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S U M M A R Y

In Italy, the Mercalli–Cancani–Sieberg (MCS) is the intensity scale in use to describe the level

of earthquake ground shaking, and its subsequent effects on communities and on the built

environment. This scale differs to some extent from the Mercalli Modified scale in use in other

countries and adopted as standard within the USGS-ShakeMap procedure to predict intensities

from observed instrumental data. We have assembled a new PGM/MCS-intensity data set from

the Italian database of macroseismic information, DBMI04, and the Italian accelerometric

database, ITACA. We have determined new regression relations between intensities and PGM

parameters (acceleration and velocity). Since both PGM parameters and intensities suffer of

consistent uncertainties we have used the orthogonal distance regression technique. The new

relations are

IMCS = 1.68 ± 0.22 + 2.58 ± 0.14 log PG A, σ = 0.35

and

IMCS = 5.11 ± 0.07 + 2.35 ± 0.09 log PGV, σ = 0.26.

Tests designed to assess the robustness of the estimated coefficients have shown that single-

line parametrizations for the regression are sufficient to model the data within the model

uncertainties. The relations have been inserted in the Italian implementation of the USGS-

ShakeMap to determine intensity maps from instrumental data and to determine PGM maps

from the sole intensity values. Comparisons carried out for earthquakes where both kinds of

data are available have shown the general effectiveness of the relations.

Key words: Earthquake ground motions; Seismicity and tectonics.

1 I N T RO D U C T I O N

The use of intensity scales is historically important because no in-

strumentation is necessary, and useful measurements on the level

of shaking can be made by an unequipped observer (e.g. Musson

2002). To some extent, the mid-years of the 20th century saw a

decline in interest of macroseismic investigations, since large im-

provements were made in instrumental monitoring. However, since

the mid-1970s there has been a resurgence in the subject since

macroseismic data are essential for revision of historical seismicity

and are of great importance in seismic hazard assessments. It follows

that macroseismic studies of modern earthquakes are still crucial

for (i) assessing the size of historical earthquakes; (ii) studying local

ground-motion attenuation and (iii) investigations of vulnerability,

seismic hazard and seismic risk.

Since the late 1990s, the software package ShakeMap (Wald et al.

1999b) which seeks to estimate rapidly (few minutes) the level of

ground shaking resulting from an earthquake has been proposed

and implemented in several parts of the world (e.g. USA, Canada,

Iceland, Italy and at local scales, for the city of Seattle). ShakeMap

is a seismologically based interpolation algorithm that combines ob-

served data and seismological knowledge to produce maps of peak

ground motion (PGM). The shaking is represented through maps

of peak ground acceleration (PGA), peak-ground velocity (PGV),

response spectral acceleration (SA), and ground-motion shaking in-

tensity. The ‘instrumental intensity’ values are derived from the con-

version of PGM into intensity values (e.g. Wald et al. 1999a). These

maps have become adopted worldwide to provide quantitative, first

order assessments of the level of shaking and of the extent of poten-

tial earthquake damage. In particular, intensities have been found

informative by non-expert audiences unfamiliar with instrumental

ground motion parameters. The intensity values are derived from

the ground-motion recorded values, using a correlation relationship.

For the USGS-ShakeMap standard distribution this calibration has

been performed using California earthquakes ground-motion data

and the Mercalli Modified (MM) intensity scale (e.g. Wald et al.

1999a).

In Italy, the software ShakeMap has been operational at the

‘Istituto Nazionale di Geofisica e Vulcanologia’ since 2006

(Michelini et al. 2008) and the intensity maps of peak ground
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motion shaking adopt the California relationship of Wald et al.

(1999a). In Italy, however, the analysis of historical seismicity

through the use of the macroseismic studies has a long tradition. The

Mercalli–Cancani–Sieberg (MCS) Scale (Sieberg 1930), is the scale

adopted in Italy. MCS combines an earlier ten-degree scale pro-

posed by Mercalli (1902), the evolution of this scale with additional

two-degree introduced for dealing with very strong earthquakes by

Cancani (1904) and the successive remodulation by Sieberg (1912).

To this regard, Musson et al. (2009) provide a thorough assessment

of the various scales and of their evolution through time.

There are two main reasons that have lead us to re-calibrate

the conversion scale between peak ground motion and the re-

ported MCS intensity data. The first follows from the fact that

the MM instrumental intensity adopted within the implementation

of ShakeMap (Michelini et al. 2008) can be misleading as the MCS

representation is customary in Italy. Consequently, differences be-

tween the two scales can cause confusion. The second follows from

the large number of macroseismic data available for past events in

Italy (i.e. Stucchi et al. 2007). These data have been also used to

generate scenarios for seismic hazard analysis.

