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Abstract. In this paper we propose a novel tracking method to update
the pose of stereo video cameras with respect to a surface model derived
from a 3D tomographic image. This has a number of applications in image
guided interventions and therapy. Registration of 2D video images to the
pre-operative 3D image provides a mapping between image and physical
space and enables a perspective projection of the pre-operative data to
be overlaid onto the video image. Assuming an initial registration can
be achieved, we propose a method for updating the registration, which
is based on image intensity and texture mapping. We performed five
experiments on simulated, phantom and volunteer data and validated
the algorithm against an accurate gold standard in all three cases. We
measured the mean 3D error of our tracking algorithm to be 1.05 mm
for the simulation and 1.89 mm for the volunteer data. Visually this
corresponds to a good registration.

1 Introduction

We consider the general problem of relating pre-operative MR/CT data to an
intra-operative scene for image guided interventions. Registration of 2D video
images to the 3D pre-operative data provides a link between what is currently
visible in the intra-operative scene and the information present in the 3D pre-
operative data. The potential applications of such a registration method will be
in image guided surgery in which video, endoscopy or microscopy images are
used. Clinical applications include neurosurgery, ENT surgery, spinal surgery,
image guided laproscopy and high precision radiotherapy. We have previously
considered registering video images taken from an operating microscope to CT
data, using video image intensity directly [3]. We propose a novel method of
updating the registration over a period of time using a tracking algorithm that
incorporates texture mapping and describe work in progress in applying the
algorithm to clinical data.

A video image is a projection of the 3D scene onto a 2D imaging plane.
This can be characterised by the pinhole camera model [6]. Given a point in the
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3D scene, denoted in homogeneous coordinates by x = (x, y, z, 1) the aim is to
find the 3×4 transformation matrix G that relates x to a point on the 2D image
denoted by u = (u, v, 1)

kuT = G xT . (1)

The matrix G represents a rigid body transformation from 3D scene coordinates
to 3D camera coordinates, followed by a projective transformation onto the 2D
image plane and k represents a scale factor for homogeneous coordinates. The
rigid body transformation describes the pose (position and orientation) of the
camera relative to the scene, and has six degrees of freedom. The projective
transformation is determined by the internal characteristics of the camera. As-
suming fixed zoom and focus, the camera can be calibrated so that the projective
transformation is known. This reduces the registration problem to finding the
six rigid body parameters which determine the camera pose.

1.1 Previous Work

The problem of estimating the pose of a camera with respect to an object is
an essential step in many machine vision applications. Pose estimation can be
achieved through corresponding pairs of 2D and 3D features, such as points [8]
or points and lines [11]. The accuracy of the pose estimation algorithm is de-
termined by the number of features, the accuracy with which the 2D and 3D
coordinates of the features are known and the accuracy of their correspondence.
Often many features are required for an accurate estimate of the pose. Regis-
tration of 3D medical images to 2D video images of a patient using anatomical
point based methods is likely to be inaccurate. The landmark points are often
difficult to localise accurately in the 3D image due to limited resolution and
contrast. In addition, localisation of landmarks can be difficult in the 2D image
as some landmarks may be hidden or prone to movement. This leads to poor
registration accuracy.

Colchester et al. [4] have described a system in which a light pattern is pro-
jected onto the skin surface. Video images from a pair of calibrated cameras are
used to reconstruct the illuminated surface, which is then registered to a surface
model derived from the 3D image. Viola [15] demonstrated the use of an infor-
mation theoretic framework to register a surface model to a video image of a
skull phantom. A video image of an object will be related to a 3D model of the
object by a geometric transformation mapping model points to image points, and
an imaging function describing lighting conditions, surface properties, imaging
device characteristics and so on. In general, reflectance is a function of light-
ing direction, surface normal and viewing direction. If the light source can be
assumed to be far from the object, its rays will be parallel. In addition if the
camera is assumed to be far from the object, then the viewing direction at each
point will be constant. Thus the observed intensity will vary with the surface
normal direction. The problem of pose estimation can then be formulated as
maximising the mutual information between the video intensities and the sur-
face normal vectors of the model. This does not assume a specific lighting model,
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it only assumes that a relationship between the video intensities and the surface
normals exists.

We have previously demonstrated a registration algorithm based on max-
imising the mutual information between video and rendered image intensities
alone. We have studied several information theoretic methods for utilising the
information from multiple video and rendered images which showed that a mean
3D error of 1.05 mm using five video views can be achieved [3].

1.2 Objectives

We present a novel tracking algorithm, which is used to maintain registration
between multiple video cameras and a 3D surface model, through the use of
the video image intensities and texture (colour) mapping. In addition we use
an accurate gold standard to validate the accuracy of our algorithm. We per-
formed five tracking experiments on simulated, phantom and volunteer data and
tested the tracking over a range of motion that might be encountered during,
for example, a neurosurgical or ENT procedure without head immobilization.

