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ABSTRACT There is a growing gap between data explosion speed and the improvement of graph processing

systems on conventional architectures. The main reason lies in the large overhead of random access and

data movement, as well as the unbalanced and unordered communication cost. The emerging metal-oxide

resistive random access memory (ReRAM) has great potential to solve these in the context of processing-in-

memory (PIM) technology. However, the unbalanced and irregular communication under different graph

organizations is not well addressed. In this paper, we present a PIM graph traversal accelerator using

ReRAM with a lower communication cost named ReGra. ReGra optimizes the graph organization and

communication efficiency in graph traversal. Benefiting from high density and efficient access of ReRAM,

graphs are organized compactly and partitioned into processing cubes by the proposed Interval-Block Hash

Balance (IBHB) method to balance graph distribution. Moreover, remote cube updates in graph traversal

are converged into batched messages and transferred in a concentrated period via the custom circular round

communication phase. This eliminates irregular and unpredictable inter-cube communication and overlaps

partial computation and communication. Comparative experiments with previous work like Tesseract and

RPBFS show that ReGra achieves better performance and yields a speedup of up to 2.2×. Besides the

communication cost is reduced by up to 76%. It also achieves an average reduction in energy consumption

of 70%.

INDEX TERMS Processing-in-memory, resistive memory, ReRAM, architecture, communication.

I. INTRODUCTION

Graphs are widely used to characterize and analyze the

real-world relationship in a wide variety of applications that

become data-intensive, such as social networks analysis, nat-

ural language processing, machine learning, recommenda-

tion, etc. However, the existing approaches are inadequate for

explosive data growth, regardless of algorithms or hardware

architectures. The CPU-based or GPU-based systems, like

Frog [1], GraphChi [2], and SIMD-X [3], work in graph

processing but there still exists a growing gap between data

explosion and improvement of algorithms and architectures.

Therefore more attention is being paid on large-scale graph

processing, such as graph traversal.

The associate editor coordinating the review of this manuscript and

approving it for publication was Stavros Souravlas .

The main bottleneck in graph processing is derived from

the ‘‘memory wall’’ [4]. Specifically, a large number of ran-

dom access to graph data leads to high dynamic random

access memory (DRAM) cost. And the large data movements

lead to severe pressure of bandwidth as well as energy cost.

The processing-in-memory (PIM) technology is a potential

and efficient way to reduce the latency and cost of data access

and movement, as well as alleviate the bandwidth bottleneck.

PIM is a technology that puts logic circuits into or

near memories, so the memory bandwidth can scale up

well with the memory capacity increase (‘‘memory-capacity-

proportional’’) [5]–[7]. Besides the resistive random access

memory (ReRAM) is an emerging non-volatile memory with

appealing features for efficient memory access and even

computation. With proper data organization and auxiliary

components [8]–[10], ReRAM crossbars can efficiently
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process graphs and solve the issue of limited bandwidth and

data movement.

Another problem that comes with PIM architecture is

communication among processing cubes. In PIM architec-

ture, multiple cubes are usually used for graph storage and

calculation. On the one hand, unbalanced graph distribu-

tion may increase the time overhead in the critical path and

coarse-grained data partitioning can cause this situation [11].

On the other hand, because of random data access, the inter-

cube communication is unpredictable and irregular, which

means that the time of communication, the amount and size of

messages, and the destinations are not sure until the commu-

nication occurs. GraphH [6] and GraphQ [7] propose some

solutions, but not for compactly stored data organization and

the graph data partition is not well-suited in ReRAM-based

architectures.

In this work, a ReRAM-based PIM architecture for graph

traversal called ReGra is proposed. This accelerator is com-

posed of ReRAM-based cubes with computation and commu-

nication components. Each cube processes the partial graph

stored within it. The characteristics of graph traversal algo-

rithms and features of the ReRAM crossbar such as high

density and efficient access are taken into consideration,

thus a compactly organized and efficiently accessed data

representation is adopted. Besides, the Interval-Block Hash

Balance (IBHB) method is proposed to balance graph distri-

bution, which brings about more balanced inter-cube commu-

nication. Moreover, remote cube updates in graph traversal

are transferred by messages according to destination vertices.

Most importantly, the updated values to the same cube are

converged into batched messages and transferred in a con-

centrated period and in an organized way through a custom

circular round communication phase. And this eliminates the

irregular and unpredictable inter-cube communication and

thus reduces communication and cost.

The detailed contributions of this paper are concluded as

follows:

• A ReRAM-based PIM accelerator for graph traversal

is proposed. Graphs are compactly organized according

to special features of the ReRAM crossbar with better

access efficiency.

• The Interval-Block Hash Balance (IBHB) algorithm is

proposed to balance graph distribution and inter-cube

communication.

• The custom circular round communication mechanism

eliminates irregular and unpredictable inter-cube com-

munication and overlaps partial communication with

computation. It reduces communication and cost.

• The well-designed cache alleviates the efficiency of

memory access and efficient communication promotes

the reduction of energy consumption. Therefore ReGra

is energy-efficient.

The paper is organized as follows. Section II gives the

background of PIM-based graph processing like graph traver-

sal and basis of ReRAM. In Section III the architec-

ture, the graph partition method, and the communication

mechanism of ReGra are described. And Section IV presents

a concrete process of graph traversal and implementation.