The aim of this work is to develop a new correlation relation-

ship between recorded peak ground motions and reported MCS

intensities for Italy. The derived MCS instrumental intensity rela-

tion is intended to be introduced for the calculation of shakemaps

in Italy. To this regard, the intensity maps are the most viewed

output from non-specialist audience when consulting, for example,

the INGV ShakeMap portal (Michelini et al. 2008). For this rea-

son, it is important to maintain the same intensity scale between the

shakemaps and the other products that represent intensities through-

out the Italian territory (i.e. the Italian database of macroseismic

information, DBMI (Stucchi et al. 2007), and the ‘Did You Feel It’

maps (http://terremoto.rm.ingv.it/). In addition, access to a relation

that allows conversion between MCS intensities and PGM’s allows

for the calculation of PGM’s ground estimates for historical events

which can be of high relevance when attempting to reconstruct past

ground motion scenarios.

2 C O R R E L AT I O N B E T W E E N

I N T E N S I T I E S A N D P G M s

The problem of the correlation between the reported intensity and

the ground motion parameters has been debated at length in the

literature. Although it is largely accepted that there is a ‘relation’

between intensity and the logarithm of the peak ground motions,

either in PGA, or in PGV (e.g. Cancani 1904; Gutenberg & Richter

1942; Kawasumi 1951; Hershberger 1956; Ambraseys 1975;

Margottini et al. 1992; Wald et al. 1999a; Faccioli & Cauzzi 2006;

Gómez Capera et al. 2007, and see references therein), it has not

yet been proposed a physical relation capable to represent it, and

the empirical regressions proposed are mainly statistical. We also

note that, being the intensity scale based on observations and not

on instrumental values, there is no guarantee that a logarithmic re-

lation is effectively applicable. This has been long recognized by

several authors (e.g. Hershberger 1956; Ambraseys 1975) who rec-

ommended much caution in using these relations. Among all the

works available in literature, it seems that the principal differences

consist in the selection of the data base. Recently, a good overview

of this topic at the global scale, and for Italy in particular, has been

prepared by Gómez Capera et al. (2007).

In general, the relations are obtained at regional scales, with

the exception of the studies by Ambraseys (1975) who proposes

a single regression for Europe and the Middle East, and Decanini

et al. (1995) who adopt a unique regression for Italy, West USA

and South America. This implies that each work relies on its own

regional data base.

Apart from some exceptions [Theodulidis & Papazachos (1992),

that include soil classification for the Greek territory; Atkinson

& Kaka (2007) and Tselentis & Danciu (2008) that include mag-

nitude, epicentral distance and soil classification for Greece, and

Souriau (2006) that includes only the epicentral distance], all the

regressions adopt the same functional form—a linear regression

between intensity and the logarithm of the peak ground motion.

The foremost difference stays instead in the processing of the data.

In general, some works (mainly those of the U.S. researchers) use

the geometric mean value of the recorded ground motion for each

intensity class (e.g. Hershberger 1956; Trifunac & Brady 1975;

Murphy & O’Brien 1977; Wald et al. 1999a) while others, mainly

Italians (e.g. Chiaruttini & Siro 1981; Margottini et al. 1992; Fac-

cioli & Cauzzi 2006; Gómez Capera et al. 2007) have chosen not

to group the peak values for each intensity value. We note that by

using data grouped into intensity classes obviates the problems of

the large scatter of the peak ground motion data for each intensity

unit—for each intensity unit a single value of peak ground mo-

tion is determined (usually through the geometric mean and in the

Appendix, we address the role that different data pre-processing

have on the results). Furthermore, and with the notable exception

of Gómez Capera et al. (2007), all adopted regressions neglect

the errors of the independent variable, and this may be at the ori-

gin of some bias in the resulting regressions. Lastly, a factor that

makes difficult the comparison between the different regression,

and the determination of a general regression formula, follows

from the use of different macroseismic scales throughout the world

(i.e. the MM for USA, the MKS and MCS for Europe, and the JMA

for Japan).

Our analysis starts by considering the studies performed on

Italian data by Margottini et al. (1992), Faccioli & Cauzzi (2006)

and Gómez Capera et al. (2007). Margottini et al. (1992) obtained

first an empirical correlation between PGA and intensity for I >

5. The remaining two works used and modified the data base com-

piled earlier by Margottini et al. (1992). Faccioli & Cauzzi (2006)

developed a relation for intensity versus PGA and PGV using least-

squares fitting. Gómez Capera et al. (2007) used only PGA data and

adopted the orthogonal distance regression technique, ODR, (Fuller

1986; Boggs et al. 1988).

