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Abstract—Laparoscopic Ultrasound (LUS) is recommended as
a standard-of-care when performing laparoscopic liver resections
as it images sub-surface structures such as tumours and major
vessels. Given that LUS probes are difficult to handle and
some tumours are iso-echoic, registration of LUS images to
a pre-operative CT has been proposed as an image-guidance
method. This registration problem is particularly challenging
due to the small field of view of LUS, and usually depends
on both a manual initialisation and tracking to compose a
volume, hindering clinical translation. In this paper, we extend
a proposed registration approach using Content-Based Image
Retrieval (CBIR), removing the requirement for tracking or
manual initialisation. Pre-operatively, a set of possible LUS planes
is simulated from CT and a descriptor generated for each image.
Then, a Bayesian framework is employed to estimate the most
likely sequence of CT simulations that matches a series of LUS
images. We extend our CBIR formulation to use multiple labelled
objects and constrain the registration by separating liver vessels
into portal vein and hepatic vein branches. The value of this
new labeled approach is demonstrated in retrospective data
from 5 patients. Results show that, by including a series of 5
untracked images in time, a single LUS image can be registered
with accuracies ranging from 5.7 to 16.4 mm with a success
rate of 78%. Initialisation of the LUS to CT registration with
the proposed framework could potentially enable the clinical
translation of these image fusion techniques.

Index Terms—Multi-modal Registration, Trackerless Registra-
tion, Laparoscopic Ultrasound, Content-Based Image Retrieval

I. INTRODUCTION

LAPAROSCOPIC Liver Resection (LLR) shows benefits

over open surgery in terms of reduced trauma to the pa-

tient and consequently shorter hospital stays [1], [2]. However,

due to limitations inherent to the laparoscopic setting, only

5-30% of cases are considered for LLR, usually when the

tumours are located in easily accessible regions without major

vessels [3]. Laparoscopic Ultrasound (LUS) is an imaging tool

that can increase the safety of this procedure by imaging sub-

surface structures such as vessels and tumours [4]. To enable
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use during laparoscopic procedures, LUS probes typically have

a relatively small ultrasound transducer, attached to the end of

a long shaft, with either a 1 or 2 way pivoting mechanism.

This design, combined with the reduced field of view of

the transducer, increases the user expertise required to both

manipulate the probe inside the abdominal cavity and interpret

the resulting images [5]. Additionally, some tumours are iso-

echoic and not easy to visualise in the LUS images [6]. To

overcome these limitations, registration between LUS and a

pre-operative scan such as Computed Tomography (CT) or

Magnetic Resonance (MR) based on blood vessel information

has been proposed [7]. By aligning LUS with any of these

modalities, guidance is enabled by providing the surgeon with

spatial context on the relative position between a target tumour

and major vessels.

Compared to other ultrasound (US) to CT registration prob-

lems, the LUS to CT registration is very poorly constrained

due to the difference in imaging field of view and usually

depends on either a manual interaction with the images [8] or

Electromagnetic (EM) tracking to compose a 3D volume [9],

[10]. Such requirements hinder the clinical translation of these

methods as they disrupt surgical workflow and increase the

hardware complexity in the operating room. In this paper, we

extend a novel registration method that provides an accurate

initialisation to the problem without requiring tracking infor-

mation nor a manual interaction with the images. Preliminary

results have been previously presented [11].

A. Background

Several authors have tackled the registration of percuta-

neous US to CT/MR of the liver, mainly for radiofrequency

ablation procedures. Registration for freehand US has been

achieved by using an intensity matching between US and a

linear combination of CT and simulated US [12], by aligning

vessel probability maps derived from US and CT [13] and

by matching local orientation description maps of US and

MR [14]. However, these intensity-based methods rely on

US images that capture large abdominal sections with major

liver vessels and liver surface, and not just a small subset of

vessels as in LUS. Other authors registered with 3D US probes

instead, using vessels as features [15], [16], vessels and liver

surface [17], [18], or image intensity gradient information [19],

[20]. Since there are no 3D LUS probes, these methods are

not easily transferable to the laparoscopic setting.
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Few methods have been demonstrated for the specific reg-

istration of LUS to CT. Historically, the first feasibility tests

were presented by Bao et al. [21] in an isolated phantom

and Kruecker et al. [22] in a complete laparoscopic setup.

Later, Martens et al. [23] validated a surface-based rigid

registration with the LapAssistent system on an ex-vivo animal

liver. The first intra-operative solution was demonstrated by

Song et al. for in-vivo animal data, using a locally rigid

vessel-based manual alignment [8]. Even though the rigidity

assumption is not compatible with the fact that the liver

is highly deformed during laparoscopy due to abdominal

insufflation (pneumoperitoneum) and LUS probe contact [24],

the main limitation of these methods is the dependence on a

manual match between common vessel landmarks in CT and

LUS. This can be attributed to the fact that this is a part-to-

whole registration problem where a small subset of vasculature

must be matched to a much larger and repetitive vessel tree,

making traditional optimisation schemes applicable only if

the position of the LUS image is closely initialised to the

correct vascular region of the CT. Previously, we approached

this problem with a rigid solution, but assumed LUS to be

EM tracked [10]. Since tracking devices increase the cost and

complexity of the hardware present in the operating room,

an untracked registration solution would be highly beneficial

for clinical translation. The few current solutions that address

untracked US registration are not applicable to laparoscopy as

they either rely on 3D US probes [25] or on a very strict probe

movement during acquisition [26].

We propose a novel framework that poses registration as

a Content-Based Image Retrieval (CBIR) problem. These

concepts have been previously applied to the registration of

endoscopic video images to a pre-operative CT as a means

of enabling image-guidance during lung bronchoscopy [27].

