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Abstract

Sliding motion is a challenge for deformable image registration because it leads

to discontinuities in the sought deformation. In this paper, we present a method

to handle sliding motion using multiple B-spline transforms. The proposed

method decomposes the sought deformation into sliding regions to allow

discontinuities at their interfaces, but prevents unrealistic solutions by forcing

those interfaces to match. The method was evaluated on 16 lung cancer patients

against a single B-spline transform approach and a multi B-spline transforms

approach without the sliding constraint at the interface. The target registration

error (TRE) was significantly lower with the proposed method (TRE = 1.5 mm)

than with the single B-spline approach (TRE = 3.7 mm) and was comparable

to the multi B-spline approach without the sliding constraint (TRE = 1.4 mm).

The proposed method was also more accurate along region interfaces, with

37% less gaps and overlaps when compared to the multi B-spline transforms

without the sliding constraint.

(Some figures may appear in colour only in the online journal)

1. Introduction

Image registration is increasingly being used in medical image processing to compare images

from different modalities and to account for deformation during or between exams. Common

techniques search for the mapping function that minimizes a similarity measure between a

reference image and a target image deformed by the mapping function. The problem is known

to be ill-posed and a regularization is required to find a physically plausible motion field, e.g.,

by using smoothness constraints to avoid solutions with large local variations.

However, anatomical regions that slide along each other lead to difficulties in the

estimation of the real displacement because the motion is not smooth where sliding occurs. This
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(a) Labels (b) Vector field (c) Forward warp

Figure 1. Illustration of potential issues at a sliding interface when using independent deformation

transforms for each regions. The resulting deformation can lead to gaps (white) and overlaps (dark

blue).

is the case with the breathing motion, since the pleura allows sliding of the lung parenchyma

along the thoracic cage (Wu et al 2008). In this case, the smoothness constraint prevents

physiologically plausible motions.

Several approaches have been proposed to handle this known problem. The regularization

has been adapted to allow discontinuities in certain regions based on the data intensities, while

preserving smooth deformations in most regions (Ruan et al 2008, Wolthaus et al 2008). These

regularizations are based on the intensities of the CT image, making them sensitive to noise

and inadequate where intensities are similar on both sides of the region interface, e.g., around

the liver. Ruan et al (2009) improved their regularization term by allowing discontinuities, but

penalizing divergent ones in order to prevent local vacuums or mass collisions.

Other approaches (Kabus et al 2009, Werner et al 2009, Wu et al 2008) are based

on the segmentation of areas that slide along each other. For example, Kabus et al (2009)

compared different approaches in which the segmentation of the lungs is used to register each

region separately and to allow a discontinuity at their interface. This solution gives better

results compared to a single registration, but it does not guaranty consistency between the

deformations of each region, allowing gaps and overlaps near the border (figure 1). This

consistency constraint is a useful information which could help the registration in regions with

poor contrast, e.g., in the lungs where the border region is more homogeneous due to small

bronchi less visible on CT images. To constrain alignment, an artificial band can be added

around the interface of the registered region in the reference and the target images, in order

to guide registration with a strong spatial gradient (Werner et al 2009, Wu et al 2008). This

solution forces the segmentation of both the fixed and the target image and as a result increases

the impact of bad or inconsistent segmentations.

Recently, Schmidt-Richberg et al (2011) proposed a direction dependent regularization.

They separately considered the normal and tangential regularization components according

to the boundary of the sliding regions. The normal-directed regularization prevents gaps

and overlaps and the tangential regularization allows sliding motion. The segmentation of

the sliding regions is still required, but only on the reference image, therefore avoiding the

problems of segmentation inconsistencies of previous approaches.

