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Abstract. We explore the applicability of deep convolutional neural
networks (CNNs) for multiple landmark localization in medical image
data. Exploiting the idea of regressing heatmaps for individual landmark
locations, we investigate several fully convolutional 2D and 3D CNN
architectures by training them in an end-to-end manner. We further
propose a novel SpatialConfiguration-Net architecture that effectively
combines accurate local appearance responses with spatial landmark con-
figurations that model anatomical variation. Evaluation of our different
architectures on 2D and 3D hand image datasets show that heatmap
regression based on CNNs achieves state-of-the-art landmark localiza-
tion performance, with SpatialConfiguration-Net being robust even in
case of limited amounts of training data.

1 Introduction

Localization of anatomical landmarks is an important step in many medical
image analysis tasks, e.g. for registration or to initialize segmentation algorithms.
Since machine learning approaches based on deep convolutional neural networks
(CNN) outperformed the state-of-the-art in many computer vision tasks, e.g.
ImageNet classification [1], we explore in this work the capability of CNNs to
accurately locate anatomical landmarks in 2D and 3D medical data.

Inspired by the human visual system, neural networks serve as superior fea-
ture extractors [2] compared to hand-crafted filters as used e.g. in random forests.
However, they involve increased model complexity by requiring a large number of
weights that need to be optimized, which is only possible when a large amount of
data is available to prevent overfitting. Unfortunately, acquiring large amounts of
medical data is challenging, thus imposing practical limits on network complex-
ity. Additionally, working with 3D volumetric data further increases the number
of required network weights to be learned due to the added dimension of fil-
ter kernels. Demanding CNN training for 3D input was previously investigated
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for different applications [3–5]. In [3], knee cartilage segmentation of volumet-
ric data is performed by three 2D CNNs, representing xy, yz, and xz planes,
respectively. Despite not using full 3D information, it outperformed other seg-
mentation algorithms. In [4], authors differently decompose 3D into 2D CNNs by
randomly sampling n viewing planes of a volume for detection of lymph nodes.
Finally, [5] presents deep network based 3D landmark detection, where first a
shallow network generates multiple landmark candidates using a sliding window
approach. Image patches around landmark candidates are classified with a sub-
sequent deep network to reduce false positives. This strategy has the substantial
drawback of not being able to observe global landmark configuration, which is
crucial for robustly localizing locally similar structures, e.g. fingertips in Fig. 1.
Thus, to get rid of false positives, state-of-the-art localization methods for mul-
tiple landmark localization rely on local feature responses combined with high
level knowledge about global landmark configuration [6], in the form of graph-
ical [7] or statistical shape models [8]. This widely used explicit incorporation
has proven very successful due to strong anatomical constraints present in med-
ical data. When designing CNN architectures these constraints could be used to
reduce network complexity and allow training even on limited datasets.

In this work, we investigate the idea of directly estimating multiple landmark
locations from 2D or 3D input data using a single CNN, trained in an end-to-end
manner. Exploring the idea of Pfister et al. [9] to regress heatmaps for landmarks
simultaneously instead of absolute landmark coordinates, we evaluate different
fully convolutional [10] deep network architectures that benefit from constrained
relationships among landmarks. Additionally, we propose a novel architecture for
multiple landmark localization inspired by latest trends in the computer vision
community to design CNNs that implicitly encode high level knowledge as a
convolution stage [11]. Our novel architecture thus emphasizes the CNN’s capa-
bility of learning features for both accurately describing local appearance as well
as enforcing restrictions in possible spatial landmark configurations. We dis-
cuss benefits and drawbacks of our evaluated architectures when applied to two
datasets of hand images (2D radiographs, 3D MRI) and show that CNNs achieve
state-of-the-art performance compared to other multiple landmark localization
approaches, even in the presence of limited training data.

Fig. 1. Multiple landmark localization by regressing heatmaps in a CNN framework.
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Fig. 2. Schematic representation of the CNN architectures. Blue boxes represent
images, convolution, pooling, concatenation, upsampling, channel-
by-channel convolution, channel-by-channel addition, element-wise multipli-
cation. Arrow thickness illustrates kernel sizes.