Instead of optimising an alignment, we pre-operatively simu-

late possible LUS probe poses with their respective imaged

vessel content and encode the result to a database. Regis-

tration is then globally achieved by finding the pose that

best represents the vessel content of an input LUS image

without the need for an initialisation. Since the problem is

ill-posed and multiple non-unique solutions are expected for

a single image, we combine the retrieval results obtained by

multiple LUS images acquired closely in time in a Bayesian

framework. By assuming that images close in time should also

be close in translation and rotation, we construct a discrete

Hidden Markov Model (HMM) to estimate the most likely

sequence of CT simulations that represent the LUS acquisition.

We hypothesise that after including a minimum number of

images in the optimisation, a unique registration solution

can be obtained. This enables the registration problem to be

accurately initialised without tracking data. Previously, we

presented preliminary results on a limited sample of synthetic

and real LUS sequences, demonstrating the feasibility of this

framework without addressing the CBIR system performance

comprehensively [11]. In this work, we generalise our CBIR

system to include multiple labels in the vessel feature encoding

which increases registration performance. In the specific case

of liver imaging, this is possible by labelling different vessels

as branches of the portal vein or branches of the hepatic vein.

We validate the complete CBIR and HMM framework on

clinical data on a larger sample of LUS and CT data from

5 patients.

B. Contributions

In this paper, we propose a novel CBIR method for the

global trackerless registration of LUS to CT and introduce the

following contributions:

• We generalise our CBIR registration method to include

multiple labels, and provide a comparison of performance

between unlabellled and labelled CBIR.

• We provide a comprehensive analysis on the accuracy of

the method in the registration of a single LUS image.

• We present insights on what are the minimum require-

ments in terms of retrieval performance and model com-

plexity in order to obtain a reliable registration.

II. METHODS

Given a sequence of N untracked LUS images {I1, ..., IN}
with corresponding time stamps {t1, ..., tN}, we pose the

registration problem as finding the sequence of pre-operatively

simulated CT slices {J1, ..., JN} that best represents the vessel

content captured in the LUS acquisition. Our framework

comprises two steps:

• A CBIR system that retrieves a set of K possible slices

{J1i, ..., JKi} that are candidate solutions for the regis-

tration of each LUS image Ii;

• A discrete HMM optimisation that estimates the most

likely sequence of candidates assuming a kinematic prior

on the relative pose between each consecutive LUS slice.

A. Content-Based Image Retrieval Database Assembly

A set of possible registration solutions is generated by

densely sampling 2D planes, bounded by the LUS image

geometry, from physically accessible positions P of the seg-

mented CT volume J . A virtual reference pose is defined for

each point P within a set of evenly distributed points PS along

the segmented liver surface likely to be visible during surgery.

Each pose is defined by simulating the probe shaft placed

orthogonally to the liver surface and aligning the imaging

field of view with the sagittal plane. From this reference,

multiple combinations of rotations Rx, Ry and Rz around the

probe axes are applied to generate new planes parameterised

by R = [~x, ~y, ~z]. In order to approximately simulate the

case where the probe compresses the liver tissue and captures

deeper vessels, a translation d across the depth of the imaging

plane is also sampled.

As illustrated in the top section of Fig.1, for each parameter

combination of P , R and d, a vessel section map is then

generated. In order to have a lower dimensional feature

representation of each of these maps, we take an approach

similar to the one of Petrakis et al. [28] and encode them

in a feature vector f where each of the M captured vessel

sections in a single plane is represented by a feature triplet

fi comprised of the corresponding 2D centroid position and

area. Then, each triplet is labelled by a class c from a set of
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Fig. 1. Database generation process for vessel based image retrieval. For each point P of the liver surface PS , rotation R = [~x, ~y, ~z] and translation d in
depth direction, a vessel image is generated. Path (A) illustrates the case where no labels are used and f has a single size M . Path (B) illustrates the case
where vessels are labelled as hepatic vein (h) and portal vein (p) resulting in C=2 and feature vectors f have two specific sizes Mh and Mp. In the whole
figure, green refers to the hepatic vein and blue to the portal vein.

C classes as described in Fig.1 - in (A) no specific labels are

considered and C=1, whereas in (B) portal vein and hepatic

vein are considered, resulting in C=2. Once encoded, vectors

f are grouped in lists FM1,...,MC according to the number Mc

of triplets fci they contain for each class c. Following the same

paths in the bottom section of Fig.1, lists are identified by a

single size M in the unlabelled case (A) and by combinations

of two sizes with portal vein and hepatic vein labels (B).

Essentially, a large number of plausible probe poses are

sampled, an image plane extracted from CT, and a large

lookup table of features extracted, where the lookup table is

partitioned according to the number of occurrences of each of

the considered vessel classes.

B. Multi-Labelled Image Retrieval

We formulate the image retrieval process as the computation

of a distance measure between an input LUS feature vector

f
I with M I feature triplets and the pre-operatively generated

vectors from CT encoded in a database F . Therefore, we first

formalise the problem of measuring the distance between two

vectors f
1 and f

2. Taking into account that the size of the

vectors may differ, we make the following definitions,

f
S
c := argmin

f∈{f1,f2}

(count(f , c)), MS
c := count(fSc , c),

f
L
c := argmax

f∈{f1,f2}

(count(f , c)), ML
c := count(fLc , c),

(1)

where the subscripts L and S refer to the larger and smaller

feature vectors in the comparison and count(f , c) operator

returns the number of feature triplets in f that belong to class c.

We can then define a L2 distance ∆ that compares feature

vectors of class c within f
1 and f

2,

∆(f1, f2, c) =

MS
c

∑

i=1

‖fSci −m(fSci, f
L
c )‖

2, (2)

where the function m(fSci, f
L
c ) returns the feature triplet in the

larger vector fLc whose centroid is closest to the centroid of fSci.

Intuitively, this function matches all the triplets in the smaller

vector fSc to their closest counterparts in the larger vector fLc .