2 Methods

2.1 Coordinate Transformation

The matrix G in equation (1) represents a transformation from 3D scene coor-
dinates to 2D video image pixels. In this paper we use stereo pairs of cameras.
Let i = 1, 2 denote the camera number. Using these two cameras we acquire
or simulate a sequence of video images. Let j = 1 . . .N denote the video image
number. The matrix G will be different for each camera and for each video im-
age. Therefore let Gij be the transformation from 3D scene coordinates to 2D
video image pixels for camera i and for video image j. The matrix Gij can be
represented as

Gij = Pi Tij . (2)

First we perform tracking experiments using a plastic skull phantom. In this
case the 3D coordinate system is defined by the CT coordinate system. Tij is
a transformation from 3D CT coordinates to 3D camera coordinates, and Pi is
a transformation from 3D camera coordinates into 2D image pixels. In addition
we perform experiments using a volunteer who has been fitted with a locking
dental registration device as described in Edwards et al. [5]. In volunteer based
experiments Tij is a transformation from MR coordinates to the camera coor-
dinate system. The matrix Pi is calculated using a calibration process and is
fixed throughout the tracking process. Consider a sequence of N images where
j = 1 . . .N taken from camera i. Assume that for both cameras in the system
i = 1, 2, the initial registration of 3D image coordinates to the video image pixels
is known. This means that for j = 1, Ti1 is known. The goal of the tracking
is to find the rigid body transformation which when combined with the initial
known registration matrix Ti1 and camera calibration matrix Pi, transforms
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3D image points onto the corresponding 2D video image pixels throughout a
sequence of video images. The desired rigid body transformation is represented
by Rj where

T̂ij = Ti1 Rj . (3)

is the updated rigid body transform produced by our algorithm. The matrix Rj

is determined by six parameters. These are tx, ty and tz which represent trans-
lations with respect to the x, y and z axes respectively, and rx, ry and rz which
represent rotations about the x, y and z axes respectively. The matrix Rj is
the output of the algorithm after each video frame, j, in the sequence. If the
gold standard transformation Tij is known then T̂ij should be approximately
equal to Tij . Thus the tracking problem is to determine the six degrees of free-
dom tx, ty, tz, rx, ry and rz which updates the transformation from 3D model
coordinates to 2D pixel coordinates for each video frame in a sequence.

2.2 Tracking without Texture Mapping

The problem of finding the correct alignment for each video frame can be seen
as a problem of re-registration. To find the correct registration our algorithm
produces a rendering of the surface model and compares it to the video image
using mutual information. Given a video image with intensities a ∈ A and a
rendered image with intensities b ∈ B, we can calculate the mutual information
of A and B denoted by I(A;B) using

I(A;B) = H(A) +H(B)− H(A, B) . (4)

where H denotes the Shannon entropy [12]. Registration of one video image to a
3D image is performed by maximising I(A;B) by varying the six transformation
parameters tx . . . rz and using a simple gradient ascent search strategy.

In some cases the registration of mono view video images can fail due to
the symmetry of the surface or the lack of surface structure. Furthermore the
registration of mono view video images is often poorly constrained along the
optical axis of the video camera. We have previously shown that the use of stereo
or multiple view video images can improve the accuracy, precision and robustness
of the registration compared to the mono view case [3]. In our experiments images
are always acquired in stereo pairs, and the transformation from one camera to
the other is known. This means that we have two video images, denoted by A1

and A2, and we can produce the two corresponding rendered images, denoted
by B1 and B2. Registration is performed by maximising an objective function
which corresponds to the sum of the mutual information between each video
image and the rendered image, i.e. I(A1;B1)+I(A2;B2). As before the objective
function is maximised using a simple gradient ascent search strategy.

2.3 Tracking with Texture Mapping

Texture mapping, or more specifically colour mapping [2] is a common computer
graphics technique for adding realism to rendered images [6]. Each vertex in a
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surface model is given a 2D texture coordinate, which maps it to a position in
a 2D texture image. The graphics pipeline then maps the texture image onto
a surface patch of the 3D model. This can be seen in figure 1. The question

(a) (b) (c)

Fig. 1. Texture Mapping Example: (a) sample video image, (b) rendering of a
registered model, (c) rendering of the same model with the video texture pasted
onto the surface.

arises as to how to map the video texture accurately to the surface model.
As mentioned above, we start the tracking process with a known registration
Gi1 = Pi Ti1. Using this equation, we take points in the surface model and
project them onto 2D image pixels, and use these as the corresponding texture
coordinates. The accuracy of the texture mapping is therefore determined by the
accuracy of the initial registration.