Section V evaluates the architecture by different comparative

experiments. And some related work is listed in Section VI.

The last Section VII concludes this paper.

II. BACKGROUND AND MOTIVATION

A. GRAPH PRESENTATION AND PARTITION

Graphs are usually presented in two formats: adjacency

list and adjacency matrix. The latter can be calculated

using approaches of matrices, with more space consumption,

especially in real-world sparse graphs. On the contrary,

the adjacency list saves the space with some loss of com-

puting convenience. This is acceptable in scenes of graph

traversal (e.g. breadth-first search, BFS). All the neighbors

of a vertex are stored compactly and continuously, and then

easily accessed. RPBFS [8] presents a compressed sparse

row (CSR) format to achieve a high compression ratio. This

paper makes some changes with consideration of data par-

tition. An example graph and its CSR format presentation

are shown in Figure 1. Green dotted arrows simplify the

coordinates which indicate the starting position.

FIGURE 1. CSR format example. (a) The example graph and its adjacency
list; (b) CSR representation in ReRAM crossbars.

As for graph partition, there are two typical approaches:

edge-cut and vertex-cut [11], [12]. The vertex-cut approach

focuses on edges and evenly distributes edges to processing

units and spans vertices replicas. The edge-cut approach is

adopted to partition vertices evenly instead of edges. How-

ever, the tools [13], [14] perform poorly due to complex

algorithms and they are too balanced to sacrifice computing

convenience. GraphH [6] and NXgraph [15] proposed two

simplified approaches with destination-sort partition, but the

performance is limited.

B. PIM-BASED GRAPH PROCESSING

Processing-in-memory technology integrates computing

logic circuits into memory banks to achieve memory-

capacity-proportional bandwidth and reduce data move-

ments. With the development of 3D stacking technology,

PIM technique is gaining more attention in graph processing.

Usually, real-world graphs have millions of vertices and a

much larger number of edges, therefore it is challenging to

analyze and process with high performance.

Considering that it is more suitable for thinking and

programming, graph algorithms are normally described
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in vertex-centric programs. The edges of a vertex are

usually stored together. And it features ‘‘Think Like

a Vertex(TLAV)’’ [16] as the way human thinks of the graph

problem. That is to say, we access edges through the cor-

responding vertex and then process the value. Taking graph

traversal (e.g. BFS) as an example, when a vertex is pro-

cessed, all its neighbors are accessed to generate the frontiers

for next level traversal, and then the neighbors in frontier will

be accessed and processed sequentially.

Figure 2(b) shows an example of vertex-centric grapah

access pattern. In the vertex-centric algorithms, edges of

a vertex are accessed sequentially but globally edges are

accessed randomly because of random neighbors. Graphs are

usually partitioned into several cubes in PIM-based archi-

tectures. In Tesseract [5] each cube processes the vertices

stored in the cube and cooperates with other cubes via mes-

sage passing based communication to update the value of

all vertices. RPBFS [8] modifies vertex status by accessing

shared memory, and both memory conflicts and underutilized

bandwidth exist in it.

FIGURE 2. Vertex-centric access pattern. (a) Example graph and three
active vertex; (b) access process of partial graph.

Inter-cube communication needs to be taken seriously.

Figure 3 depicts the inter-cube communication in BFS from

the perspective of the adjacency matrix, in which a dot rep-

resents an edge. All the vertices are divided into three cubes

and the overlapping area of the green and yellow pane is an

edge that connects cube 0 and cube 1 (vi → vj). Inter-cube

communication happens between cube 0 and 1 and messages

are sent from cube 0 and values are updated in cube 1 (yellow

and red pane). Messages can be sent at any uncertain time and

uncertain number. For the receiver, if facing the challenge of

irregular messages, the computation within the cube may be

interrupted. ReGra is inspired by previous work and reason-

able changes are made.

C. ReRAM-BASED GRAPH PROCESSING

The metal-oxide resistive random access memory(ReRAM)

is an emerging non-volatile memory. It consists of a

sandwich-like structure, which includes the top and bot-

tom metal electrodes and a metal-oxide switch between

two electrodes [17]. The metal-insulator-metal structure of a

ReRAM cell is demonstrated in Figure 4(a). By applying an

appropriate external voltage across the ReRAM cell, it can

switch between a high resistance state (HRS) and a low

resistance state (LRS), and this can be used to represent

FIGURE 3. Schematic diagram of inter-cube communication.
(a) Example graph; (b) inter-cube communication in BFS.

FIGURE 4. ReRAM basics. (a) structure of ReRAM cell; (b) I-U curve of
ReRAM cell; (c) conceptual view of ReRAM crossbar.

binary ‘‘0’’ and ‘‘1’’. The I-U curve in Figure 4(b) shows

more information about this property.

ReRAM cells can be organized by a dense and

area-efficient array named crossbar structure [18], as shown

in Figure 4(c). When values are programmed to cells and

reasonable input voltages are applied to wordlines, a sum of

dot products can be got from the bitlines. There is a lot of

work of matrix-vector multiplication utilizing this feature of

ReRAM crossbars( [9], [10], [18]). Graphs are translated to

a matrix in multiplication operations with the loss of space

efficiency. Another way is for efficient storage if the input

voltage of a certain wordline is set to ‘‘1’’ (this means a read

voltage), then the whole values stored in a line of ReRAM

cells can be read in bitlines. It is much convenient to fetch

continuous data in memory, such as all neighbors of a vertex.