B-spline transforms are among the most popular parametric methods to represent non-

rigid deformations, as it has recently been observed in a registration challenge (Murphy

et al 2011). Part of their success comes from their useful properties, e.g., local support and

analytic differentiability. However, they are inherently smooth and their use for sliding motion

estimation is not straightforward. To the authors’ knowledge, the solution proposed by Wu

et al (2008) is the only one constraining sliding motion with B-spline transforms. However,
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it requires consistent segmentations of the pair of registered images which can be practically

difficult to obtain. The purpose of this paper is to propose a linear combination of B-spline

transforms to represent a mapping function for the estimation of sliding deformations. The

resulting function allows sliding, while preserving the consistency of the interface after warping

each region. We have validated our approach by registering 16 publicly available 4D CT data

sets of thoracic cancer patients.

2. Method

2.1. Sliding motion properties

Sliding motion occurs when two regions move discontinuously along their interface, but stay

in contact with each other. Since a B-spline transform cannot represent such a discontinuous

motion, we use one B-spline transform per region, as in previous work (Vandemeulebroucke

et al 2011, Wu et al 2008). Thus, we enforce smoothness in each region, but allow for a

discontinuity at their interface.

However, there is no constraint on the consistency of the deformation across the interface,

which could potentially lead to gaps and overlaps (figure 1). In sliding deformations, the

speed of the displacement is continuous in the direction normal to the sliding interface, simply

referred to as the normal direction in the following. This constraint was first expressed by

Schmidt-Richberg et al (2011), who added a local regularity constraint around the sliding

interface. In practice, since we have two images acquired at distant time points, the speed

direction is approximated by the direction of the deformation between these two time

points. This approximation is only valid if the normal direction does not change during

the displacement, limiting the approach to planar interfaces moving by translation (Yin et al

2010). Nevertheless, when the interface smoothness is large compared to the amplitude of

its deformation, the approximation is locally valid. This has been considered the case in the

application investigated in this paper, i.e. the estimation of lung sliding motion from 4D CT

images.

To express the constraint along the normal direction using B-spline transforms, we propose

to add a third B-spline transform to handle the motion in the normal direction on the entire

image. Since a B-spline transform can only represent continuous deformations, smoothness in

the normal direction is naturally enforced by the proposed model. The next section describes

how to decompose the mapping function in these three B-spline transforms for deformable

registration of sliding regions.

2.2. Mapping function

The proposed model can handle any number of regions but to simplify the presentation, we

consider two complementary regions �,� ∈ R
3 sliding along their interface. The mapping

function T : � ∪ � �→ R
3 maps points of the reference image to points of the target image.

Let BN , B�, B� : �∪� �→ R
3 be the three B-spline transforms described in the previous

section. BN is the deformation in the normal direction for the whole transformation support

�∪�. B� and B� describe the rest of the deformation in � and �, respectively. The expression

of the resulting mapping function is

T (x) =

{

BN (x) + B�(x) if x ∈ �,

BN (x) + B�(x) if x ∈ �.
(1)

Thus, potential inconsistencies between the deformations in � and � are prevented because

the motion in the normal direction is continuously represented by BN , while sliding is possible
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Figure 2. Local bases {N(l(i)),U(l(i)),V (l(i))} superimposed on the corresponding sagittal CT

slice of a thorax. N, U and V are in green, red and blue, respectively.

because the rest of the transform is separated into two independent B-spline transforms, B�

and B�.

2.3. Parameterization

The B-spline transforms BN , B� and B� are defined on the same set of control points with

their respective B-spline coefficients cN
i , c�

i , c�
i ∈ R

3, e.g., for B�,

B�(x) =
∑

i∈J

c�
i βi(x), (2)

with x ∈ � ∪ �, i ∈ J ⊂ Z
3 the spatial indices of the B-spline control points and βi the tensor

product of one-dimensional cubic B-spline kernels, βi =
∏3

j β
j

i
.

Each B-spline transform must be constrained to represent motion in selected directions

only. This is achieved by constraining their coefficients ci to lie in a local orthonormal base, the

first direction of which is the normal direction, formally denoted N : � ∪ � → R
3 (figure 2).