Without texture mapping we were matching a rendering of a surface with a
video image. This assumes that the rendering looks fairly similar to the video
image. It also assumes that only one surface is being imaged and that this surface
has constant reflectance. The algorithm is trying to match the component of
diffuse reflection in the video image intensities. However, with texture mapping
we can associate information from the video image directly with the 3D model.
This means we now have additional knowledge about the surface texture of the
3D object. The algorithm can proceed as before, by producing a rendering, where
the rendered image intensities are a projection of the texture map intensities, and
matching this to subsequent frames in a video sequence. This can be seen as a
region matching algorithm, with mutual information measuring the similarity of
a surface patch in the current image, with its known appearance in the previous
image.

3 Experiment Design

After registration to each video frame j, the parameters tx . . . rz produce
an estimate T̂ij of the gold standard matrix Tij . To assess the error in the
registration we measured the projection error in mm. The projection error is the
mean of the Euclidean distance between a 3D point and the closest point on a
line projected through the corresponding 2D point. In addition we measured the
3D error in mm, which is the mean of the Euclidean distance between a 3D point
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multiplied by the gold standard matrix Tij , and the same 3D point multiplied
by the estimated rigid body matrix T̂ij [3]. Furthermore we can measure the
3D distance between video frames by measuring the mean of the Euclidean dis-
tance between a 3D point, multiplied by the gold standard matrix Tij , and the
same point multiplied by the gold standard matrix of the frame before Tij−1.
We can measure the accumulative 3D distance as the sum of the 3D distance
over each frame of the video sequence.

3.1 Tracking Simulation

(a) (b)

Fig. 2. Example images: (a) and (b) are the stereo pair used for the skull phan-
tom experiments as described in section 3.1.

A CT scan (Philips TOMOSCAN SR 7000 0.488 × 0.488 × 1.0 mm, 512 ×
512 × 142 voxels) of a plastic skull phantom was acquired. Our skull phantom
has 23, 5 mm aluminium ball bearings which have been painted black attached
to it. Two video images were taken of the skull phantom, shown in figure 2(a)
and (b), and a 3D surface model was extracted from the CT scan using VTK [13].
The initial registration can be calculated using six or more pairs of corresponding
2D and 3D points. The aluminium ball bearings can be accurately localised in
the 3D image using an intensity weighted centre of gravity operator [1], and
interactively localised in the 2D images. We used Tsai’s [14] camera calibration
method to calculate the matrices Pi and Ti1 for the two cameras i = 1, 2.
The two camera views were separated by 45 degrees. The video image texture
was mapped onto the surface model by projecting the surface model points
onto the texture image. We generated 100 pairs of simulated images. This was
accomplished by changing the pose of the surface model with respect to each
camera view and producing a corresponding pair of texture mapped renderings,
ie. one rendering for each view. The change of the model pose between each
frame was a rotation of one degree. The sequence was 10 rotations to the left, 10
up, 20 right, 20 down, 20 left, 10 up and 10 right. We added zero mean, Gaussian
noise (σ = 7) to these simulated images. The value of σ was chosen to simulate
video image noise. We then performed a ‘mono view’ tracking experiment by
taking the sequence of simulated images for camera i = 1 and using the known
initial registration Ti1 to initialise the tracking algorithm. The algorithm then
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attempted to recover the transformations Rj for j = 2 . . . 100. We repeated
this experiment, performing a ‘stereo view’ tracking experiment by taking the
sequence of images for both cameras i = 1, 2, and using our algorithm to recover
the transformations Rj for j = 2 . . . 100.

3.2 Tracking a Skull Phantom

We subsequently took a series of real video images of the same skull phantom.
The skull phantom was placed on a goniometer and a sequence of 21 images was
taken, where the skull was rotated by 2 degrees clockwise between each image.
The 3D surface model was registered to the initial view, using the above method
and the algorithm used to recover the rotating motion.

(a) (b)

Fig. 3. Example images: (a) and (b) are the stereo pair used for volunteer ex-
periments, as described in section 3.3.

3.3 Tracking a Volunteer

We then tested the algorithm on images of a volunteer. An MRI scan (1.016 ×
1.016 × 1.250 mm, 256 × 256 × 150 voxels) was taken of the volunteer. This was
corrected for scaling errors [9], and a skin surface extracted using VTK [13]. The
volunteer was scanned whilst wearing a locking acrylic dental stent (LADS) [5].
A stereo pair of video cameras were fixed with respect to each other and cali-
brated using SVD [7], which produces the matrix Pi for each camera i = 1, 2
as mentioned in section 2.1. A bivariate polynomial deformation field for each
camera was calculated to correct for distortion effects. The translational sepa-
ration of the two cameras was approximately 30 centimetres and the disparity
between their optical axes was approximately 45 degrees. Using the LADS [5]
we calculate the gold standard transformation Tij for each camera i = 1, 2 and
for each image j = 1 . . . 25. We then performed a ‘mono view’ tracking experi-
ment by taking the sequence of simulated images for camera i = 2 and using the
known initial registration Ti1 to initialise the tracking algorithm. The algorithm
then attempted to recover the transformations Rj for j = 2 . . . 25. Subsequently
we repeated this experiment, performing a ‘stereo view’ tracking experiment by
taking the sequence of images for both cameras i = 1, 2, and using our algorithm
to recover the transformations Rj for j = 2 . . . 25.
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4 Results