RPBFS [8] utilizes these features and stores the adjacency

list in a compact and continuous way, the performance is

improved by bank-level parallelism. However, there remains

data conflict and scalability issues because of competitive

accesses to shared memory. Inter-cube communication is a

better way in large scale graph processing.

III. LOW-COMMUNICATION ReGra OVERVIEW

A. ARCHITECTURE OVERVIEW

The size of the crossbar is usually hard to grow with the size

increase of graph in large scale graph processing. So sev-

eral memory banks make up cubes and cubes interconnect

with each other to accommodate the entire graph. Figure 5

depicts ReGra architecture. All of the ReRAM crossbar cubes

are interconnected in a memory-centric network [19]. The

topology among memory cubes is dragonfly offering higher

bandwidth and throughput. In addition, a series of periphery
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FIGURE 5. ReGra architecture. (a) The schematic overview of ReGra
topology; (b) details inside a ReRAM cube.

circuits and components are applied to ReRAM crossbars,

to efficiently access graph values.

Here introduce some basic components attached to

ReRAM crossbars, which are ordinary components for driv-

ing ReRAM crossbars to work properly. ReRAM crossbar

stores the graph vertices and edges. It mainly includes two

aspects: One is the compactly and continuously organized

adjacency list of vertices that are partitioned into this cube;

another is the starting location coordinates of each adjacency

list. Word Decoder and Driver (WDD) is the wordline

decoder and writing driver and it is used to access the graph

data stored in the ReRAM crossbars. Sample and Hold

(S+H), as the name suggests, it samples the analog currents

and holds it until the current is converted into digital values.

Another component is Sense Amplifier(SA). SA seems like

the analog-to-digital converter, which can provide high pre-

cision. And we share SA between ReRAM banks. Besides

there are still several components playing unusual roles, and

a detailed description of the components is followed:

• Shift and Add (S+A). S+A unit is applied to get a

higher computing resolution(e.g. we can unite several

ReRAM cell units to get a 32-bit number from the

ReRAM crossbars).

• simple ALU (sALU). The sALU performs some more

complicated arithmetic and logic operations. It is a

32 bit ARM Cortex-A5 processor with a FPU running

at 1 GHz, the same as Tesseract [5].

• Message Buffer. It is used for the message passing

based communication. And it consists of a receive buffer

and a send buffer. And the network interface supports

communication.

B. INTERVAL-BLOCK HASH BALANCE GRAPH PARTITION

The number of vertices and edges in a cube affects the

execution time within it, which in turn affects the running

time of the entire program. On the one hand, it takes time

to process the values updates and communication messages.

On the other hand, the imbalanced graph partition may lead

to longer critical path execution time. Considering that graphs

are stored in CSR format and that neighbors may be continu-

ous in BFS [8], we propose the interval-block hash balance

partition algorithm to distribute graph blocks evenly into

cubes.

Partition is based on vertex id. Before that, vertex indices

are mapped to continuous indices to achieve convenient com-

putation and efficient access. And this change has nothing

to do with the graph property. This optimization operation is

often called degreeing [15]. In ReGra, the adjacency list of

each vertex is organized continuously and a read operation to

the ReRAM crossbar may fetch several lists. Such operations

can ensure a feasible spatial locality. Given this, it is not a

good idea to divide the graph by destination vertex id and par-

tition the graph vertex-by-vertex. The graph will be divided

into blocks with intervals consisting of consecutive IDs, and

then allocated to each cube. This is different from some of the

previous approaches [19]. To obtain balanced-size partition

blocks, we first generate much more blocks than the number

of cubes, and then the blocks are modularized and merged

to a certain cube. The IBHB process is depicted in Figure 6.

Edges move with vertices, so they are omitted in the figure.

FIGURE 6. Illustration of IBHB process. (a) Example graph and cubes;
(b) degreeing; (c) interval block partition; (d) hash and merge blocks to
cubes.

As is shown in the example process in Figure 6, there are

three cubes involved in the calculation. It is a very straight-

forward method to partition all the vertices evenly into three

cubes. Actually in IBHB, vertices id are divided into nine

blocks at the interval length of 2. The block size is minimized

andmore blocks are generated. Then the blocks are numbered

and then hashed to the three cubes.We take a simplermapping

scheme for partition efficiency. Moreover, this simple way

helps each cube manage and access the blocks.

Although a smaller block size can reduce the size gap

among blocks and cubes, it is worth discussing that the more

graph is divided into blocks, the more edge-cut will appear.

The latter will increase the number of communications. How-

ever, a larger granularity of partition will cause imbalance

and increase communication time. So we need to make a

compromise when dividing the blocks. And it is described

in the experiment section.

C. BATCHED COMMUNICATION VIA MESSAGE PASSING

In ReGra each ReRAM cube is limited to access and

update its local memory only. Therefore a proper and effi-

cient communication mechanism is necessary for cubes to
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communicate with each other, transferring vertices and edges

values. Amessage-passing based communication mechanism

is proposed in ReGra. Figure 5(a) shows an example of this

process. It is convenient for vertex u to send a message to

vertex v or request an update for its property. The message

containing concrete computing operation is processed by the

remote ReRAM cube.

