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Regression analysis of correlated binary outcomes

CHING-FAN SHED
DePaul University, Chicago, IUinois

The purpose of this paper is to describe and illustrate a regression approach to the analysis of cor­
related binary outcomes (Liang & Zeger, 1986). Ignoring the correlations between repeated observa­
tions can lead to invalid inferences. This approach extends logistic regression to account for repeated
observations in each of a series of individuals. In this paper, I present a nontechnical introduction to
the generalized estimating equations (GEE) approach. A fictitious example is used to demonstrate that
GEE regression correctly adjusts for the correlations between repeated binary observations. The ap­
proach is illustrated with an analysis of safer sex practices among high-risk teenagers.

Repeated measures and longitudinal designs are im­
portant research methods in the study ofbehavior and de­
velopment (Nesselroade & Baltes, 1979). For the analy­
sis of repeated (continuous) measurements, the linear
models (linear regression and analysis of variance) have
been extended to deal with longitudinal data assuming
normality (Ware, 1985).

The outcome variables in behavioral research are often
binary or discrete (Likert scale). Consider, for example,
that two groups of subjects are observed repeatedly over
time when the behavioral response is dichotomous (the
use ofcondoms, say), and time-dependent covariates (such
as drug use, gang membership) are also collected. The
researcher may wish to know, for instance, whether the
propensity ofcondom use differs between gender groups
and whether the difference changes with drug use or being
a gang member. When the research question is to express
the change in average response over all individuals in the
population with the same covariate values, then regression
models are suitable to address it. Because multiple obser­
vations on the same individual tend to be correlated, ex­
tensions of the regression model to account for repeated
measurements require advances in both estimation proce­
dures and in software implementation.

Although the generalized estimating equations (GEE)
approach (Liang & Zeger, 1986) to fit regression models
to repeated binary data has become readily accessible in
many computer packages (Burton, Gurrin, & Sly, 1998;
Horton & Lipsitz, 1999), it has not yet been widely adopted
in psychological research. A goal of this paper is to facil­
itate the application of this useful methodology in longi­
tudinal studies of behavior.

The author thanks Gary Harper and Lisa Carver for the use of safer
sex data, Gwowen Shieh, George Michel, and Sue O'Curry for com­
ments on an earlier version of this paper, and Patrick Onghena and two
anonymous referees for comments and suggestions, which resulted in
a clearer exposition. Correspondence should be addressed to C.­
F. Sheu, Department of Psychology, DePaul University, 2219 North
Kenmore Ave., Chicago, IL 60614-3522 (e-mail:csheu@depaul.edu).

I begin by reviewing why the correlations between re­
peated observations must be taken into proper account to
avoid making misleading conclusions. The second sec­
tion describes the GEE approach in nontechnical terms.
In the third section, I show, by a fictitious example, that
GEE yields correct regression estimates and standard
error estimates for correlated binary data. The fourth sec­
tion illustrates the method by an analysis of a longitudi­
nal study of safer sex practices among at-risk teenagers.

Repeated Measures and Correlated Data
Repeated measures designs are familiar research tools

to psychologists. The repeated observations over experi­
mental conditions on each of many participants bring ef­
ficiency and increased power to treatment comparisons.
The advantage ofthis experimental design arises from al­
lowing each participant to serve as his or her own control.
The gain, however, comes with an analytic cost associated
with the need to account for the dependence between ob­
servations from the same individuals. The following ex­
ample is a simplified version given by Dunlop (1994) to
illustrate the incorrect inferences that can result from ig­
noring the correlations between repeated observations.