Figure 4 (a) shows a graph of the results for the mono view simulation. The
simulation did not include translations parallel to the optical axis of the camera
so we would expect the mono tracking algorithm to work well. The mean pro-
jection error and mean 3D errors are 1.01 and 1.19 mm respectively for the 100
frames. Figure 4 (b) shows the results for the phantom tracking experiment. The
sequence was a set of images, where the phantom had been rotated by 2 degrees
between each video image. It can be seen that the tracking algorithm misses the
first few frames, but then manages to recover approximately 2 degrees for the
subsequent frames. The mean and standard deviation of the rotation estimates
is 1.85 ± 0.76 mm. Figure 5 (a) shows the results for the mono view experiment
on the volunteer. This graph shows that projection error and 3D error can be
significantly different. Specifically the projection error can be reasonably low
while the 3D error is high. A mono view experiment can fail to recover transla-
tions along the optical axis of the camera [3,10]. Figure 5 (b) shows the 3D error
plotted against the accumulative 3D distance (the sum of 3D distance over each
frame of the video sequence), which shows that the camera has moved 140mm.
Figure 6(a) shows that with stereo views, the tracking performance is much bet-
ter. An example pair of images is shown in figure 3. It can be seen that of the
two images, one is significantly lower in contrast than the other. Figure 6(b)
shows the 3D error as a function of accumulative 3D distance moved. Table 1
summarises the performance of the mono and stereo view algorithms. The sim-
ulation experiment performed well for both mono and stereo views with a mean
3D error of 1.19 and 1.05 mm respectively over the whole of the 100 frames
sequence. For the volunteer tracking experiment, it can be seen that the stereo
algorithm performs significantly better. However after 14 frames, corresponding
to 140 mm of accumulative 3D movement, the stereo algorithm fails to track
successfully.
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Fig. 4. 3D (dotted line) and projection (solid line) errors for (a) the mono view
simulation and (b) the mono view phantom experiment. As described in sec-
tions 3.1 and 3.1 respectively.
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Fig. 5. (a) 3D error (dotted line) and projection error (solid line) for mono view,
volunteer tracking experiment. (b) 3D error plotted against the accumulative
3D distance for the mono view volunteer tracking experiment. See section 3.3.

Table 1. A comparison of mono view and stereo view performance for (a) the
simulation and (b) the volunteer experiments.

Case Projection Error 3D Error

Mono 1.01 1.19

Stereo 0.83 1.05

Case Projection Error 3D Error

Mono 2.75 13.03

Stereo 0.74 1.89

(a) (b)
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Fig. 6. (a) 3D Error (dotted line) and Projection Error (solid line) for stereo
view, volunteer tracking experiment. (b) 3D Error plotted against the Accu-
mulated 3D Distance for the stereo view volunteer tracking experiment. See
section 3.3
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5 Conclusions

This paper has described a new tracking algorithm that uses texture mapping
to register a pair of video images to a 3D surface model derived from MR/CT.
We tested the algorithm with simulated data. This achieved registration with
a mean 3D error of 1.05 mm for stereo views. This level of accuracy is largely
determined by the step size of the gradient ascent algorithm, and so could be
improved, but with increased computational cost. The mono tracking experi-
ments with the phantom (section 3.1) and the volunteer (section 3.3) showed
that tracking performance is poor if only one camera is used. However tracking
was possible by using two camera views. We tested the tracking over a range of
motion that might be encountered during for example a neurosurgical or ENT
procedure without head immobilization. Future work will concentrate on im-
proving robustness and assessing the effect of contrast, visible texture, surface
area and surface curvature. In addition, this work uses a simple gradient ascent
search method to maximise the mutual information. This could be improved by
using predictive methods such as the Kalman filter.

(a) (b) (c)

(d) (e) (f)

Fig. 7. Results of volunteer tracking experiment: (a) Video image 1 (b) Texture
mapped model (c) Model registered and overlaid on video image, at the initial
pose, before tracking. (d) Video image 12 (e) Texture mapped model at the
tracked pose (f) Model registered and overlaid on video image at the tracked
pose.
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