The computation of this local base is detailed in the following section. The coefficients ci

represent the 3D displacement of the control point i at position l(i) with l : J �→ � ∪ �

the function returning the initial location of each control point. We assumed that if control

points move in the normal direction, the resulting deformation is in the normal direction, i.e.

cN
i ×N(l(i)) = 0 ⇒ BN (x)×N(x) = 0,∀i ∈ J,∀x ∈ �∪�. This assumption is only valid for

planar sliding interfaces. This is not the case here but the sliding interface is sufficiently smooth

to minimize the effect of the resulting approximation. In order to have cN
i × N(l(i)) = 0, a

single parameter pN
i ∈ R is sufficient to determine the 3D vector cN

i with

cN
i = pN

i N(l(i)) (3)

Similarly, the control points of B� and B� are constrained to vary in a plane orthogonal to

N, which is supported by the rest of the local orthonormal base defined in each control point

(figure 2). For these B-spline transforms two parameters are necessary for each control points.

The first one is multiplied by the second vector of the local orthonormal base, U, and the

second by the third vector of the local orthonormal base, V , giving
{

c�
i = p�,U

i
U(l(i)) + p�,V

i
V (l(i))

c�
i = p�,U

i
U(l(i)) + p�,V

i
V (l(i)).

(4)

Solving the registration problem with the proposed mapping function to represent sliding

motion comes down to estimating the optimal parameters pN
i , p�,U

i
, p�,V

i
, p�,U

i
, and
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p�,V
i

that minimize a chosen similarity metric depending on the three constrained

B-spline transformations. Subsequently, the final transformation T can be derived from

equations (1)–(4).

2.4. Local orthonormal bases

The computation of an orthonormal base {N(l(i)),U(l(i)),V (l(i))} is required at each control

point of the B-spline grid (figure 2). N(l(i)), is obtained with the derivative of the distance

map with respect to the closest interface. In order to prevent aliasing, it was smoothed by a

Gaussian filter with a kernel radius of 4 mm radius. U(l(i)) and V (l(i)) can be any couple

of orthogonal vector in the plane orthogonal to N(l(i)). We use the cross product between

N(l(i)) and an arbitrary vector ŵi ∈ R
3 to obtain U(l(i)), followed by a cross product between

N(l(i)) and U(l(i)) to obtain V (l(i)). To prevent numerical instabilities, the vector ŵi is the

unit vector of the Cartesian basis {ex, ey, ez} which forms the largest angle α with N(l(i)),

α ∈ [0, π
2

], i.e.

ŵi = argmin
w∈{ex,ey,ez}

‖N(l(i)) · w‖ (5)

2.5. Partial derivatives for optimization

Registration is the maximization of a cost function based on a similarity measure, e.g., the

mutual information or the correlation coefficient. Several optimization procedures depend on

the partial derivatives of the cost function with respect to the transformation parameters. A

major advantage of B-spline transforms is that partial derivatives can be expressed analytically

as a linear combination of inferior order B-spline functions. Since the proposed method is a

linear combination of B-spline transforms in each region, the analytical derivation is preserved.

Thus, the derivation of equation 1 gives the following partial derivative for T (x)
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂T (x)

∂ pN
i

= ∂BN (x)

∂cN
i

· N(l(i)),

∂T (x)

∂ p
�,U
i

= ∂B�(x)

∂c�
i

· U(l(i)),

∂T (x)

∂ p
�,V
i

= ∂B�(x)

∂c�
i

· V (l(i)),

∂T (x)

∂ p
�,U
i

= ∂B�(x)

∂c�
i

· U(l(i)).

∂T (x)

∂ p
�,V
i

= ∂B�(x)

∂c�
i

· V (l(i)).

(6)

3. Lung sliding motion

We have evaluated the proposed method on 4D CT images of the thorax displaying large

sliding motion of the lungs along the thoracic cage. The evaluation was carried out using

the target registration error (TRE), and a quantification of overlaps and gaps near the sliding

interface.

3.1. Image data

The evaluation was performed on 4D CT images of the thorax of 16 lung cancer patients.