Message passing based communication is a fundamental

way for cubes to communicate with each other. In ReGra, this

is encapsulated in different remote procedure calls (RPC) so

that the communication is transparent to programmers. The

two typical approaches are: blocking RPC and non-blocking

RPC. This is obvious, but it also has different effects.

In blocking procedure call, the caller sends a message to the

callee andwaits for the result returned by the callee.When the

callee receives the call from any remote cube, it gets messages

from receive buffer and processes immediately. A similar

process happens in the non-blocking procedure call, except

that callee needs not to process immediately, and there is no

return value and the caller does not need to wait for the result,

which increases communication and computation efficiency.

In graph traversal programs, most inter-cube communica-

tion involves transferring messages of updates to destination

vertices, and then the receiver processes the messages and

updates the vertices properties. That is to say, the sender is

not responsible for updating the vertices properties in remote

cubes. Therefore non-blocking is a better way, and that is

exactly what we adopt in ReGra. This simplifies communi-

cation and makes it more efficient. In addition, we can make

use of non-blocking communication to overlap the process of

receive buffer and send buffer.

Another pro of the non-blocking procedure call is that

it makes the batch process more flexible. As shown in

Figure 7(a), after the vertex i (green pane) is processed, ver-

tex 4 and 6 in cube 1 will join the frontier in the next traversal

level. Next, when processing remote updates, vertex 7 and 8

are going to receive update messages, and both of them are

in cube 2, so all the messages in the queue will be gathered

naturally (shown in Figure 7(b)). And the batched message

will be passed to cube 2 through the subsequent circular

round message passing mechanism. Specifically considering

BFS, the valid status updates to destination vertex 8 will be

activated by only one vertex, as we specify that vertex 4 is

FIGURE 7. Batched message communication. (a) Inter-communication
among three cubes; (b) the converged message queues.

processed before vertex 6 in the example graph. So the queue

of cube 2 can be further reduced as illustrated in Figure 7(b).

In the example, N − 1 batched messages will be generated

in each cube to be sent for other cubes, and the number that

received from other cubes is also N − 1, where N is the

number of cubes. In ReGra, 16 cubes are commonly used,

thereby N = 16. In every level of traversal, each cube will

generate messages to the other 15 cubes, by the circular round

message transferring phase which is depicted in the following

paragraph.

D. CIRCULAR ROUND COMMUNICATION

As mentioned above, inter-cube communication is a neces-

sity in ReGra architecture. The batched messages reduce the

number of communication, but the timing of the messages

being transferred is irregular and unpredictable and the des-

tination cubes may be interrupted. A custom circular round

communication mechanism is proposed to solve the problem

and eliminate the irregular and unpredictable communication.

This is inspired by GraphH [6], but more optimization work

is introduced. One is the different representations of graph

organization, and another is the influence of new ReRAM

hardware.

Circular round communication makes cubes transfer mes-

sages among each other in a determined order within a certain

period. After multiple rounds of circular transferring, every

cube will receive messages from all other N −1 cubes, where

N means the number of cubes. Only one cube is the desti-

nation for each cube in each round, therefore N − 1 rounds

are needed in a circular round communication. Figure 8(a)

depicts the process of circular round message passing. In the

first round, messages are transferred from cube 0 to cube 1,

and cube 1 to cube 2, . . ., and so on. Each serial number

of destination cube is the serial number of the current cube

‘‘plus 1’’. And in round 2, each cube performs ‘‘plus 2’’

operation and gets the serial number of destination cube in

this round. Comprehensively, it can easily deduce the rest

procedure from the ‘‘plus n’’ operation in the round n. As N

cubes are adopted, all messages can be transferred to their

destination in N − 1 rounds. And it is worthwhile to mention

that the result of ‘‘plus n’’ may exceed N , so a ‘‘mod n’’

operation to get the correct destination cube is also necessary.

This is the ‘‘circular’’ means. An example of circular round

communication is shown in Figure 8(b), where we suppose all

the vertices are in the frontier and all edges are processed and

updated. All the vertices are partitioned into four cubes with

different colors. The edges to be remotely processed in each

round are colored by the color of their destination vertices and

detailed descriptions are under the figure.

It is easily achieved in destination-vertex based graph

organization. The data for the graph is already sorted by

destination vertex, which can be used directly in the com-

munication phase. However the edges are continuously and

compactly stored by source vertices, and it is difficult to get

the right batched messages by destination vertices in each

round like the destination-vertex based block partition. So all
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FIGURE 8. Circular round communication. (a) Circular round communication mechanism; (b) a detail case.

the neighbors of a vertex are fetched in the round 0 and stored

in the corresponding buffer list for each cube, and a similar

destination-vertex based block partition is formed. And in the

following each round, we get the message from the buffer

and transfer it. Compared with graphH, it adds some buffer

overheads. But the overall improvement is considerable.

E. EFFICIENT CACHE FOR ReRAM OPERATIONS

The graph data is stored in ReRAM banks by continuously

compressed sparse row, one vertex by another. Additionally

starting location of each adjacency list is recorded in the same

bank to help determine the scope of the neighbors (Figure 9).