Consider a simple experiment in which we have I male
subject and I female subject, and each subject is mea­
sured twice, once before and once after a treatment. This
is a two-factor (one within and one between) repeated
measures design. Denote the responses by Ym,b, Ym,a, Yf,b,
and Yf, a' The subscripts are the first letters of the factor
labels. We assume that the measurements between sub­
jects are independent; however, within the same subject,
the correlation between two measurements equals p.The
gender effect can be estimated by Y2[(Ym,b + Ym,a) ­
(Yf,b + Yf,a)]' The variance of the gender effect estimate
is 0'2(1 + p), where 0'2 is the error variance of the mea­
surement. On the other hand, the treatment effect can be
estimated by Y2[(Ym,a - Ym,b) + (Yf,a - }f,b)]. The vari­
ance of the treatment effect estimate is 0'2(1 - p). Typi­
cally, multiple measurements within the same subject are
positively correlated (p > 0). Thus, the variance ofgender
effect is underestimated if within-subjects responses are
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Table 1
Artificial Data of 8 Subjects in a

Two- Time-Period Longitudinal Study

I 0 0
I I 0
200
2 I 0
300
3 I I
400
4 I I
500
5 I I
600
6 I I
701
7 I I
801
8 I I

Note-The variables are, columnwise from left to right, subject identi­
fication number, time (0 = first period, I = second period), and binary
response.

assumed to be independent (p = 0). With a smaller stan­
dard error estimate, a significance test will reject the null
hypothesis of no gender effect too often (larger Type I
error). On the other hand, ifthe positive correlation is ig­
nored, the variance of treatment effect is overestimated.
Testing the null hypothesis ofno treatment effect will re­
sult in a larger Type II error.

Since analysis ofvariance models can be expressed as
regression models, the above argument extends to ordi­
nary linear regression for many observations. In short,
ignoring correlations between repeated observations may
lead to invalid inferences about the regression coeffi­
cients.

Generalized Estimating Equations
The GEE approach to modeling longitudinal data re­

lates the population means of a set of responses as a
function of the explanatory variables. The approach fo­
cuses on regression for discrete and continuous out­
comes and treats the association across time ofthe repeated
responses for a subject as a nuisance. The regression coef­
ficients are estimated without completely specifying the
joint distribution of the multivariate responses; but the
parameters of the within-subjects correlations are explic­
itly accounted for in the estimating procedure. A detailed
review of this approach to analysis of longitudinal data
is provided by Diggle, Liang, and Zeger (1994). Here,
we give a briefexplanation ofGEE in nontechnical terms.

Estimating equations refer to a set ofequations the so­
lutions of which give estimates ofparameters. For exam­
ple, the least squares estimates for linear regression are
obtained from solving the normal equations. In general­
ized linear models (for binary and count data), the pa­
rameter estimates are obtained by solving likelihood
equations (McCullagh & NeIder, 1989). To account for
correlated measurements in longitudinal designs, Liang
and Zeger (1986) incorporated a correlation matrix of
the outcomes on the same individual into the estimating

functions of generalized linear models and showed that
the solution to the GEE gives a consistent estimate ofthe
regression parameters that is multivariate normal for
large samples. The GEE parameter estimates are com­
puted using the method of iteratively reweighted least
squares. Two different types of standard errors of the re­
gression parameters are available. The first is a model­
based estimator that assumes a correctly specified correla­
tion matrix. The second is an empirically based estimator
that uses a robust variance estimator to allow for the pos­
sibility that the choice of the "working" correlation ma­
trix may be incorrect. Zeger and Liang (1986) showed
that the confidence intervals for the regression param­
eter estimates will be correct for large samples even if
the correlation structure is misspecified. Because the
GEE approach is not a maximum likelihood method, it
is not possible to derive goodness-of-fit measures, such
as deviance, to compare different working correlation
matrices to determine which one is most suitable.

Horton and Lipsitz (1999) provided a list of common
working correlation structures and reviewed the GEE im­
plementations of general-purpose statistical packages,
such as SAS, Stata, and S-Plus.

Correlated Binary Regression
We analyze a fictitious data set to illustrate the effect

of ignoring correlation on the variance of the regression
slope estimate and to verify that the GEE empirical­
based variance estimator is not sensitive to the choice of
the correlated structure. Table I lists binary responses at
two time points for a group of8 subjects. The data set con­
sists ofone line per time per subject, along with a subject
identification number.