These class specific costs are subsequently combined to yield

the following weighted distance:

D(f1, f2, C) =
AL

∑C

c=1
AS

c

·
C
∑

c=1

∆(f1, f2, c) (3)
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Fig. 2. HMM formulation of the problem. The left-hand side depicts the employed graphical model. The right-hand side illustrates the transition probability
P (Jki|Jki−1) of a pose Jki being followed by Jki−1. This diagram only displays the translation probability with Gaussian covariances σx, σy and σz .

This expression comprises two terms, the sum of L2 norm for

all of the C classes and a penalty term based on the the area of

the vessel sections that were not matched when computing ∆.

Considering the operator A(fi) that returns the area of triplet

fi, and the following definitions,

AL =

ML

∑

i=1

A(fLi ), AS
c =

MS
c

∑

i=1

A(m(fSci, f
L
c )) (4)

this penalty term is defined as the ratio between the area AL

of all triplets in the overall larger vector of the comparison f
L

and the sum of the areas of the class specific triplets f
L
ci that

were matched in ∆. The larger the areas excluded from the

matching, the larger the ratio and subsequently the distance D.

In case that f1 and f
2 contain matching numbers of each class,

the ratio is 1.

Retrieval is now achieved by searching for the vectors in F

that have a minimal distance D with the input f I :

f
∗ = argmin

fT∈FT

(

D(f I , fT , C)

min(M I ,MT )

)

,

FT = {FM1,...,MC ∈ F :
C
∑

c=1

|Mc −M I
c | ≤ r}

(5)

Intuitively, this search should only consider lists with a num-

ber of vessel sections close to the input. Therefore, FT is

defined as the target subset of lists whose differences between

each of its sizes {M1, ...,MC} and the sizes of the input

{M I
1
, ...,M I

C} amount to less than an allowable search range

r. In summary, the search only considers lists whose number

of vessel occurrences do not differ more than r from the input.

Since the input vector is compared to lists with different sizes,

all distances are normalised by the overall smaller number of

sections used in each comparison. Assuming that the minimum

vector f∗ may not return an accurate registration, we consider

the set of poses providing the K smallest distances defined in

equation (5). These poses are defined as candidate poses for

further probabilistic optimisation.

C. Probabilistic Optimisation

Given the sets of K candidates {J1i, ..., JKi} retrieved for

each of the N LUS images Ii, we solve the multiple image

registration problem by means of the discrete HMM shown

in Fig. 2. In this model where columns and rows refer to

images in time and candidates respectively, nodes represent

the likelihood P (Ii|Jki) of an image having been acquired

with a candidate pose, and edges represent the probability

P (Jki|Jki−1) of a pose being followed by another in time.

Following discrete HMM theory, the most likely sequence of

candidates to represent the acquisition can be obtained through

the Maximum A Posteriori (MAP) estimation of the model,

Ĵk1..., ĴkN = argmin
Jk1...,JkN

[

−
N
∑

i=1

logP (Ii|Jki)

−
N
∑

i=2

logP (Jki|Jki−1)
]

,

(6)

which can be solved in a closed form by the Viterbi algo-

rithm [29]. In this optimisation, we rely solely on the kinematic

prior information in the edges and therefore consider all node

probabilities to be 1, giving no priority to any candidate on its

own. Assuming the LUS probe to be swept smoothly along the

normal to the imaging plane without inverting direction, we

define the edge probability similarly to [30], as a multi-variate

Gaussian,

P (Jki|Jki−1) =
exp(− 1

2
δTki,ki−1

Σ−1δki,ki−1)
√

2π4|Σ|
(7)

with distance and covariance defined by

δki,ki−1 =

[

Rki−1(
−−−−−−→
Pki−1Pki)

θki,ki−1

]

Σ = |ti − ti−1| diag(σx, σy, σz, σθ)

(8)

As illustrated in the right hand side of Fig. 2, this equation

models the transition probability from candidate Jki−1 to

Jki as the distance, δki,ki−1 between their respective poses

conditioned by a Gaussian distribution centred in the pose of

Jki−1 with covariance Σ. Four degrees of freedoms are con-

sidered in this model, the tridimensional Euclidean difference

between the probe contact positions Pki−1 and Pki projected

in the rotation of the starting pose, and the angular difference

θki,ki−1 between the two plane normals ~zki and ~zki−1. By
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Fig. 3. Manual picking of common vessel landmarks in CT and LUS for posterior accuracy evaluations. By registering the yellow landmarks in LUS (A)
and grey landmarks in CT space (B) with a Point-based Registration [31], a ground truth alignment is obtained in 3D (C) and 2D spaces (D). Estimation of
the plane represented in (B) is done manually after a careful inspection of the 3D CT models.

defining Σ as a diagonal matrix with values proportional to

the time difference between images, this distribution favours

transitions where the smaller the time gap, the smaller the

translation and rotation difference between them. Additionally,

we enforce the forward movement constraint by giving 0

probability to transitions whose direction
−−−−−−→
Pki−1Pki have an

angular difference above 90◦ with the direction obtained for

the first two images in the sequence.

III. EXPERIMENTS

We validate the proposed method using retrospective un-

tracked LUS images and contrast-enhanced CT scans from

5 clinical cases. Liver surface, hepatic vein and portal vein

models were extracted from each CT using a commercial ser-

vice (www.visiblepatient.com). LUS images with 668 × 544

pixels and pixel size 0.12 mm × 0.12 mm were acquired

at a rate of 40 Hz by smoothly sweeping a BK Medical

(www.bkmedical.com) 4 Way I12C4f laparoscopic transducer

over the surface of the right lobe of the liver. Vessel sections

are manually segmented and labelled as hepatic vein or portal

vein in each LUS image. A future piece of work will consider

automating this process, using methods such as the one in [32].

We perform two sets of experiments to assess separately the

two components of our registration framework, the CBIR

system and the HMM based registration.