With the features of ReRAM crossbars read operation, it is

very convenient to get all the neighbors of a vertex, and

only several read operations to the whole wordline. But there

are a lot of global random accesses in vertex-centric graph

algorithms (Figure 2(b)). We not only need to use cache to

reduce random memory access but also need to design better

cache according to the characteristics of graph traversal.

FIGURE 9. The cache in ReGra architecture.

The partial status bitmap of vertices stored in the cube is

accessed and updated frequently. Besides, the vertex range

of each cube is also frequently accessed to determine the

destination cube, but it is constant. Both of them are stored

in scratchpad memory. The latency is shorter than L1 cache

and it is not interfered with by the cache replacement pol-

icy. For large graphs, the bitmap can not fit into scratchpad

memory, and flush operation is conducted to flush the bitmap

to memory. At the meanwhile, the operations to check and

update the bitmap will be divided into small partitions, and it

ensures the requested vertices are in the scratchpad memory.

As for the adjacency list, the cache is also necessary

to buffer the neighbors of continuous vertices. During the

accessing, the required data is first checked in the cache.

If the target data is hit, whether the cache line contains the

whole adjacent list is also a matter that must be considered.

If the whole data is not found in the cache, at least one line

of ReRAM crossbar is accessed and cached according to

the data position or range. Limited by the size of the cache

capacity, the cache replacement strategy used here is First In

First Out (FIFO). Conceptual cache components are shown

in Figure 9.

IV. GRAPH TRAVERSAL ON ReGra

BFS and Depth First Search (DFS) are two basic graph

traversal algorithms. In this section, BFS is applied to ReGra.

We take advantage of the convenience of this architecture to

bring better performance to the algorithm. There are some

minor changes to the conventional BFS algorithm but it is

transparent to the interface user. Moreover, other traversal

algorithms such as Single Source Shortest Paths (SSSP) and

Minimum Spanning Tree (MST) are discussed.

A. GRAPH PREPARATION

All cubes are equal units for traversing the graph and updating

the status of vertices in its partial state bitmap. The vertex

range of partial status bitmap is limited within the vertex

range stored in that cube. As for those outside neighbor ver-

tices, the update message is transferred in the communication

phase, which is transparent to programmers. And in this work,

only static graphs whose vertices and edges are not changed

are studied. A graph is statically mapped to each cube.

In Figure 1, we can see the CSR format representation of

the graph and the neighbors are stored continuously in cross-

bars. We adopt the IBHB approach to evenly partition graph,

which is a pre-processing. After the pre-processing, the ver-

tices IDs are no more continuous in each cube. Fortunately,
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we adopt a simple module hash, and virtual continuous id can

be obtained by one-step calculation, and then data access is

performed. The formula is:

cid = id − l · [(s− 1)+ i · l]. (1)

The cid means fake continuous id, and smeans first vertex

id in each block, and i is the serial number of a vertex in

each block, as vertex is calculated one by one. and l is the

block length. The results can be buffered for convenience.

As depicted in Figure 10, the graph is partitioned into two

cubes, each contains four vertices and their edges. When

all the neighbors of a vertex are to be accessed, the index

[cid ∗ 2, cid ∗ 2 + 1] of starting location array (pink panes

in Figure 10) stores the starting location of its adjacency

list. The continuously subsequent starting location, which is

stored in the index [cid ∗ 2 + 3, cid ∗ 2 + 4], is also needed

to determine the boundary of neighbors. When reading data

from ReRAM crossbars, it usually reads a complete line and

puts data into the cache, and then gets the required neighbors

from the cache.

FIGURE 10. Graph is mapped into crossbars wiht CSR format and
coordinates.

B. GRAPH TRAVERSAL

In the BFS algorithm, starting from a source vertex s, all other

vertices in the graph are traversed and checked whether it is

reachable from s. This is a hierarchical or level centric traver-

sal, starting from the source vertex and spreading to farther

vertices in turn, and finally completing the global traversal.

A schematic diagram of this process is shown in Figure 11(a),

where gray dotted lines indicate different traversal levels,

and Figure 11(b) depicts a complete traversal process in the

example graph.

FIGURE 11. Example of level traversal of BFS.

The pseudocode process of BFS in ReGra is described in

Algorithm 1. From the perspective of the algorithm process,

we follow the conventional top-down way. The current fron-

tier queue (CQ) and status bitmap of vertices in the range of

Algorithm 1 BFS in ReRAM Based Cubes

Input: source vertex vs
Preparation:

1: The set of vertices in each cube Vi
2: The set of edges in each cube Ei
3: The current frontier queue CQ

4: The frontier queue for next level NQ

5: The queue for batched message BMQ

6: All neighbors of a vertex NBQ

7: Partial status bitmap PSB

8: CQ← vs
9: for vj ∈ Vi do

10: PSB[j] = 0

11: end for

12: PSB[s] = 1

Graph Traversal:

1: while CQ 6= φ do

2: NQ← φ

3: for vu ∈ CQ do

4: NBQ = GetNeighbors(u,Ei)

5: BMQ = SplitRemoteVertex(NBQ,Vi)

6: //NBQ′ contains vertices in the range of cube

7: for vk ∈ NBQ
′ do

8: if PSB[k] = 0 then

9: PSB[k] = 1

10: NQ← NQ ∪ vk
11: end if

12: end for

13: BatchExecuteRemote(BMQ,NQ,PSB)

14: end for

15: CQ← NQ

16: end while

a cube (PSB) are maintained, which are cores in BFS. What

must be mentioned here is that the vertex bitmap is part of the

whole vertices, therefore it is essential to use the displacement

from the first vertex in a cube as an index for the bitmap. Other

variables are introduced in section IV-A (Graph Preparation),

and the description in the algorithm pseudocode is also very

intuitive. Thus no more detailed explanation is given here.