Following a logistic regression framework, we let the
responses of a subject f i ,j be a two-dimensional binary
vector and let the mean response vector E(fi ,j) = Tri.]»

where n,,j is the probability of a "success" response for
subject i at the jth time period. The correlation between
two responses of the same subject fi,l and f i,2 equals p

Listing 1
Specifications ofLogistic Regression
and GEE Regression Models in SAS

PROC LOGISTIC;

MODEL response = time;

TITLE2 'Logistic Regression';

PROC GENMOD;

CLASS subject time;

MODEL response = time / DIST=BINOMIAL LINK=LOGIT;

REPEATED SUBJECT=subject / TYPE=IND CORRW MODELSE;

TITLE2 'Independent correlation';

PROC GENMOD;

CLASS subject time;

MODEL response = time / DIST=BINOMIAL LINK=LOGIT;

REPEATED SUBJECT=subject / TYPE=EXCH CORRW MODELSE;

TITLE2 'Exchangeable correlation';

RUN;
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(p = .3333 for the data). Responses across subjects are
assumed to be independent. With this set-up, a regression
model for the mean response vector of any subject is

[
1C. )In ,_,)_ = 130 +13lx .

1-1C . I,),
I,)

where Xi ,j is coded 0 for the first response of subject i
and is coded I for the second response. Our interest in
this example is to compare the slope parameter (time ef­
fect) estimates and standard error estimates using three
different models.

First, we estimate the regression coefficients ofa sim­
ple logistic regression in which the repeated observa­
tions within the same individual are assumed to be inde­
pendent (i.e., ignoring the correlation). We then obtain
the slope estimates and standard error estimates based
on the GEE regression approach: (I) assuming an inde­
pendent correlation structure and (2) assuming an ex­
changeable (compound symmetry) correlation structure
where all the off-diagonal elements in the correlation
matrix have the same value. This means that the correla­
tion between distinct observations on the same individual
is the same regardless of when in time the observations
were taken. In repeated measures analysis ofvariance, the
correlation matrix is often assumed to have this structure
(see Max & Onghena, 1999, for a discussion on why this
assumption might not be appropriate).

The GEE analysis based on the independent correla­
tion structure proceeds as if the observations were inde­
pendent (p = 0), except that using the empirical-based
estimator will ensure a consistent variance estimation re­
gardless of the actual degree of dependence. Using the
model-based variance estimator produces estimates
identical to those obtained from fitting the logistic regres­
sion to the data (which ignores the dependence of mea­
surements from the same individual).

We use SAS PROC LOGISTIC to fit a logistic regres­
sion model and PROC GENMOD to fit GEE regression
models to the fictitious data set. The model specifications
in SAS statements are shown in Listing I. A syntax syn­
opsis to implement the GEE procedure can be obtained
from ftp.sas.com/techsup/download/stat/gee.txt.

Table 2 presents the slope estimate (time effect) and
standard error estimate for each ofthe three models. We
summarize as follows: (I) When a model-based variance
estimator is used, the GEE regression with independent

Model-Based Empirical-Based

Estimate SE Estimate SE

Table 2
Comparison of Slope Estimates

and Standard Error (SE) Estimates

-2.1927 1.1547

1 1 I 1 1 1 1 1 1 0 0
2 1 I 1 2 0 I 1 I 1 0
3 I I 0 3 0 1 0 0 0 0
4 I I 0 4 0 1 1 1 0 0
5 I 1 0 5 0 1 0 1 1 0
6 2 1 I 1 0 1 1 I 0 0
7 2 1 0 2 0 0 0 0 0 0
8 2 1 1 3 0 0 1 1 0 0
9 2 1 I 4 0 0 0 1 0 0