A. Image Retrieval

In a first experiment, we test the labelled and unlabelled

CBIR systems by retrieving K = 1000 candidate poses

individually for a set of 63 LUS images distributed among

the 5 patients, using an empirically chosen search range

r = 2 as in equation (5). Patient-specific unlabelled and

labelled databases F are generated from liver surfaces with

an approximate spatial resolution of 3.5 mm, pose rotations

within the intervals Rx = Rz = [−40, 40]◦, Ry = [−90, 90]◦

in steps of 10◦ and depth within the interval d = [0, 30] mm

in steps of 5 mm. A higher amplitude is defined for Ry as this

is the rotation in which the probe can be moved more freely

whilst touching the liver surface during acquisition. Given that

the surgeon trivially knows which liver lobe is being scanned

during the LUS acquisition, we restrict the translation space

of the simulation to the surface of the right lobe.

To measure performance, we adapt the retrieval precision

metric that is traditionally used in the evaluation of CBIR

systems. Specifically, given an image retrieval task, preci-

sion is defined as the percentage of images retrieved that

are relevant to an input query image [28]. In the case of

registration, an appropriate criterion for relevance should be

based on the accuracy of the retrieved poses. Therefore, for

each of the 63 tested LUS images, we establish a ground truth

alignment by manually picking a set of vessel landmarks with

their counterparts in CT, and registering them with a Point-

based Registration [31], as illustrated in Fig. 3. For all of the

K = 1000 retrieved poses, we project the resulting position

of the LUS landmarks (yellow) in CT space, and compute

the resulting Target Registration Error (TRE) between them

and the CT landmarks (grey). We then define precision as the

percentage of poses for which the Root Mean Square (RMS)

of this TRE is below 20 mm. This threshold is considered as

sufficient for the purpose of a global rigid registration that can

be refined further with other US to CT fusion algorithms.

B. HMM Registration

We evaluate the HMM optimisation by employing it as a

means of registering each of the 63 individual LUS images

previously tested for retrieval. Therefore, for every registration

task, we consider the image to be registered as I1 in the

optimisation of equation (6), and include the retrieval results of

subsequent LUS images that follow in time during acquisition

and differ in vascular content.

Firstly, we perform registrations by combining the top 200

retrieved poses for both the image of interest I1 and the 5

subsequent images {I2, ..., I6}, which yields a HMM with

width N = 6 and height K = 200. Image retrieval for the

extra images is also performed using a search range r = 2,

and the HMM probabilistic constraints are parameterised with

variances σz = 3 mm, σx = σy = 0.2σz and σθ = 2◦. A

larger translation variance is given to σz in order to prioritise

movement along the imaging plane normal, as illustrated in
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Fig. 2. Registration accuracy is measured as the TRE of the

pose estimated for I1.

In a second test, we study the effect of varying the

HMM hyperparameters, the width N and height K. There-

fore, registrations are repeated for all of the 63 LUS im-

ages with different numbers of candidate poses K within

{50, 100, 200, 500, 1000}. Instead of considering a fixed width

N , we follow our hypothesis that there is a minimum number

of images for which the problem should yield a correct solu-

tion, and measure NS , the width at which the Viterbi algorithm

estimates a pose for I1 that results in a TRE below the

acceptable threshold of 20 mm. This means that for each tested

image and value K, we add retrieval results of subsequent

images sequentially until I1 is successfully registered with a

TRE below 20 mm. Retrieval search range r and probabilistic

constraint variances are fixed as in the previous experiment. In

practical terms, this experiment aims to provide insight on how

many subsequent images and retrieved candidates per image

should be used to obtain a reliable registration for a single

LUS slice. All experiments are performed for both unlabelled

and labelled cases.

C. Influence of Segmentation Errors

Since we demonstrate our method using manually seg-

mented vessels, we perform a last experiment to evaluate

the performance of the CBIR system in the presence of

segmentation errors. Traditionally, segmentation errors could

be modelled by applying random noise to both the position and

outline of the manually segmented vessel sections. However,

such errors would not significantly influence the performance

of the retrieval as the system reduces each vessel section to a

triplet consisting of a 2D location and area. Additionally, since

the database search is constrained by the amount of sections

present in the image, the method is most likely affected by

topological errors such as mis-segmented vessels. Therefore,

we repeat the retrieval experiment of section III-A for all

of the 63 LUS images after introducing either fake vessels

(False Positives) or missing vessels (False Negatives) in the

corresponding manual segmentation.
For each image and corresponding feature vector, we gen-

erate augmented vectors with false positives (FP) or false

negatives (FN). FN vectors are generated by removing feature

triplets whose area does not surpass 2.5 mm2. One FN vector

is generated for each possible combination of between one

and three removed vessels. FP vectors are generated by adding

new feature triplets with centroids adjacent to existing vessels.

Each new triplet is created with a fixed area of 2.5 mm2 and

assigned to the class of the corresponding source vessel. The

new centroid is calculated using a Gaussian distribution with

a standard deviation of 2.5 mm, and centred on the centroid of

the source vessel. One FP vector is generated for each possible

combination of between one and three added vessels.
We perform retrieval for all of the resulting FP and FN vec-

tors with mis-segmentations, and group the precision results

according to the number of false positives or false negatives

in the sampled combination.

IV. RESULTS

A. Image Retrieval

To better understand the dimensionality of the solution

space considered in the image retrieval task, we first show

TABLE I
CHARACTERISTICS OF SOLUTION SPACES CONSIDERED FOR EACH PATIENT-SPECIFIC DATABASE. LEFT SHOWS DIMENSIONS OF THE SOLUTION SPACE,

WHERE #A REFERS TO THE NUMBER OF ELEMENTS IN A. RIGHT SHOWS THE APPROXIMATE MEDIAN AND MAXIMUM TRE OBTAINED ACROSS THE

SOLUTION SPACE WITH MEAN AND STANDARD DEVIATION OVER THE NUMBER OF TESTED IMAGES PER PATIENT, LISTED IN THE FIRST COLUMN.