In the traversal, several necessary variables are initial-

ized to enhance the breadth-first traversal. On the one hand,

the partial neighbors of a vertex, which are not in the range

of the cube, are split from the NBQ, and these vertices are

to be sent to remote cubes. The local cube is responsible

for the remaining vertices, which are in NBQ′. As for these

vertices, their visited status is checked first. If the vertex is

not accessed, its status is updated and it will also join the NQ

for the next traversal level. On the other hand, the vertices in

theBMQ are preparing for batchedmessages to remote cubes.

All edges are organized by source vertex-centric way, it is

convenient to get the whole neighbors in ReRAM crossbars.

But at the same time, it requires more operations to gather

edges by their destination vertices. In BMQ, for each cube a
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list of active vertices is established. Each list maintains the

split vertices that are in the same cube. In the circular round

communication phase, one of the lists is transferred to the

destination cube and then traversed to generate frontier for

next level traversal.

There are three special functions in Algorithm 1. Get-

Neighbors and SplitRemoteVertex are simple, as the name

suggests and discussed above. One more thing to note is that

the cache and buffer in these functions. We introduced the

cache adopted in ReGra, such as the scratchpad memory.

They are transparent and can not be accessed directly in

programming, what we operate in the function is a memory

address, but for processor it is data in the cache. Next the

focus shifts to the third function BatchExecuteRemote.

Algorithm 2 Circular Round Communication

The local cube identifier localId

The remote cube identifier variable remoteId

Messages to be sent in sendBuf

Messages received from other cubes recvBuf

function BatchExecuteRemote(BMQ,NQ,PSB)

for roundId = 1→ cubeNums− 1 do

remoteId = (localId + roundId)%cubeNums

InitBatch(recvBuf , sendBuf ,BMQ)

SendBatch(remoteId, sendBuf )

RecvBatch(recvBuf )

for vk ∈ recvBuf do

if PSB[k] = 0 then

PSB[k] = 1

NQ← NQ ∪ vk
end if

end for

barrier()

end for

CQ← NQ

end function

Algorithm 2 shows the process of BatchExecuteRemote.

The core is custom circular round communication among

cubes. This function constantly sends and receives messages.

In the beginning of each round, the recvBuf is cleaned and

the sendBuf is filled with vertices list in BMQ with the right

destination cube (denoted by remoteId). The calculation for-

mula of remteId has been deduced in the previous paragraph.

The SendBatch is an asynchronous operation for sending

batchedmessages. And the local cube is not blocked therefore

the local cube can overlap communication and computation.

What concerned is the received data. It must exist in recvBuf

before the subsequent calculation. There is a kind of synchro-

nization in this procedure. After receiving messages, these

vertices are checked and updated to generate the frontier for

next level traversal. In conclusion, CQ contains the result of

local computation and remote updates, which is the global

status of each vertex in the level.

Graph data is stored in a continuous CSR format. This for-

mat is more useful to level-centric graph traversal algorithms

like BFS, rather than depth recursive algorithms like DFS.

In addition to BFS, other algorithms such as SSSP and MST

can also be applied to ReGra architecture. Better perfor-

mances are also obtained under the proposed format. As for

unweighted graphs, SSSP traverses a graph in a level centric

way. In this case, a similar process and data structure to BFS

can be used. For weighted graphs, the weight of each edge is

first stored in the compressed adjacent list, and more runtime

data structures are needed. The distance array is critical in

SSSP, and it records the current shortest distances between

each vertex and the source vertex and it should be updated

at each traversal level. In summary, ReGra can achieve better

performance when processing level-centric graph traversal.

V. EVALUATION

A. METHODOLOGY

We simulate the ReGra architecture with zSim [20] and

NVMain [21]. zSim is a scalable x86-64 multicore simulator,

and we modify it with an interconnection model, memory,

on-chip networks, and other hardware components. The com-

puting unit in ReGra is single-issue in-order cores the same as

Tesseract. And each core has 32 KB L1 cache for instructions

and 64 KB L1 data cache. The simulation frequency of com-

puting core is 1 GHz. The scratchpad memory in each core

is set to 64 KB, and it is enough to accommodate the vertex

range of each cube, the frontiers in each traversal level as well

as the vertex status bitmap. As for cube configuration, we use

16 cubes connected with the Dragonfly topology (Fig.4.(a)).

As for memory, the detailed configuration of ReRAM

needs to be explained. Each crossbar contains 1024 ×

1024ReRAMcells, and the parameters of ReRAMcell model

is the same as RPBFS [8](derived from GraphR [10]). The

HRS/LRS resistances are set to 2.5 M� and 50 K�, read

voltage andwrite voltage are 0.7V and 2V and thus the current

of HRS/LRS are 2 µA and 40 µA respectively. Moreover,

the energy cost of read and write are 1.59 pJ and 5.33nJ, and

the read and write latencies are 29.31 ns and 50.88ns. And

we also refer to [22] to evaluate the energy consumption of

ReGra components.