10 3 1 1 I 0 0 0 1 0 0
11 3 1 1 2 0 0 0 I 0 0
12 3 I 0 3 1 0 0 I 0 0
13 3 I 1 4 0 0 0 I 0 0
14 3 I I 5 0 0 0 I 0 0
15 4 I 0 I 0 0 0 0 0 0
16 4 I 0 2 0 0 0 I 0 0
17 4 I 0 3 0 0 0 0 0 0
18 4 I 0 4 0 0 0 0 0 0
19 4 1 0 5 0 1 0 I 0 0

correlation yields results identical to those of the logistic
regression. (2) When an empirical-based variance estima­
tor is used, the two GEE regression models produce the
same results regardless of which correlation structure is
specified. (3) The estimated standard error of the GEE
regression (slope) coefficient is related to the logistic
standard error estimate by .9428 = 1.1547yl - .3333,
where .3333 is the value ofestimated working correlation
with the exchangeable structure. This verifies the formula
for the variance estimate ofthe treatment (time) effect pre­
sented in the first section.

Note-The variables are, columnwise from left to right, observation
number, subject identification number, gender, safe, time, arrest, run­
away, gang, marijua, ampheta, Isd.

Table 3
Data of the First 4 Subjects in the Safer Sex Practices Study

Application: Condom Use
Among At-Risk Teenagers

As an illustration, we analyzed a binary longitudinal
data set collected by Harper and Carver (1999) in a study
of safer sex practices among high-risk teenagers. This
longitudinal study targeted high-risk youth from six
suburban neighborhoods who were chronically truant or
had dropped out of school, were displaced from their
homes (i.e., run away or kicked out), and were using sub­
stances and/or were involved with gangs. Those youth
who agreed to participate in the study completed a base­
line interview prior to participating in a safer sex educa­
tion workshop and then were followed for a year, with
four subsequent follow-up surveys administered every 3
months. Each binary series indicates whether a teenager
had abstained from sex or had always used a condom in
intercourse in the past 3 months (I) or not (0) for IS con­
secutive months. Two hundred twenty-seven teenagers
participated in the study. A complete survey from a
teenager has five repeated binary outcomes (safe), on the
basis ofself-ratings. The covariates of interest are the fol­
lowing (variable names are in brackets): gender (gender:
0= female, I = male), and whether or not the teenager had
been arrested (arrest), had run away from home (run-

0.9428
0.9428

-2.1972
-2.1972

1.1547
0.9428

-2.1927
-2.1927

Model

Logistic regression

GEE regression
Independent
Exchangeable
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Listing 2
Specifications of Regression Models for Repeated Binary
Data Using Generalized Estimating Equations Approach

PROC GENMOD DATA=condom;

CLASS gender time subject;

MODEL safe = gender arrest runaway gang marijua ampheta Isd

I D1ST=BINOMIAL LINK=LOGlT;

REPEATED SUBJECT=subject I TYPE=IND CORRW WITHIN=time;

TITLE2 'Independent correlation';

PROC GENMOD DATA=condom;

CLASS gender time subject;

MODEL safe = gender arrest runaway gang marijua ampheta Isd

I D1ST=BlNOMIAL LINK=LOGlT;

REPEATED SUBJECT=subject I TYPE=EXCH CORRW WITHIN=time;

TITLE2 'Exchangeable correlation';

PROC GENMOD DATA=condom;

CLASS gender time subject;

MODEL safe = gender arrest runaway gang marijua ampheta Isd

I D1ST=BINOMIAL LINK=LOGIT;

REPEATED SUBJECT=subject I TYPE=AR(l) CORRW WITHIN=time;

TITLE2 'AR( I) correlation';

RUN;

away), had been in a gang (gang), had used marijuana
(marijua), had used amphetamines (ampheta), and had
used LSD (lsd) (0, no; or 1, yes) in the past 3 months. Ex­
cept for gender, the covariates are all within subject and
time dependent. Table 3 displays data of the first 4 sub­
jects in the study. Each row represents the vector of re­
sponse and covariate information of a subject at a partic­
ular time period. Notice that the second subject did not
have a record for the fifth time period. However, the in­
terpretation and computation of the GEE regression es­
timates are not affected by the number of repeated ob­
servations, which may vary among subjects. Here, the
missing data are assumed to be missing completely at
random so that the results established by Liang and
Zeger (1986) are still applicable. The modification of the
GEE approach to allow for arbitrary missing data pattern
is a complicated topic beyond the scope of this article
(Robins, Rotnitzky, & Zhao, 1995).

