface.  The left figure shows a 

contour plot of the error surface shown in Figure 3.  The hybrid algorithm was run on the 

“corner” data set (Figure 1), and the route of the algorithm was projected onto this error surface.  
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Figure 7  Left: Solution path of the hybrid algorithm on a 2-D projection of the error surface.  Right: error 
score as a function of the number of iterations as  

The figure shows the effectiveness of the hybrid algorithm.  As can be seen ICP initially 

converges on a local minimum.  Then SA moves to a better point, from which ICP is able to 

swiftly converge to the global minimum.  The right figure shows a plot of the error score as a 

function of the number of iterations.  As one can see, ICP takes very few iterations to initially 

decrease the error, but gets stuck in the local minimum.  SA then finds a lower point after many 

iterations, and subsequently ICP quickly finds the global minimum. 

3 Results 

The algorithm was tested using synthetic data sets and three real data sets.  Two of the 

real data sets were taken by a structured light range sensor at Sandia National Labs (Figure 1 and 

Figure 8). The other was taken by a Coleman laser range finder (Figure 9).   
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Figure 8  Structured light range data of a 3x3 ft portion of a plane wing with ~3000 points per scan. 

  

Figure 9  Laser range data of a 6x4 ft scene with ~60,000 points per scan. 

The real data sets are summarized in Table 1.  Note that we subsampled the data in some 

cases in order to speed up the algorithm.  As a rough indication of running time, a complete run 

of the hybrid algorithm required about 10 minutes on an SGI R4400 Indigo 2. 

Table 1  Summary of the three range data sets used. 

 Corner (Figure 1) Wing (Figure 8) Coleman (Figure 9) 

Points, scan 1 5012 2748 60635 (reduced to 6042) 

Points, scan 2 5935 (reduced to 321) 3847 (reduced to 341) 68967 (reduced to 213) 

Overlap points 165 80 110 

Error function 
at correct 
registration 

1.20 mm2 1.20 mm2 6.02 mm2 
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First, the hybrid algorithm was compared to ICP by itself and SA by itself.  Each method 

was employed ten separate times from three initial positions using the “corner” data set (Figure 

1) and the “Coleman” data set (Figure 9).  The results are shown in Table 2.   

Table 2  Comparison of hybrid, ICP, and SA algorithms averaged from 3 starting poses spread across 5 
degrees of rotation and 250 mm of translation. 

Data Set Algorithm Average error (mm2) Average # iterations 

 Hybrid 1.31 1479 

Corner S.A. 1.35 6508 

 I.C.P. 2.21 31 

 Hybrid 6.61 2301 

Coleman S.A. 8.34 6419 

 I.C.P. 14.8 37 

The results indicate that the hybrid algorithm achieves the approximately the same level 

of accuracy as the SA algorithm, while both algorithms are significantly better than the ICP 

algorithm.  The higher error of the ICP algorithm is due to its falling into local minima.  

However, the results also show that the hybrid algorithm takes on the average only 23% of the 

iterations required by SA.  Thus, the hybrid algorithm is able to achieve the same level of 

accuracy as SA, and does so in about 1/4th the time. 

Further tests of the hybrid algorithm were performed on the “corner” and “Coleman” data 

sets.  For each data set, the algorithm was run from five starting positions with initial errors of 5° 

of rotation and 50 mm of translation.  One of the initial starting poses is shown in Figure 10. 

 

Figure 10  An initial starting position with a significant “dead reckoning” error. 
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Results from the two data sets are summarized in Table 3 and Table 4, respectively 

(additional details can be found in [11]).  The tables show, for each run, the final error score that 

the algorithm achieved, the number of iterations required by the ICP and the SA algorithms, and 

the number of times that ICP fell into a local minima.   

Table 3  Results from the “corner” data set. 

Run Final Error (mm2) Iterations (ICP + SA) Local Minima 

1.  1.38 28 + 1816 5 

2.  1.28 40 + 1714 5 

3.  1.29 28 + 1614 8 

4.  1.37 27 + 1417 4 

5. 1.21 35 + 1210 5 

 

Table 4  Results from the “Coleman” data set. 

Run Final Error (mm2) Iterations (ICP + SA) Local Minima 

1.  6.25 28 + 1816 3 

2.  6.03 40 + 1714 2 

3.  6.46 28 + 1614 4 

4.  16.07 27 + 1417 6 

5. 6.08 35 + 1210 6 

 

An interesting point is that although the final poses are extremely close, the algorithm 

failed to converge to the same exact location when run from different initial positions.  This 

reveals that our error surface has many small local minima surrounding the global minimum.  

However, our threshold was set such that we recognized these local minima as the global 

minima.  This is discussed in more detail in the conclusions. 