Table 1 shows six different real-world datasets in our

evaluation. These all come from Stanford Large Network

Dataset Collection (SNAP) [23], including social networks

TABLE 1. Graph datasets used in experiment.
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from Slashdot, Twitter as well as other types of graph such

as co-purchasing, web graph, and road network. The soc-

Slashdot(SS) has the least vertex number but the maximum

ratio of edge to vertex, briefly it is the densest graph in the

six datasets. And the counterpart is wiki-Talk(WT), the most

sparse one. The twitter-higgs(TT) becomes the largest graph.

All the graphs are stored in the ReRAM crossbars in a CSR

format. During pre-processing, the adjacency list of each

vertex is sorted and mapped to different cubes according to

vertices ranges. These operations do not change the result of

graph traversal algorithms, and it is not involved in the result

comparison because of the small cost.

B. EVALUATION RESULTS

1) IBHB PARTITION METHOD

IBHB divides the graph into more small blocks than the cube

numbers and then merges those blocks into the cubes through

a simple hash mapping. After IBHB partition, the graph is

evenly distributed into the cubes, which is more balanced than

dividing the graph into blocks whose number is the same as

that of cubes. IBHB is a relatively simplemethod and requires

very little cost. We apply the algorithm to the six graphs

with different block numbers and calculate the number of

edges in the inter-cube communication. The results are shown

in Figure 12. The abscissa indicates the number of divided

blocks, and N indicates the number of cubes. It can be seen

that dividing toomany blocks results inmore communication,

especially the more partitions. When partitioned into 8N or

16N blocks, the number of communications increases even

more. But the communication time has different performance.

Figure 13 shows the inter-cube communication time of differ-

ent blocks. According to the results, when the partition ratio

is 4, the graph traversal performs best. Because the balance

is more appropriate at this time. This ratio is also used in our

experiments.

FIGURE 12. Inter-cube communication number of different block size.

2) EXECUTION TIME COMPARED WITH RPBFS

RPBFS utilizes ReRAM crossbars to traverse graphs in

parallel. On this basis, we carried out further research.

FIGURE 13. Inter-cube communication time of different block size.

The message passing mechanism is used to transfer edges to

be checked and synchronize traversal level. Even further work

is to alleviate the irregular and unpredictable message that

could have been avoided among cubes, which is the circular

round communication among cubes. Hence we compared

the performance of ReGra with that of RPBFS. Besides,

the performance is measured in execution time. In BFS it

means traversal starts from giving a source vertex and ends till

the frontier queue is empty. And in SSSP it means traversal

starts from the source vertex and ends till all the shortest paths

are found. The results of the execution time speedup ratio

comparison are shown in Figure 14.

FIGURE 14. The speedup ratio of execution time comparison of three
architectures. The result is normalized to RPBFS.

As shown in Figure 14, the execution time of RPBFS is

used as a baseline to compare the execution time speedup

ratio of ReGra. And the performance speedup of BFS and

SSSP is clearly shown in Figure 14. It is worthwhile to

mention that the column labeled with ‘‘ReGra_wcrc’’ means

the mechanism of custom optimized circular round commu-

nication is not applied in the experiment. The communication

in ‘‘ReGra_wcrc’’ is the same as Tesseract. ReGra performs

up to 2.3× speedup in BFS and 2.6× speedup in SSSP than

RPBFS. In the meantime, without circular round communi-

cation, the performance of ReGra is affected, especially in

the large graph such as TT. It is visual in Figure 14 that for
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smaller graphs the performance difference between RPBFS

and ReGra can be small and reasonable. That is because the

small graph is distributed in several cubes and the execution

parallelism of architecture is not high and communication is

less, and the blocked data interferes more with the calculation

of small scale graphs.

3) COMMUNICATION COMPARED WITH TESSERACT

In RPBFS, communication is used to transfer commands

and frontiers and synchronize the status between the master

bank and graph banks. Shared memory is adopted to main-

tain status information for all vertices. ReGra improves the

way the vertex status is maintained and the communication

mechanism adopted in ReGra is inspired by Tesseract. In this

section, we compare the communication efficiency between

ReGra and Tesseract, evaluating the circular round communi-

cation for good communication improvement. The evaluation

result is depicted in Figure 15.

FIGURE 15. The communication efficiency of ReGra compared with
Tesseract.

As illustrated in Figure 15, the data transferred among

cubes in ReGra is far less than that of Tesseract. The total

number of bytes of data cross cubes is normalized to that of

Tesseract. ReGra reduces the inter-cube communication by

around 60% on average for all six data sets, and up to 80% in

SSSP. Firstly, the architecture of ReGra is simpler than that

of Tesseract, and the statistical caliber is limited to inter-cube

communication, which is more favorable for ReGra. More

importantly, the batched message and circular round commu-

nication make inter-cube communication more regular and

reduce the total number of communication. And the more

balanced data distribution has also improved communication.

A graph like AZ which has good locality performs well in

communication efficiency because most updates happen in

the local cube.