The primary goals ofthe longitudinal study were to de­
scribe the risk behaviors and life experiences ofhigh-risk
youth in a suburban community and to determine various
factors that impact their participation in sexual risk be­
havior. Here, we examine whether these covariates are
adequate explanatory variables ofsafer sex practices. We
fit a GEE (logistic) regression model for repeated binary
(safe) responses, including all the covariates. To compare
regression estimates under different working correlation
structures, we use independent, exchangeable, first-order
autoregressive, and unstructured working correlation
structures. An unstructured correlation matrix places no
constraint on the correlation between observations. For the
autoregressive correlation matrix, the correlation among

observations becomes smaller as the number of time lags
increases.

Listing 2 displays the model specifications in SAS
syntax segments. The code for the choice of an unstruc­
tured correlation is not shown. It can be obtained by using
any code segment with the option TYPE=UN in the
REPEATED statement. Table 4 shows the estimated ex­
changeable, autoregressive, and unstructured correlation
matrices. It appears that the correlation estimates are mod­
erate and nonnegligible. The unstructured and exchange­
able correlation estimates are not very different.

Table 4
Estimated Correlation Matrices for

Different Working Correlation Structures

1.0000 .4223 .4223 .4223 .4223

.4223 1.0000 .4223 .4223 .4223

Exchangeable = .4223 .4223 1.0000 .4223 .4223

.4223 .4223 .4223 1.0000 .4223

.4223 .4223 .4223 .4223 1.0000

1.0000 .4897 .2398 .1174 .0575

.4897 1.0000 .4897 .2389 .1174

Autoregressive = .2398 .4897 1.0000 .4897 .2389

.1174 .2398 .4897 1.0000 .4897

.0575 .1174 .2389 .4897 1.0000

1.0000 .4461 .3816 .3724 .3468

.4461 1.0000 .6030 .4505 .5245

Unstructured = .3816 .6030 1.0000 .5825 .4185

.3724 .4505 .5825 1.0000 .5669

.3468 .5245 .4185 .5669 1.0000
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Intercept
Sex
Arrest
Run away
Gang
Marijuana
Amphetamine
LSD

TableS
Parameter Estimates and Standard Error (SE) Estimates

With Different Working Correlation Structures

Independent Exchangeable Autoregressive

Parameter Estimate SE Estimate SE Estimate SE

.3629 .2167 .5394 .1894 .5321 .1954

.3131 .2338 .2918 .2286 .2802 .2272
-.3723 .2194 -.1168 .1835 -.1630 .1760

.4299 .1961 .1597 .1623 .2093 .1547

.0602 .2910 .0250 .2063 .0320 .2286

.0208 .2297 -.2415 .1701 -.2016 .1793
-.7452 .2084 -.5740 .1793 -.6438 .1699
-.3687 .2014 -.4553 .1604 -.3833 .1663