When the algorithm was run on the “wing” data set (Figure 8), poor results were 

achieved.  Since the overlap is ambiguous in at least one direction and many local minima occur 

along this direction, the algorithm had trouble traveling along this direction to find the global 
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minimum.  Accordingly the algorithm can be expected to perform poorly when an ambiguous 

overlap is used.  However, any optimization algorithm will have difficulty in these cases. 

An obvious alternative to the hybrid algorithm is to run ICP from many different starting 

points (either uniformly spaced or randomly chosen), as originally suggested by Besl and McKay 

[5].  However, if there are many local minima, the chance of starting the algorithm close to the 

global minimum is very small.  To illustrate this, we created a synthetic range data set, in the 

form of a “bowl” shaped object with many small dimples (Figure 11).  We sampled points from 

different locations on the surface to create two separate data sets, and added random noise to the 

data points.  We then attempted to register one instance of the object with another. 

 

Figure 11  A synthetic “bowl” shaped object with many small dimples.  

The ICP algorithm was run on this data set and two real data sets, using random restarts 

in an effort to find the global minimum.  For comparison, SA and the hybrid algorithm were also 

run on the same data set from the same starting poses. As expected, the hybrid algorithm took the 

least number of iterations while ICP with random restarts took a very large number of iterations 

before the global minimum was found (Table 5).   
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Table 5  Performance of the algorithms on the synthetic “bowl” data and two real data sets. 

 synthetic "bowl" data real "corner" data real "Coleman" data 

Algorithm Error (mm2) Iterations Error (mm2) Iterations Error (mm2) Iterations 

Hybrid 1.97 1815 1.32 2404 6.38 3023 

S.A. 1.97 6249 1.35 6508 8.34 6419 

ICP with random restarts 1.97 30401 5.14 11733 8.20 5462 

4 Discussion 

The main contribution of this paper is a novel optimization algorithm for registering two 

sets of range data.  A hybrid algorithm was developed, utilizing an ICP algorithm and an SA 

algorithm working together.  The resulting hybrid algorithm is robust in finding the correct 

registration and efficient in terms of the number of iterations.  The system uses a robust error 

function to handle outlier points.  Although incorporating a robust error function into ICP and 

SA separately has been done before, our contribution was to incorporate the same robust error 

function into both routines, so that they could work together on the same error surface.  Through 

evaluation on real and synthetic range data, we found that our system has the robustness to deal 

with local minima while retaining efficiency.  The results show our algorithm to be much more 

efficient than a stochastic technique (SA) by itself, and much more accurate than a local 

technique (ICP) by itself.  

We developed a complete surface registration and modeling system that incorporated the 

hybrid optimization algorithm.  As part of this system, we developed a novel segmentation 

approach that projects a frustum onto the data set in order to identify potentially overlapping 

regions.  We also developed a method to create a combined surface model from the data points, 

once registration was accomplished.  This work is discussed in [11]. 

The method does have limitations.  First, the estimate of the range sensor position must 

be accurate enough to ensure that there is less than 50% disparity in the segmented overlap.  
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Additionally the algorithm will have problems if the error surface is relatively flat with many 

local minima (as in the “wing” data set).  This type of error surface is extremely difficult to 

solve, and there is no guarantee that our method will do so. 

There is an existing algorithm that would speed up our process.  The current method for 

finding the closest point on the model surface for each data point is very inefficient, and accounts 

for the great majority of the running time.  Simon uses k-d trees and closest point caching to 

achieve speed improvements down to approximately 7% of the original search time [17].  The 

introduction of these improvements would improve the speed of the registration phase.  

As mentioned in Section 3, the algorithm did not consistently converge to the same 

minimum for repeated trials, although the final error score was very close each time.  

Accordingly, small local minima must surround the global minimum.  This is not necessarily a 

problem, since each of these solutions is equally good according to the error function.  However, 

we might find a unique solution by re-running ICP with no weights once the algorithm has 

converged.  Since the scans are already very close to the proper alignment outliers will be easy to 

detect and discard.  Eliminating the weights may remove the shallow local minima from the error 

surface, thereby allowing the algorithm to converge to the exact minimum. 

Another possible direction for future improvement would be to try to speed up 

convergence by initially smoothing the error function surface.  For example, local averaging 

could be done either on the original range points, or in the error function space.  It is possible 

that many small local minima would disappear, while the relatively few deeper minima would 

remain.  This would allow the algorithm to find a solution more quickly.  Once the algorithm had 

converged, optimization could be performed again with no smoothing, thus allowing the 
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maximum accuracy in the final results.  Effectively, this would amount to a  “coarse-to-fine” 

search technique.  

In conclusion, this method of registering range images proves to be extremely robust 

while remaining efficient.  By incorporating a robust error function based around the median, 

registration is accurate even when presented with up to 50% outliers.  Lastly the combination of 

a local minimizer (ICP) with a stochastic search (SA) proved to be very effective at negotiating 

downward sloping error surfaces with many local minima. 
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