Dimensions of Solution Space Expected Errors across Solution Space

Patient
#Surface

Points PS

Surface Area
(mm2)

Resolution
(mm)

#Feature
Vectors in F

Number of
Images

“Random Retrieval”
Median TRE (mm)

Upper Bound
Maximum TRE (mm)

Case 1 5025 3.6 × 104 4.1 50.5 × 106 12 55.4 ± 5.6 175.1 ± 19.3

Case 2 4637 2.5 × 104 3.7 53.7 × 106 7 53.9 ± 2.9 110.1 ± 10.5

Case 3 3643 1.6 × 104 3.3 47.7 × 106 16 50.5 ± 8.9 90.6 ± 17.0

Case 4 3467 1.7 × 104 3.5 37.1 × 106 7 59.1 ± 13.0 134.5 ± 21.6

Case 5 3324 1.4 × 104 3.2 43.4 × 106 21 59.8 ± 4.7 107.8 ± 13.4

TABLE II
UNLABELLED AND LABELLED IMAGE RETRIEVAL RESULTS FOR 63 LUS IMAGES DISTRIBUTED AMONG 5 PATIENTS USING K = 1000 TOP RETRIEVED

POSES AND SEARCH RANGE r = 2 (SEE EQUATION 5). NUMBER OF IMAGES REFERS TO THE NUMBER OF TESTED IMAGES PER PATIENT. OTHER FIELDS

ARE PRESENTED AS MEAN AND STANDARD DEVIATION OVER THE NUMBER OF IMAGES PER PATIENT.

Unlabelled Retrieval Labelled Retrieval

Patient
Number of

Images
Ground Truth
FRE (mm)

Precision (%)
Minimum
TRE (mm)

Precision>0%
Images

Precision (%)
Minimum
TRE (mm)

Precision>0%
Images

Case 1 12 7.2 ± 2.0 13.0 ± 8.4 9.7 ± 1.9 12/12 37.6 ± 24.0 9.2 ± 2.4 12/12

Case 2 7 4.2 ± 2.2 20.6 ± 11.6 6.5 ± 1.6 7/7 31.4 ± 30.3 7.5 ± 2.6 7/7

Case 3 16 8.6 ± 1.1 1.7 ± 2.9 17.1 ± 28.5 11/16 12.4 ± 14.3 11.5 ± 2.6 16/16

Case 4 7 8.3 ± 2.4 25.4 ± 32.3 13.0 ± 5.6 6/7 30.1 ± 27.5 11.0 ± 3.4 7/7

Case 5 21 7.2 ± 2.5 12.0 ± 12.1 10.6 ± 4.6 20/21 26.1 ± 26.2 10.1 ± 5.5 20/21

Total 63 7.3 ± 2.3 12.2 ± 15.9 12.1 ± 5.6 56/63 26.3 ± 25.6 10.0 ± 4.1 62/63
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Fig. 4. Registration accuracy on 63 LUS images distributed among 5 patients after employing a HMM registration with 5 subsequent images and number of
K = 200 retrieved poses per image. From left to right, results are presented for images with retrieval precision above 0%, 10% and 20%. Median, standard
deviation and scatter plots of the accuracies are presented separately for images that belong to the same patient case. Lower deviation limits are presented as
the minimum value of the sample. Purple and yellow data series refer to labelled and unlabelled retrieval results, respectively.

an overview of the patient-specific generated databases F in

Table I. In the left-hand side, we present for each database

the number of points PS that were sampled across the visible

surface, the total area covered by them, their spatial resolution,

and the total number of generated solutions. In the right-hand

side, in order to establish both an upper bound and an expected

value of the TRE for a “random retrieval”, we provide an

approximation of the maximum TRE and median TRE that

can be obtained across all surface points PS for each of the

63 tested LUS images. For each patient case, these errors are

presented as mean and standard deviation over the number

of total tested images per patient listed in the first column

of the right section of the table. For the sake of simplicity,

these approximations only consider TRE values measured at

reference poses (R = [0, 0, 0], d = 0).

Retrieval results for the 63 LUS images are presented per

patient case in Table II. Similarly to the previous table, results

for each case are presented as mean and standard deviation

over the number of tested images. For each retrieval method,

we present the retrieval precision, the number of images whose

precision is above 0%, and the minimum TRE result found

in the pool of retrieved poses. In order to set a reference

for the TRE values, we use the previously calculated ground

truth alignments (Fig. 3) and report the resulting Fiducial

Registration Error (FRE). This error represents the maximum

accuracy that can be obtained in these landmarks with a rigid

registration. Overall, the retrieval systems find a solution with

TRE below 20 mm within 1000 retrieved poses for almost

every image, except for Case 3, where 5 images have no

suitable solutions when the unlabelled method is used. The

introduction of vessel labels increases the retrieval precision

significantly, as this value ranges from 1.7% to 25.4% for

the unlabelled case and ranges from 12.4% to 37.6% for the

labelled case. This improvement is consistent for all patient

cases and more emphasised in Case 3, where the number of

images without a suitable solution decreases from 5 to 0. The

obtained minimum TRE values are comparable to the Ground

truth FRE and similar between retrieval methods, except for

the unlabelled retrieval of Cases 3 and 4.

Fig. 5. Number of images NS needed to achieve a successful registration of
I1 (top) and corresponding registration success rate (bottom) averaged over 5
patients versus number of candidates K used in the HMM registration. Each
data series represents results with different retrieval methods.