2 Heatmap Regression Using CNNs

As shown in Fig. 1, our approach for multiple landmark localization uses a CNN
framework to regress heatmaps directly from input images. Similarly to [9], we
represent heatmaps Hi as images where Gaussians are located at the position of
landmarks Li. Given a set of input images and corresponding target heatmaps,
we design different fully convolutional network architectures (see Fig. 2 for
schematic representations), all capable of capturing spatial relationships between
landmarks by allowing convolutional filter kernels to cover large image areas.
After training the CNN architectures, final landmark coordinates are obtained
as maximum responses of the predicted heatmaps. We propose three different
CNN architectures inspired by the literature, which are explained in more detail
in the following, while Sect. 2.1 describes our novel SpatialConfiguration-Net.

Downsampling-Net: This architecture (Fig. 2a) uses alternating convolution
and pooling layers. Due to the involved downsampling, it is capable of covering
large image areas with small kernel sizes. As a drawback of the low resolution of
the target heatmaps, poor accuracy in localization has to be expected.

ConvOnly-Net: To overcome the low target resolution, this architecture
(Fig. 2b) does neither use pooling layers, nor strided convolution layers. Thus,
much larger kernels are needed for observing the same area as the Downsampling-
Net which largely increases the number of network weights to optimize.

U-Net: The architecture (Fig. 2c) is slightly adapted from [12], since we replace
maximum with average pooling in the contracting path. Also, instead of learning
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Fig. 3. Illustration showing the combination of local appearance from landmark Li

with transformed heatmaps H
trans

i,j from all other landmarks.

the deconvolution kernels, we use fixed linear upsampling kernels in the expand-
ing path, thus obtaining a fully symmetric architecture. Due to the contracting
and expanding path, the net is able to grasp a large image area using small
kernel sizes while still keeping high accuracy.

2.1 SpatialConfiguration-Net

Finally, we propose a novel, three block architecture (Fig. 2d), that combines
local appearance of landmarks with the spatial configuration to all other land-
marks. The first block of the network consists of three convolutional layers with
small kernel sizes, that result in local appearance heatmaps H

app
i for every land-

mark Li. Although these intermediate heatmaps are very accurate, they may
contain ambiguities due to similarly looking landmarks, e.g. fingertips, as the
kernels do not grasp information on the larger surrounding area. This ambiguity
is reduced by combining the output of the appearance block with the prediction
of our spatial configuration block. A sample heatmap calculation for one land-
mark is visualized in Fig. 3. The position of each landmark predicted by this
block is based on the estimated locations of all remaining landmarks as obtained
from the appearance block. Thus, the relative position of landmark Li accord-
ing to Lj is learned as a convolution kernel Ki,j , transforming the response of
heatmap H

app
j into a heatmap Htrans

i,j , that predicts the position of Li. The
transformed heatmap is defined as

Htrans
i,j = H

app
j ∗ Ki,j , (1)

where ∗ denotes a convolution of H
app
j with Ki,j . Note that by not having any

restriction on the kernels Ki,j , the net is able to learn the spatial configuration
between landmarks on its own. For each Li, the responses of the transformed
heatmaps Htrans

i,j are accumulated resulting in a location estimation obtained
from all other landmarks. This accummulated heatmap is defined as
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Hacc
i =

n∑

j=1

Htrans
i,j . (2)

The final heatmap, which combines local appearance and spatial configuration
between all other landmarks, is calculated as

Hi = H
app
i ⊙ Hacc

i , (3)

with ⊙ the element-wise product. This suppresses locations from local appear-
ance predictions that are infeasible due to the spatial configuration of landmarks.

The spatial configuration block is calculated on a lower resolution, as kernels
Ki,j have to be very large to capture the spatial landmark configuration. How-
ever, a high resolution is not necessary for the spatial configuration block, as it is
solely used to remove ambiguities. To preserve accuracy of the local appearance
block, the outputs of the spatial configuration block are upsampled and the final
heatmaps Hi are calculated on the same resolution as the input.

3 Experimental Setup and Results

Materials: We evaluated localization performance of the network architectures
on two different datasets. The first one consists of 895 publicly available X-ray
images of hands1 with an average size of 1563×2169, acquired with different
X-ray scanners. 37 characteristic landmarks, e.g. finger tips or bone joints, were
annotated manually by an expert. As the images do not contain information
about physical pixel resolution, we assume a wrist width of 50 mm, defined by
two annotated landmarks. The second dataset consists of 60 T1-weighted 3D
gradient echo hand MR scans with 28 annotated landmarks. The average volume
size was 294 × 512 × 72 with a voxel resolution of 0.45 × 0.45 × 0.9 mm3.