The end-inhale phase (target image) was registered on the end-exhale phase (reference image)

(figure 3).

The first six patients were treated at our hospital. The images were acquired with a

Brilliance Big Bore 16-slice 4D CT scanner (Philips Medical Systems, Cleveland, OH).
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Figure 3. Example of a pair of CT images used for the evaluation of the proposed method. The

end-inhale image, in green, is superimposed on the end-exhale image, in purple.

Figure 4. The CT image of a thorax with the motion mask (green) that encompasses the organs

with the largest displacement during breathing.

Respiration-correlated reconstruction into ten 3D CT images was obtained by simultaneous

recording of a respiratory trace using the Pneumo Chest bellows (Lafayette Instrument,

Lafayette, IN). The resolution was approximately 1 × 1 × 2 mm3 and 512 × 512 × 150

voxels (Vandemeulebroucke et al 2011).

The next ten patients were obtained from the DIR-labs (DL) database www.dir-lab.com

Castillo et al (2009, 2010). Their spatial resolution was between 0.97 × 0.97 × 2.5 and

1.16 × 1.16 × 2.5 mm3.

3.2. Motion mask segmentation

For each patient the motion mask was extracted on the end-exhale image (figures 3 and 4). The

motion mask was first described by Wu et al and divides the thorax in two sliding regions (Wu

et al 2008). The motion mask � encompasses the organs with the largest displacements during

http://www.dir-lab.com
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breathing, comprising the lung, the mediastinum and the abdomen; the complementary region

� encompasses the more static organs, comprising the thoracic cage and the backbone. The

segmentation was achieved using an automated method (Vandemeulebroucke et al 2012) based

on an initial segmentation of the lungs (threshold and region growing), the bones (threshold

and connected components) and the patient. A monitored level-set segmentation is initialized

at the center of the abdomen. The level-set surface then grows into the lungs until 95% of the

lung volume is covered, without intersecting the bones. The advantage of this motion mask

compared to a simple lung mask is that it encompasses the abdomen and the mediastinum

which move continuously with the lungs under the influence of the breathing motion.

3.3. Implementation

The proposed mapping function was implemented as a new component of elastix (release

4.6, available at http://elastix.isi.uu.nl/), which is a toolbox for intensity-based medical image

registration (Klein et al 2010). We compared the end-inhale to end-exhale registrations of

the proposed method with one using a single B-spline transform defined on the whole image,

one using two independent B-splines without sliding constraint, one in � and another in �,

and, finally, the method described in Wu et al (2008) and Vandemeulebroucke et al (2012)

which models the sliding constraint using a strong gradient defined on both the reference and

the target images.

Registration parameters are the same for the four methods. We used third order B-spline

transformations optimized with a very large number of iterations (16 000) of the adaptive

stochastic gradient descent (Klein et al 2009) to guarantee convergence. The spacing of the

B-spline control points was 32 mm in every direction, which is large enough to impose spatially

smooth deformations without additional regularization. The Mattes mutual information metric

(Mattes et al 2003) used 2048 voxels which were randomly chosen at every iteration. The

moving image was interpolated using third order B-splines. To take into account large

deformations, we used a multi-resolution strategy with a smoothing Gaussian kernel on three

resolution levels.

3.4. Quantification

Two measures were employed in the evaluation of the results:

(1) TRE. To measure the quality of the registration, we used the mean Euclidean distance

between corresponding landmarks defined in the reference image and in the target image. These

landmarks correspond to recognizable structures like bronchial tree bifurcations, manually

selected by experts, on both the reference and the target image.

For the first six patients, 100 landmarks were obtained with the semiautomatic method

described in Vandemeulebroucke et al (2011). For DL patients, 300 landmarks were chosen

as described in Castillo et al (2009, 2010).

The TREs of several registration methods applied to the DL’ dataset are available on the

DL’ website as well as in several publications, e.g., Schmidt-Richberg et al (2011).