Table 5 displays the parameter estimates and standard
error estimates for GEE regression coefficients under
the independent, exchangeable, and autoregression cor­
relation matrices. We do not report the estimates using
the unstructured correlation because they are very simi­
lar to those obtained using the exchangeable working
correlation structure. Note that the regression estimates
and the standard error estimates under the first-order au­
toregressive and exchangeable correlation assumption are
quite comparable. Given the other covariates in the model,
the regression estimate for amphetamine use is signifi­
cantly different from zero (p < .001) under both ex­
changeable and autoregressive assumptions. With LSD
use, the regression estimate is significantly different from
zero at the .05 level. Both estimates are of negative value,
indicating that the use of these two types of drugs is
strongly associated with a reduced probability of engag­
ing in safer sex practices. In particular, the odds are about
1.8 to I for amphetamine-free teenagers to be practicing
safer sex, relative to their amphetamine-using counter­
parts. The other covariates do not appear to be significant
predictors ofsafer sex practices among at-risk teenagers.
However, a slightly different conclusion is drawn if the
independent working correlation matrix is used. Under
this model, the impact of LSD use on safer sex practice
appears only marginally significant (p '" .067), whereas
that ofrunning away from home becomes significant (p '"
.028). Amphetamine use remains the most important ex­
planatory variable, and the other covariates are still not
statistically significant. Currently, there are no established
goodness-of-fit statistics to compare different working
correlation matrices to determine which is most suitable.
It seems wise not to downplay the importance of LSD
use as a risk factor when interpreting the results of this
study.

Conclusion
Repeated measures designs play an important role in

psychological research. Psychologists are familiar with
analysis ofvariance, both univariate and multivariate, for
normal data collected from such experimental designs.
When the research objective is to relate an outcome to
other variables, regression methods are often the statisti­
cal models of choice. With nonnormal data, generalized
linear models are employed. The extension ofgeneralized
linear models to account for correlated binary (and other
discrete) responses means that the data collected in lon­
gitudinal behavioral studies can now be analyzed readily
and in a valid manner. It is hoped that this paper has pro­
vided sufficient information for potential users of the
GEE to tackle the computer packages for the purpose of
their own research.

REFERENCES

BURTON, P., GURRIN, 1., & SLY, P.(1998). Extending the simple linear
regression model to account for correlated responses: An introduc­
tion to generalized estimating equations and multi-level mixed mod­
elling. Statistics in Medicine, 17,1261-1291.

DIGGLE. P. J., LIANG. K.-Y., & ZEGER, S. 1. (1994). Analysis oflongi­
tudinal data. Oxford: Oxford University Press, Clarendon Press.

DUNLOP. D. D. (1994). Regression for longitudinal data: A bridge from
least square regression. American Statistician, 48, 299-303.

HARPER, G. w., & CARVER, 1. J. (1999). "Out-of-the-mainstream"
youth as partners in collaborative research: Exploring the benefits
and challenges. Health Education & Behavior, 26, 250-265.

HORTON, N. 1., & LIPSITZ, S. (1999). Review of software to fit general­
ized estimating equation regression models. American Statistician,
53, 160-169.

LIANG, K.-Y., & ZEGER, S. 1. (1986). Longitudinal data analysis using
generalized linear models. Biometrika, 73, 13-22.

MAX, 1., & ONGHENA, P. (1999). Some issues in the statistical analysis
ofcompletely randomized and repeated measures designs for speech,
language, and hearing research. Journal ofSpeech. Language, &
Hearing Research, 42, 261-270.

MCCULLAGH, P., & NELDER, 1. A. (1989). Generalized linear models.
New York: Chapman & Hall.

NESSELROADE, J. R., & BALTES, P. B. (EDs.) (1979). Longitudinal re­
search in the study ofbehavior and development. New York: Acade­
mic Press.

ROBINS, J. M., ROTNITZKY, A., & ZHAO, 1. P. (1995). Analysis of semi­
parametric regression models for repeated outcomes in the presence
of missing data. Journal ofthe American Statistical Association, 90,
106-121.

WARE, 1. H. (1985). Linear models for the analysis oflongitudinal stud­
ies. American Statistician, 39, 95-101.

ZEGER, S. 1., & LIANG, K.-Y.(1986). Longitudinal data analysis for dis­
crete and continuous outcomes. Biometrics, 42, 121-130.

(Manuscript received October 29,1999;
revision accepted for publication February 25, 2000.)