Experimental Setup: The 2D hand radiographs were acquired with various
different X-ray scanners, resulting in large intensity variations. Histogram equal-
ization was performed to adjust intensity values. Additionally, we preprocessed
pixels by subtracting mean intensities and setting standard deviation equal to
1. For the 3D data, we only subtracted the mean since intensity variations were
negligible. To augment the datasets, nine additional synthetic images were cre-
ated for each image by applying rotation (up to 30◦), translation (up to 1 cm),
and intensity scaling/shifting (up to 10 % difference, only used in 2D). Heatmaps
were created by centering Gaussians at landmark positions, normalized to max-
imum value of 1 and with σ ranging from 1.5 to 3 depending on heatmap size.

To achieve best possible performance, we tuned each network architecture
regarding kernel and layer size as well as number of outputs. All networks consist
of standard layers (Fig. 2), i.e., convolution, pooling (average), concatenation,
addition, multiplication, and fixed deconvolution (linear upsampling). In each
network, the final convolution layer has the same number of outputs as landmarks

1 Digital Hand Atlas Database System, http://www.ipilab.org/BAAweb/.

http://www.ipilab.org/BAAweb/
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and a kernel size of 1 without an activation function. All other convolution layers
have a ReLU activation function and produce 128 intermediate outputs in 2D and
64 in 3D (except 3D ConvOnly-Net with 32 outputs, due to memory limitations).
Additionally, all pooling layers use averaging and halve the output size in every
dimension, while all linear upsampling layers double output size. The networks
are structured as follows: The 2D ConvOnly-Net consists of 6 convolution layers
with 11 × 11 kernels (3D: 6, 5 × 5 × 5). The Downsampling-Net is composed
of multiple blocks containing two convolution layers followed by pooling. After
the last block, two additional convolution layers are appended. In 2D we use
5 × 5 kernels and 2 downsampling blocks (3D: 3 × 3 × 3, 1 block). The U-Net
consists of a contracting path, being equivalent to Downsampling-Net, and an
expanding path, consisting of blocks of upsampling, concatenation with the same
level output from the contracting path, and finally two convolution layers. In 2D
we use 3 × 3 kernels with 4 down- and upsampling blocks (3D: 3 × 3 × 3, 3
blocks). The 2D SpatialConfiguration-Net consists of 3 convolution layers with
5 × 5 kernels, followed by the spatial configuration block, using 15 × 15 kernels
with a downsampling factor of 1

8 (3D: 3 × 3 × 3, 3, and 9 × 9 × 5, factor 1
4 ).

We evaluated the 2D dataset with three-fold cross-validation and additionally
compared to results obtained with two other state-of-the-art localization meth-
ods of Lindner et al. [8], who applied their code to our dataset, and of Ebner
et al. [13]. The 3D dataset evaluation used five cross-validation rounds splitting
the dataset randomly into 43 training and 17 testing images, respectively, and
we also compared our results to Ebner et al. [13]. We additionally evaluated the
performance of U-Net and SpatialConfiguration-Net on a dataset with largely
reduced number of images, to show the limits of these architectures in terms of
required training data. Here, for the same three cross-validation setups as in the
original 2D experiment, we used only 10 of the 597 annotated images and tested
on the remaining 298. By excessive data augmentation on these 10 images we
get to the same number of training images as used in the original experiment.

Results: All networks were trained from scratch using the Caffe framework [14].
We did not fine-tune networks pre-trained on large image databases, as no such

Table 1. Localization results on 2D dataset containing 895 images with 37 landmarks,
grouped as full and reduced dataset. #w shows the relative number of network weights.