4) EXECUTION TIME BREAKDOWN

The above is a comparative experiment, reflecting the

improvement of ReGra. Figure 16 shows the execution

time breakdown of BFS and SSSP in RPBFS and ReGra.

We mainly divide the traversal execution time into three

parts: computation, update, and synchronization. The three

parts exist in both architectures, with the major difference

being the update process. In RPBFS, all cubes access the

FIGURE 16. The execution time breakdown of RPBFS and ReGra.

shared memory and update the status of vertices. Otherwise,

in ReGra, each cube maintains partial vertices status and

communicates with other remote cubes to transfer updates.

The consistency of the global status of vertices and the level

of graph traversal are ensured in the synchronization phase.

As shown in Figure 16, ReGra takes more time in update

operation than RPBFS, benefiting from a partially overlap of

computation and communication. On the contrary, the syn-

chronization process seems to take longer than RPBFS. How-

ever, because the total execution of ReGra is less than that of

RPBFS, it takes less time in synchronization indeed. Besides,

a small-scale graph takes more time to update status in ReGra

because of graph partition.

5) ENERGY AND AREA

Figure 17 illustrates the energy cost of Tesseract and ReGra,

and the results are normalized to Tesseract. As we can see,

ReGra saves around 60% energy on average than Tesseract in

BFS and 70% on average in SSSP. Themechanism of batched

message passing and circular round communication elimi-

nates the irregular and unpredictable message in Tesseract,

thus the context switch is reduced. The dynamic consumption

is benefited from this and the ReRAM operations do a favor

either. In large scale graphs like TT, it takes a lot in memory

access and communication, so the energy saved in the large

scale graph is more obvious.

FIGURE 17. The energy cost of ReGra compared with Tesseract.

Figure 18 shows the breakdown of the device area of

ReGra, and only one cube is considered. ReRAM crossbars

make up 14.5%, which is more space-saving than DRAM.
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FIGURE 18. Area breakdown of ReGra.

Otherwise, the size of the Sense Amplifier is slightly larger,

even if it is shared among multiple cubes. Other devices like

simple ALU, cache, and message buffer make up 27.9% of

the whole area. In addition to the small area of the ReRAM

crossbar, the read-write power is also very advantageous. The

power of the ReRAM crossbar accounts for only 14% of

the power of the whole cube. While in Tesseract, the power

account of HMC is far more than this ratio, reaching 29%.

VI. RELATED WORK

There are lots of PIM based graph accelerators

([5]–[7], [24]–[26]). Tesseract [5] utilizes the 3D-stacked

HMC to offer enough memory bandwidth, achieving a

‘‘memory-capacity-proportional’’ feature. It is a well-known

baseline for a series of later works. GraphP [19] is proposed

to fully consider data organization and data partition as well

as the architecture to achieve lower communication. Open

questions of irregular data movement and communication

still exist in previous accelerators, graphH [6] and graphQ [7]

take the idea of round execution but with different implemen-

tations under the architectures and destination-based graph

partition as well as the graph organization. These are all

related to Tesseract, and they are also vertex-centric graph

processing architectures. Another way of graph processing is

edge-centric. It stores and accesses edge sequentially, and it

is first proposed by X-stream [27] to get a better locality of

graph processing. GraphSAR [9] adopts a hybrid-centric exe-

cution model with separate consideration of multiple edges

blocks and one edge blocks, and it proposes a sparsity-aware

scheme.

The emerging non-volatilememory such as ReRAMbrings

a new chance to solve graph processing. Several works

have been proposed ( [8]–[10], [28], [29]). GraphR [10]

stores graphs with ReRAM crossbars and constructs several

ReRAM-based graph engine to parallelly accelerate process-

ing. RPBFS [8] compactly stores the adjacency list of vertices

to achieve better read performance and it uses shared memory

to maintain the status of vertices. And RPBFS is the baseline

inspiring our work, the shared memory scheme in RPBFS

leads to scalability problems and access conflicts, as well

as irregular communication. Based on comprehensive com-

parison to previous work, we adopt message passing instead

of shared memory access to increase the scalability. A well

designed and custom circular round communication mech-

anism reduces irregular and unpredictable communication

among cubes. In general, ReGra is an accelerator that spe-

cializes in graph traversal but not limited to graph traversal.

VII. CONCLUSION

In this work, we propose an efficient ReRAM based PIM

accelerator with lower communication costs. On the one

hand, ReGra partitions graphs into ReRAM cubes through

IBHB approach, and stores graphs in a special CSR for-

mat to utilize the feature of ReRAM and improve memory

access efficiency, and the balanced graph partition reduces

the influence of communication. Moreover PIM technology

provides enough bandwidth and alleviates the pressure of data

movements. On the other hand, the updates in graph traversal

are divided into local updates and remote updates. In remote

updates values are converged into batched messages and

transferred via the custom circular round communication

mechanism in a concentrated period and in an organized

way. This overlaps the communication with computation and

eliminates irregular and unpredictable inter-cube communi-

cation. Therefore communication and its cost are signifi-

cantly reduced. Benefiting from these efficient approaches,

the performance of ReGra with BFS and SSSP achieves a

performance speed of up to 2.2×, as well as a communi-

cation reduction of up to 76% and energy cost reduction of

up to 70%.
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