B. HMM Registration

Registration accuracy results of the first HMM registration

experiment are presented per patient and retrieval method in

Fig. 4 as a scatter plot with marked median and standard

deviations. Results in the left chart show that the median TRE

for all images is below the acceptable threshold of 20 mm

on only 1 case for each retrieval method. This is possibly
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Fig. 6. Distribution of minimum number of candidates K required for a successful registration of 63 LUS images distributed among 5 patients and corresponding
accuracy. Left column charts show these distributions as a set of stacked bars, one for each K tested value. Bars referring to CBIR only registrations with
K = 1 are identified in green, whereas bars referring to HMM registrations are identified with a grey colour map. Right column charts show separate sets
of median, standard deviation and scatter plots of the TRE for the CBIR only registrations (K = 1) in green and for the HMM registrations in grey.

explained by the fact that images with a lower precision are

more difficult to register accurately as the additional LUS

images that follow them in time will potentially also have

a low retrieval precision. Therefore, we present two additional

charts showing the TRE results only for images whose retrieval

precision in the previous experiment was above 10% and 20%.

These charts show that a higher precision leads to higher

registration accuracy, as the median TRE values per patient

decrease from left to right, and range from 11.2 mm to

15.7 mm for all cases but one when the precision is above

20%. TRE values do not differ greatly between unlabelled

and labelled retrieval methods. However, due to the differences

in retrieval precision, the labelled method results in a larger

number of registrations with error below 20 mm.

C. Effect of HMM Width and Height

Two sets of results are presented for the second HMM regis-

tration experiment. Firstly, the number of images NS required

for a successful registration of I1 with TRE below 20 mm,

is presented as a function of the number of used candidates

K in Fig. 5. Additionally, we also show the corresponding

percentage of tested images that were successfully registered

for each K value. Since the number of tested images (left

column of Table II) varies among patients and each surgical

case has specific physical conditions, we do not consider

each image as an independent event, and present these two

measurements as the mean and standard deviation over the

average of each of the 5 patients. These results indicate that

increasing the number of candidates K potentially increases

the success rate of the registration, but also increases the

number of images necessary to reach an accurate solution.

Specifically, in successful registrations, the mean NS ranges

from 3 at K = 50 to 5 at K = 1000 for both retrieval

approaches. The mean registration success rates are higher

when the labelled method is used, with values ranging from

53% at K = 50 to 71% at K = 1000. For the unlabelled

method, the success rates peak at a mean value of 49% at

K = 200 and start decreasing with K = 1000. Such decrease

suggests that if K is too large, the ambiguity of the problem

may start increasing.

In a second set of results, instead of looking at the minimum

HMM width that leads to an accurate registration of I1, we

study the minimum HMM height, i.e what is the lowest value

of retrieved poses K required to register each of the tested

images. Such analysis is useful as a very large K may increase

not only the ambiguity of the registration in some cases, but

also the computational expense of the Viterbi algorithm, whose

complexity is quadratic in respect to K. Results of this analysis
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Fig. 7. Visual results of the second HMM registration experiment for 3 LUS images from 3 different patients. Each row refers to a different patient case.
Left column shows 2D registration results which include 4 images, the original segmented LUS image (A), and segmented CT projections of the ground truth
(B), unlabelled (C) and labelled (D) registration solutions. TRE is displayed for the three solutions, and the minimum number of candidates K and number of
images NS required for the registration are displayed for (C) and (D). Middle column shows the 3D position between the resulting plane of the ground truth
solution (B) in black and the right column shows the same visualisation for the unlabelled (C) and labelled solutions (D) in yellow and purple, respectively.
For an easier interpretation of the plane orientation, the probe contact positions are also highlighted with circular markers. In the whole figure, green refers
to the hepatic vein and blue to the portal vein. For an easier interpretation of the 3D results, check the uploaded supplementary material.

are summarised per patient case in Fig. 6. In the left-hand side,

we show a stacked bar plot depicting the percentage of tested

images per patient whose registration is successful at different

minimum K values. In addition to the K values tested in the

HMM registration, we also consider the cases where the first

pose retrieved by the CBIR system (equation (5)) results in

a TRE below 20 mm and the minimum K is 1. The sum

of the bars in each stack amounts to the total percentage of

tested images for which there is a K value that results in a

registration with TRE below 20 mm. In the right-hand side

of Fig. 6, the median, standard deviation and scatter plots of

the TRE values of these registrations are presented per patient.

CBIR only registrations (K = 1) and HMM registrations are

shown separately. Visually, CBIR only registration results are

highlighted with green whereas HMM registration results are

highlighted with a grey colour map.

Overall, the number of candidates required for a successful

registration with TRE below 20 mm is lower when using the

labelled retrieval - for patient cases 1, 2 and 3, the amount

of K = 1 successes significantly increases from 0% to 58%,

43% and 19%, respectively. This improvement is also observed

in the percentage of successfully registered images, mainly in

the case of patients 1 and 3, where improvements from 58%

to 83% and 13% to 56% are observed. In terms of accuracy,

the resulting TRE is slightly lower in the labelled retrieval

approach and has median values per patient ranging from 8.7

mm in patient 2 to 16.4 mm in patient 3.

Visual examples of these registrations with minimal number

of candidates K are shown in Fig. 7 for 3 LUS images from

different patient cases. For each registration example in a row,

the left-hand side shows 2D results that include the segmented

LUS image (A), the point-based ground truth solution (B),
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and the unlabelled (C) and labelled (D) registration solutions.

Visualisations of the 3D position between the segmented

CT model and resulting imaging planes of the ground truth

(black) and the two obtained solutions (yellow and purple)

are displayed in the middle and right-hand side of the figure,

respectively. To compare our solutions (C and D), in addition

to the TRE, we also display the minimum HMM width NS and

height K that were required to obtain them. It is important to

to note that even though in some of these results more than one

LUS image was included in the HMM, we focus our attention

only in the registration result of the image of interest I1.