Set Method Image height Localization error (in mm) #Outliers > 10mm #w

Input Target Median Mean ± SD

Full Downsampling-Net 256 64 1.85 1.96 ± 1.14 12 (0.036%) 1.8

ConvOnly-Net 128 128 1.13 1.29 ± 1.13 9 (0.027%) 8.7

U-Net 256 256 0.68 0.87 ± 1.05 15 (0.045%) 2.0

SpatialConf-Net 256 256 0.91 1.13 ± 0.98 12 (0.036%) 1.0

Lindner et al. [8] 1250 1250 0.64 0.85 ± 1.01 20 (0.060%) -

Ebner et al. [13] 1250 1250 0.51 0.97 ± 2.45 228 (0.689%) -

Red U-Net 256 256 1.24 3.29 ± 11.78 1175 (3.548%) 2.0

SpatialConf-Net 256 256 1.14 1.61 ± 3.43 120 (0.362%) 1.0
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Table 2. 3D localization results on 85 images with 28 landmarks per image.

Method Image height Localization error (in mm) #Outliers > 10 mm

Input Target Median Mean ± SD

Downsampling-Net 128 64 1.91 2.21 ± 2.82 16 (0.672 %)

ConvOnly-Net 128 128 1.10 8.17 ± 23.62 360 (15.126 %)

U-Net 128 128 1.01 1.18 ± 1.31 3 (0.126 %)

SpatialConf-Net 128 128 1.01 1.19 ± 1.48 3 (0.126 %)

Ebner et al. [13] 512 512 1.27 1.44 ± 1.51 6 (0.252 %)

network exists for 3D and converting 2D kernels to 3D is not straightforward.
Our networks were optimized using stochastic gradient descent with L2-loss,
momentum of 0.99, and a batch size of 5 for 2D and 2 for 3D inputs, respectively.
The learning rate was set to 10−5 for the ConvOnly- and Downsampling-Nets,
and 10−6 for the U- and SpatialConfiguration-Nets, with weight decay of 0.0005.
The network biases were initialized with 0, the weight values drawn from a
Gaussian distribution with a standard deviation of 0.01. Networks were trained
until the testing error reached a plateau, which took between 15000 and 40000
iterations, depending on the architecture. We did not observe overfitting to the
datasets as also the test error remained at a plateau. Even after decreasing
learning rate, results did not improve any further. Training time was similar for
all architectures, between 5 and 10 h per cross-validation round on a 12GB RAM
NVidia Geforce TitanX. Testing per image takes below 10 s, with down- and
upsampling of in- and output consuming most of the time. Detailed localization
results for 2D and 3D datasets are shown in Tables 1 and 2, also comparing
performance of CNN architectures with the state-of-the-art.

4 Discussion and Conclusion

Results of our experiments show, that fully convolutional CNN architectures
trained in an end-to-end manner are able to achieve state-of-the-art localization
performance by regressing heatmaps. Despite using a much lower input and
target heatmap resolution, still the best-performing U-Net architecture achieves
the same accuracy as the method of Lindner et al. [8] on the 2D dataset, while all
architectures have less outliers (see Table 1). On the 3D dataset (see Table 2) with
the U-Net and SpatialConfiguration-Net architectures we achieve even better
results than the method of Ebner et al. [13]. With medium number of network
weights, Downsampling-Net is capable to capture spatial configuration of the
landmarks, however, since it involves downsampling, accuracy is worst among
the compared architectures. ConvOnly-Net improves the accuracy, nevertheless
it requires a high number of network weights, leading to worst performance in
terms of outliers when used for 3D data due to memory restrictions preventing
large enough kernel sizes. We found that localization performance corresponds
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with target heatmap size, as emphasized by U-Net and SpatialConfiguration-Net
showing the best results among compared architectures. In future work, we plan
to also evaluate datasets with sparser landmarks and more spatial variation.

By both accurately describing local appearance and enforcing restrictions
in possible spatial landmark configurations, our novel SpatialConfiguration-
Net architecture is able to achieve accurate localization performance with
a low amount of outliers, despite requiring the lowest number of net-
work weights. While achieving the same result for the 3D dataset, in the
2D experiment, we found that U-net performance is slightly better than
SpatialConfiguration-Net, however, U-net requires more network weights. When
evaluating SpatialConfiguration-Net on the augmented training dataset where
anatomical variation is defined from only 10 input images, it reveals its capabil-
ity to model spatial landmark configuration, outperforming U-Net significantly
in number of outliers. Thus, explicitly encoding spatial landmark configuration
as in our novel SpatialConfiguration-Net proves to be a promising strategy for
landmark localization in the presence of limited training data, as is usually the
case when working with medical images.
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