(2) Gaps and overlaps. To measure the consistency between the deformation fields around

the sliding interface, we quantified gap and overlap volumes near the segmentation boundary,

because gaps and overlaps at the pleura are physically impossible for healthy subjects. Since

the sliding interface was between � and �, the motion mask was converted into a 3D surface

mesh, which was deformed using both the transform in � (B� + BN) and the transform in �

http://elastix.isi.uu.nl/
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(a) (b) (c) (d)

Figure 5. Example of deformation vector fields obtained after registration using a single B-spline

(a), multiple B-spline without sliding constraint (b), Wu et al ’s method (c) and multiple B-spline

with sliding constraint (d).

(B� + BN). By converting these two meshes back into binary masks, we identified overlap

voxels T (�) ∩ T (�) and gap voxels T (�) ∩ T (�) and measured their total volume in cm3.

We compared the multi B-spline methods with and without sliding constraint by computing

their Jaccard distances, equal to

J(A, B) =
|A ∪ B| − |A ∩ B|

|A ∪ B|
(7)

with A = T (�) and B = T (�). Note that the numerator of the Jaccard distance is the union

of gap and overlap volumes. The ratio of the Jaccard distances between two method shows the

improvement brought by one method on the other one.

4. Results

Figure 5 shows the deformation vector fields obtained with the four methods for one pair of

images. The single B-spline transform (figure 5(a)) does not take into account the discontinuity

at the motion mask interface, leading to incorrect motion. In that area, the resulting mapping

function varies smoothly, leading to a wrong estimate of the motion. The use of one B-spline

per area (figure 5(b)) corrects this drawback by preventing the influence of structures outside

the motion mask on the estimation of the motion of structures in the motion mask, and

conversely. However, it leads to inconsistencies on both sides of the interface. Namely, the

B-spline transform inside the motion mask warps the interface inward, while the B-spline

transform outside the motion mask warps the interface in the opposite direction, creating gaps

(figure 6(a)). Wu et al ’s method and the proposed method (figures 5(c) and (d)) achieve

accurate estimation of sliding motion, additionally constraining the estimated motion to be

consistent around the sliding interface, reducing gaps and overlaps (figures 6(b) and (c)).

In table 1, we observed that handling the sliding motion discontinuity with multiple

B-spline transforms improves the resulting TRE (average reduction from more than 3.7 mm

to about 1.4 mm). This result confirmed previous studies (Schmidt-Richberg et al 2011,

Vandemeulebroucke et al 2012, Wu et al 2008). A two-sample t-test showed that the TRE
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(a) (b) (c)

Figure 6. The motion mask interface deformed with the inside deformation (green) and the outside

deformation (red) using one B-spline per region (a), using Wu et al ’s method (b) and using the

proposed method (c).

Table 1. TRE after three resolutions (in mm).