The registration result of patient 1 shows an example

where the accuracy of the labelled and unlabelled methods

is comparable, but the minimum number of candidates K

required is smaller for the labelled approach. For patient 3, we

show a case where the unlabelled retrieval results never lead

to a successful registration with any number of candidates K,

but the labelled method finds a solution for K = 50 candidates

and NS = 2 LUS images. In the registration failure case, we

show the solution obtained with the same parameters tested in

the first HMM registration experiment (Fig. 4). It is possible

to see in this case that the vessel labelling helps the algorithm

finding a reliable solution even though there is a large missing

portal vein section between the LUS and the ground truth. The

registration of patient 5 illustrates the best registration result,

where both methods obtain a solution with a TRE of 5.7 mm

without using the HMM.

D. Effect of Segmentation Errors

Results of labelled retrieval precision averaged over 5 pa-

tients versus varying amounts of fake (False Positive) vessels

and missing (False Negative) vessels are summarised in Fig. 8.

We only show results for the labelled approach since the

unlabelled approach showed an overall worse retrieval per-

formance. In this chart, the original mean precision is shown

in grey in the centre (see Table II), and the mean precisions

in the presence of fake vessels and missing vessels are shown

on the bars in the left-hand and right-hand sides, respectively.

In the coloured bars, precision is averaged over the median

value obtained over all combinations with a fixed number of

fake or missing vessels.

As expected, for all cases, the existence of mis-segmented

vessels decreases the retrieval precision when compared to the

Fig. 8. Mean and standard deviation of labelled retrieval precision of 63
LUS images averaged over 5 patients after introducing varying amounts of
fake (False Positive, FP) and missing (False Negative, FN) vessels in the
original manual segmentations.

original manual segmentations. However, this effect is more

pronounced in the presence of missing vessels, where the mean

precision decreases to a value below 20% with only one false

negative. In the presence of fake vessels, the precision only

reaches a value below this limit when 3 false positives are

introduced.

E. Computational Expense

An aspect that is crucial to translation of any image-

guidance method is the computational requirements. There-

fore, we also present a summary of the memory and time

expenses of the main components of the proposed method in

a set of three tables in Table III. All results were obtained

using a machine with an Intel i7 2.8 GHz processor, a NVidia

GeForce GTX 1050 graphics card, and a RAM memory of 16

gigabytes (GB).

In Table III. A), the memory required for each of the

generated patient-specific databases is presented in GB. In

Table III. B), the time expense associated with the simulation

and retrieval steps of the CBIR system is presented for both

labelled and unlabelled approaches. For simulation, we present

the time required for a single image to be simulated and

encoded to a feature vector. This step was run using a graphical

TABLE III
THREE TABLES SHOWING APPROXIMATE COMPUTATIONAL TIME AND MEMORY EXPENSE OF DIFFERENT COMPONENTS OF THE METHOD. TIMES ARE

PRESENTED IN SECONDS (S) AND MEMORY IN GIGABYTES (GB). IN B), (U) AND (L) REFER TO UNLABELLED AND LABELLED METHODS,
RESPECTIVELY. IN C), PER COLUMN REFERS TO ONE ITERATION OF THE HMM OPTIMISATION.

A) CBIR (Memory)
Case 1 Case 2 Case 3 Case 4 Case 5

3.9 GB 3.9 GB 4.0 GB 2.7 GB 5.7 GB

B) CBIR (Time)
Simulation (U) Simulation (L) Retrieval (U) Retrieval (L)

0.02 s per image 0.04 s per image 30 s per input image 15 s per input image

C) HMM (Time)
K=50 K=100 K=200 K=500 K=1000

0.5 s per column 2 s per column 5 s per column 75 s per column 210 s per column
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processing unit (GPU) implementation, and took less than

0.1 seconds for both methods. For retrieval, we present the

time required for an input LUS image feature vector to be

compared with the database F using a search range r = 2
(see equation 5). This process was also tested with a GPU

implementation, and required 30 seconds for the unlabelled

approach and 15 seconds for the labelled one. Such difference

can be explained by the database structures - when labels are

used, the database is composed of a larger amount of lists with

less feature vectors, allowing for a faster search.

Table III. C) shows the time expense of each iteration (com-

putation of a column) of the HMM optimisation versus the

number of candidates K considered in the model. This process

was run with a single thread and without GPU acceleration.

As expected from the properties of the Viterbi algorithm, these

values show an exponential increase in respect to K.

V. DISCUSSION

All of the presented results indicate that the proposed

registration framework highly benefits from separation of

segmented features into specific classes. This is expected since

the existence of vessel labels in LUS and CT constrains the

registration problem further and helps the CBIR system finding

solutions that are more physically plausible. The first results

that support this statement were observed in Table II, where

retrieval precision significantly improves when labels are used.

The subsequent HMM registration experiment of Fig. 4

demonstrated the importance of retrieval precision in the

registration - TRE values below an acceptable threshold of

20 mm were mainly obtained for images whose precision

surpassed 20%. Given the higher precision of the labelled

approach, it can be concluded that the introduction of labels

increases significantly the registration success rate. For the

images whose retrieval precision was below 20%, several low

accuracy results were obtained. These values may be explained

by the fact that the HMM is not robust to the inclusion of an

image with poor retrieval precision - if one of the 5 subsequent

images did not have any accurate retrieval result, the algorithm

is forced to estimate an incorrect alignment.

In the second HMM registration experiment, we investigated

the minimum HMM complexity required for the registration to

be possible, i.e what is the minimum number of LUS images

N and number of retrieved candidates K required for a reliable

registration of a single LUS image. Compared to the first

HMM registration experiment, the results of Fig. 6 indicate

that images with a lower retrieval precision can be successfully

registered if these parameters are minimised. In this case, the

percentage of successfully registered images ranged from 56%

to 100% when using labelled retrieval and from 12% to 85%

when using unlabelled retrieval. The most striking result of

this analysis was the percentage of images for which the CBIR

system alone achieved a successful registration - this value was

significantly increased with the label constraint. Furthermore,

the percentage of images per patient that did not require more

than 200 candidates ranged from 53% to 86%. Considering the

NS measurements of Fig. 5, it is possible to conclude that in

most cases, a single LUS image can be registered successfully

if the retrieval results of a maximum of 3 extra images in time

are included.