Multi B-splines Multi B-splines
without sliding Multi B-splines with sliding

Patient Before Single B-spline constraint Wu et al (2008) constraint

1 9.4 ± 7.4 2.2 ± 2.6 1.2 ± 1.2 1.2 ± 1.1 1.2 ± 1.3
2 7.3 ± 4.9 2.6 ± 3.1 1.5 ± 1.8 1.4 ± 2.1 1.6 ± 1.9
3 7.1 ± 5.1 2.0 ± 2.2 1.3 ± 0.8 1.2 ± 0.7 1.3 ± 0.8
4 6.7 ± 3.7 1.6 ± 1.6 1.0 ± 0.6 1.0 ± 0.5 1.0 ± 0.6
5 14.0 ± 7.2 5.2 ± 5.5 1.3 ± 1.0 1.3 ± 1.0 1.4 ± 1.0
6 6.3 ± 2.9 1.3 ± 0.9 0.9 ± 0.5 0.8 ± 0.4 0.9 ± 0.5
DL 1 3.9 ± 2.8 1.7 ± 1.1 1.3 ± 0.6 1.1 ± 0.5 1.2 ± 0.6
DL 2 4.3 ± 3.9 1.9 ± 1.9 1.0 ± 0.5 1.0 ± 0.5 1.1 ± 0.6
DL 3 6.9 ± 4.1 3.3 ± 2.5 1.7 ± 0.9 1.3 ± 0.7 1.6 ± 0.9
DL 4 9.8 ± 4.9 3.3 ± 2.7 1.6 ± 1.1 1.5 ± 1.0 1.6 ± 1.1
DL 5 7.5 ± 5.5 4.1 ± 3.6 1.9 ± 1.5 1.9 ± 1.5 2.0 ± 1.6
DL 6 10.9 ± 7.0 5.0 ± 4.4 1.6 ± 0.9 1.6 ± 0.9 1.7 ± 1.0
DL 7 11.0 ± 7.4 7.0 ± 6.4 1.7 ± 1.1 1.7 ± 1.1 1.9 ± 1.2
DL 8 15.0 ± 9.0 10.5 ± 9.3 1.8 ± 1.7 1.6 ± 1.4 2.2 ± 2.3
DL 9 7.9 ± 4.0 4.3 ± 2.9 1.5 ± 0.8 1.4 ± 0.8 1.6 ± 0.9
DL 10 7.3 ± 6.3 3.9 ± 4.4 1.6 ± 1.2 1.6 ± 1.2 1.7 ± 1.2

mean 8.4 ± 5.6 3.7 ± 4.0 1.43 ± 1.1 1.35 ± 1.0 1.49 ± 1.2

obtained with multiple B-spline methods significantly improved the TRE obtained with the

single B-spline method (p < 0.001, paired t-test). Nevertheless, our method yielded slightly

worse results when compared with the multi B-splines method without sliding constraint.
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Table 2. Gaps and overlaps volumes (in cm3) followed by the Jaccard distance ratio between both

methods.

Multi B-splines without Multi B-splines Multi B-splines with
Patient sliding constraint Wu et al (2008) sliding constraint

Gaps Overlaps Gaps Overlaps Gaps Overlaps

1 120 62 77 59 76 57
2 154 47 72 62 82 51
3 100 37 72 31 62 33
4 158 68 101 58 78 64
5 337 75 145 84 134 100
6 157 69 108 48 72 59
DL 1 66 9 38 26 39 15
DL 2 83 55 78 46 67 60
DL 3 220 15 99 28 83 33
DL 4 102 30 75 34 66 44
DL 5 140 40 110 38 78 52
DL 6 282 66 100 86 119 77
DL 7 247 56 105 79 108 77
DL 8 201 94 96 91 92 93
DL 9 105 35 61 34 54 44
DL 10 202 56 120 63 94 56

mean 167 ± 76 51 ± 22 91 ± 26 54 ± 22 82 ± 24 57 ± 22

The TRE increased by 0.06 mm on average (p ≃ 0.03). We specifically evaluated the set of

landmarks which are less than 5 mm away from the motion mask boundary. The TRE was

2.86, 1.22, 1.23 and 1.29 mm for the single B-spline, multiple B-Spline, Wu et al ’s method

and multiple B-spline with sliding constraint, respectively. However, the set of points near

the boundary is limited to 13.5 points per patient on average, due to the lack of anatomical

landmarks near the boundary. The gaps and overlaps measure is more descriptive of the sliding

pleurae.

The proposed method improved the registration at the interface by significantly decreasing

gap volumes from 167 to 56 cm3 (p < 10−3) (table 2). These gaps are due to the lack of structures

in the lungs near the thoracic wall, which let the registration rely on internal structures for

aligning the pleura. With the sliding constraint, the two motions masks are visually interlaced

(figure 6), which also resulted in a minor 6 cm3 increase of the overlaps. The combined

measurement, the Jaccard distance ratio, was always in favor of the proposed method with an

average improvement of 34%.