Factors that may explain the poorest retrieval and regis-

tration results are intra-operative deformations, the limited

pose parameter resolution of the generated database for CBIR

and the imaging differences in vessel contrast between LUS

and CT. Intra-operative deformations due to insufflation and

LUS probe contact are known to significantly compress liver

vessels during LUS imaging. In this part-to-whole registration

problem, compression can move liver vessels enough so that

the field of view of LUS does not capture them anymore

but CT does - this is exemplified in the result of patient

case 3 in Fig. 7 where the rigid CT ground truth images a

large portal vein section that the deformed LUS image does

not. In this CBIR system, deformation compensation could be

achieved in future work by including deformation parameters

in the database simulation step. By simulating vessel content

vectors from an insufflated CT model, the formulation of the

registration would not require any adaptation.

The database resolution limits the maximum registration

accuracy that can be obtained and can hinder the registration

performance of images that contain oblique vessel sections.

Since simulations assume an infinitely thin plane intersect-

ing the CT vascular model, it is likely that many oblique

vessel projections are not properly captured by the limited

rotation resolution. This problem could be overcome either by

considering the US imaging specific beam width during the

simulation, or by increasing the resolution of the parameter

space. To avoid an unfeasible increase in the computational

expense, it is important to maintain a trade-off between the

resolution and size of the covered translation space. For

example, a higher resolution database could be generated

whilst restricting the translations to a region of interest, such

as a spherical domain centred around a target tumour.

The different vessel contrast in LUS and CT leads to

missing vessels between both images, affecting directly the

problem of matching single 2D images to a 3D volume. Even

though we have included an allowable search range r to

account for this problem, substantial topological differences

between the LUS vessels and the CT vessels may still compro-

mise the uniqueness of the solutions. This effect is more pro-

nounced when CT and LUS have several mismatching small

vessels that are more susceptible to deformation. Therefore,

future work could address the pre-operative identification of

major vessels that are more likely to be imaged in LUS and

guarantee a reliable registration based on them.

Overall, our results are promising for a future clinical appli-

cation. It has been proposed that image-guidance techniques

for LLR should be accurate within 5 mm to have clinical

value [33]. Considering this threshold as a target accuracy,

the accuracies ranging between 5.7 and 16.4 mm obtained by

our method are sufficient as an initialisation for refinement

with other registration techniques. To use this initialisation

reliably without a tracker, a LUS volume could then be

estimated either by separately registering multiple images in

time, or by using a single image registration and a freehand

US compounding method [34], [35]. Another option would be

to estimate the LUS probe position through laparoscopic video
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based tracking [36], [37]. However, these methods require a

marker to be attached to the LUS probe and a calibration

procedure, complicating clinical translation.

In this work, we validated our registration framework with

manually segmented vessels. Therefore, to understand seg-

mentation requirements necessary for clinical translation, we

tested the performance of the labelled CBIR system in the

presence of topological mis-segmentations. Results of this

experiment indicate that retrieval performance is more affected

by the presence of missing vessels. Such decrease is expected

since segmentation failures will reduce the complexity of the

input LUS feature vector and possibly increase registration

ambiguity, mainly in images with less vessel data. In the case

of false positive mis-segmentations, the precision values do

not decrease as much, indicating that a future automatic seg-

mentation method should prioritise sensitivity over specificity.

For future work, Deep Learning frameworks for segmentation

of portal and hepatic veins in liver US images [32] could be

integrated.

In terms of computational expense, the proposed approach

requires times that are potentially compatible with the clinical

workflow. The most time intensive step of the method is the

database simulation, as a large number of 50×106 images is

simulated at a rate of 25 images per second. This is not critical

for two reasons - firstly, simulation is done pre-operatively

without very strict time constraints, and secondly, the expense

can be easily reduced by splitting the process across multi-

ple machines using cluster computing. Regarding the intra-

operative processes of the method, values in the order of

seconds were measured for both image retrieval and the HMM

optimisation. Specifically, if we performed registration using

K = 200 with N = 6 retrieved LUS images, the resulting time

expense would be (15 × 6) + (5 × 5) = 115 seconds. Even

though these times are not optimal for a real-time application,

they can be reduced either by using a higher memory GPU,

or by accelerating the HMM column computation with a GPU

implementation.

VI. CONCLUSION

In this paper, we have extended a novel method based

on CBIR for the registration of LUS images to CT of the

liver without using tracking devices or a manual initialisation,

and validated on 63 untracked LUS images. By generalising

our CBIR formulation to take into account labels assigned

to each extracted feature, the registration performance of the

method was improved. Results on clinical data from 5 patients

show that if we consider up to 200 retrieval solutions from

a sequence of up to 6 LUS images, trackerless registrations

with accuracy ranging from 5.7 to 16.4 mm can be obtained

in 78% of cases. Registration failures can be explained by the

presence of deformations, the differences in the contrast of

CT and LUS imaging, and the fact that some liver regions

contain vasculature that is not unique enough to constrain the

problem. Regardless, our results are promising for the purpose

of an initialisation of the LUS to CT registration problem,

which is extremely challenging and currently has no solution

that is transferable to the clinic. Higher performance can be

achieved in the future by increasing the realism of the CBIR

simulation, either by including deformation or simulating more

realistic LUS images. To the best of our knowledge, this is

the first work in multi-modal image registration of US to a

pre-operative scan that makes use of CBIR. The proposed

framework has the potential of enabling clinical translation,

and could be adapted to other interventional US guidance

problems.
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