In terms of computation time (16 000 iterations, 2048 samples, 32 mm spacing, three

resolutions), the single B-spline method took around 48 min, the multi B-spline method took

around 58 min, Wu et al ’s method took 100 min (48 min for the inside of the motion mask

and 52 min for the outside) and the proposed method took around 86 min on an Intel Xeon

E5345 @ 2.33 GHz. The computation time of the multi B-spline method was 21% longer than

the single B-spline method because the second B-spline doubles the number of considered

parameters. The proposed method was 79% slower than the single B-spline method, which is

due to the initial normal vector field computation, the local base computation at each resolution,

as well as per-iteration costs, such as the parameters dispatch between each underlying

B-spline transform and the cost involved at each deformation evaluation or derivative evaluation

to aggregate results of underlying B-spline transforms. The registration time can be reduced

a lot by decreasing the number of iterations but we wanted to ensure complete convergence.

In practice, we experienced convergence around 2000 iterations, where the proposed elastix

implementation takes less than 15 min to perform the registration.
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5. Discussion

The results obtained in our evaluation show the interest of taking into account the sliding effect

present in the breathing motion when registering images of the lungs. The TRE was comparable

when we used an independent B-spline transform for each sliding region but the proposed

method significantly reduced inconsistencies along the interface (tables 1 and 2). This means

that enforcing continuity of the normal direction gives more plausible deformation fields.

The consistency of the deformation field in methods that use independent transforms can

be improved with the inclusion of an artificial band around each region, which creates a strong

gradient along the borders and forces their alignment (Vandemeulebroucke et al 2012, Wu

et al 2008). However, these methods must correctly segment both the reference and the target

images, so that region borders correspond. In case of segmentation errors, borders which do

not represent the same physical structure are wrongly forced to map. The proposed method,

on the other hand, requires the segmentation of the fixed image only, lowering the impact of

an erroneous segmentation. There is also an advantage for spatio-temporal motion estimation

(Vandemeulebroucke et al 2011) because the proposed method requires only one segmentation,

while other approaches need as many consistent motion masks as image phases. This would be

particularly useful in clinical practice, since asking a clinician to review one mask is possible,

but reviewing ten masks is not, especially if inter-consistency must be checked.

One limitation of the proposed method is that it cannot handle the sliding on curved borders

since, in this case, the normal direction is changing during the displacement. However, if the

motion amplitude is small with respect to the curvature, the variation of the normal direction

during the deformation is limited and can be neglected. The breathing motion corresponds to

such a favorable situation because the sliding border of the lungs is smooth except in the upper

part of the lungs where the motion amplitude is small. The approximation might still explain the

slight deterioration of the TRE with the sliding constraint (table 1). Registering intermediate

images of the breathing cycle could reduce the approximation since they correspond to motion

of smaller magnitude. Another potential improvement of the method would be its combination

with a spatio-temporal model to access a continuous representation of the deformation in time

(Vandemeulebroucke et al 2011).

Another limitation comes from the use of a B-spline transform to represent the normal

direction. In the proposed solution, only the control points of this B-spline transform are

constrained to move in the normal direction, assuming that the resulting transform will also

vary in the normal direction. But the displacement at each point of a B-spline transform is the

linear combination of the displacement of several control points in a local support, and the

assumption is only valid if the normal direction is smooth enough in this local support. The

spacing of the control points must therefore be adapted to the smoothness of the interface.

32 mm spacing was deemed adequate in our case. Note that further reducing the grid spacing

would also reduce the intrinsic regularity of the B-spline transform and would probably

require an additional spatial regularization. Adding a regularization based on the spatial

partial derivatives of the transformation, e.g., the bending energy, is straightforward given the

analytical derivation of the proposed transform (equation (6)). Our solution preserves indeed

the good properties of the B-spline transforms since it is a linear combination of B-spline

transforms (equation (1)).

6. Conclusion

We have proposed a mapping function that model sliding motion using a linear combination of

multiple B-spline transforms to produce more consistent deformation vector fields compared
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to previous approaches. The mapping function has been validated on 16 thorax CT images with

lung sliding motion. Compared to previous approaches, we suppressed the need for multiple

consistent segmentations while largely reducing gaps and overlaps at interfaces between

objects.
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