3 DATA

Intensity can be defined as a classification of the strength of shak-

ing at any place during an earthquake, in terms of its observed

effects on buildings and human beings. The fact that it is essen-

tially a classification, rather than a physical parameter, leads to

some special conditions on its use. Principal among these is its

being a discrete scale, and therefore caution is needed to corre-

late continuous (i.e. ground motion) and a discrete (i.e. intensity)

scales.

Margottini et al. (1992) are the first to provide a data base that

relates peak ground motions and MCS intensities for the entire Ital-

ian territory. [In fact, the earlier study by Chiaruttini & Siro (1981)

focussed only to earthquakes primarily in NE Italy and it is not

representative of the whole Italian territory]. In Margottini et al.

(1992), the intensities were directly assigned by the authors after

gathering the data of the strongest instrumental Italian earthquakes
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since 1980. The intensities were divided into ‘local’ and ‘general’.

While the former (i.e. local) refers to the damage of the buildings

located few hundreds of metres from the accelerograph station, the

latter classifications (i.e. general) are associated to the damage of the

town or village closest to the station. A total of 56 data points from

nine earthquakes constituted the final Margottini et al. (1992) data

base. A revision and integration of this data base was performed by

Faccioli & Cauzzi (2006) who considered only the points with ‘gen-

eral’ intensity, and integrated it with other non-Italian earthquakes,

for a total of 26 earthquakes and 75 data points. Although the cri-

terion adopted to associate instrumental and intensity data was not

specified by Faccioli & Cauzzi (2006) (i.e. distance between the

stations and the intensity points), this data base is the most recent

and complete currently available for intensities larger than I = IV –

V in Italy.

Recently, the results of the project ITACA—the Italian ac-

celerometric database—have been made available (Luzi et al.

2008). ITACA contains 2182 three component waveforms gener-

ated by 1004 earthquakes with a maximum magnitude of 6.9 (1980

Irpinia earthquake) covering the period range from 1972 to 2004.

The project aims to collect, homogenize and distribute the data

acquired over the time period 1972–2004 in Italy by different

Italian institutions, namely ‘Ente Nazionale per l’Energia Elettrica’

(ENEL, Italian electricity company), ‘Ente per le Nuove tecnologie,

l’Energia e l’Ambiente’ (ENEA, Italian energy and environment or-

ganization) and the ‘Dipartimento della Protezione Civile’ (DPC,

Italian Civil Protection) (see http://itaca.mi.ingv.it for additional

detail).

As previously noted, in Italy, there is a large and homogeneous

macroseismic intensity data base—the DBMI data base (Stucchi

et al. 2007)—available at http://emidius.mi.ingv.it/DBMI04/, with

a revised release 1900–2008 (i.e. DBMI08). This database is a

revised collection of all the macroseismic analysis done for the

Italian peninsula. It includes a total of almost 60 000 observations

from 12 000 earthquakes at more than 14 000 localities. Although

it is well known that local conditions can affect the amplitude (and

duration) of the wave field, we have made no attempt to subdivide

further the pair association according to the different recording sites

since the intensity values reported in DBMI04 represent already

average values. The reported intensities follow the MCS scale in

classes spaced by 0.5 intensity units (e.g. 4, 4.5, 5, . . .).

The possibility to access and cross-match these two sources of

data gave us the opportunity to assemble a new, homogeneous

database consisting of intensity and peak ground motion values

(see Table S1). To this purpose, we have extracted all the localities

reporting intensity data which are located within 3 km from the

accelerograph stations that recorded the data. This was performed

for all the events within ITACA.

Fig. 1 shows the spatial distribution of the selected events and the

location of the stations. 66 earthquakes in the time span 1972–2004

(3.9 ≤ Mw ≤ 6.9) and intensity MCS ≤ 8 have been analysed,

for a total of 266 pairs Intensity-PGM (see Table S1). Fig. 2

plots the distribution of the data versus the distance from the

epicentre to the station. Overall, the database is well distributed

although we note that there are few intensity data at closer dis-

tances for small intensity values (i.e. in the range 2 ≤ MCS ≤
3.5). This follows from the DBMI08 data being compiled for dam-

aging events (i.e. medium-large magnitude earthquakes produc-

ing macroseismic damage). Perhaps more importantly, the assem-

bled data set does not provide intensity-PGM pairs at intensity

levels larger than 8. Unfortunately, this is an inherent limitation

of the assembled data set and to some extent it prevents to con-

Figure 1. Map showing the location of the analysed events (red stars) and

of the stations (blue solid squares) used to assemble the intensity–PGM pair

data set.

strain tightly the largest intensity values in terms of observed PGM

values.

As mentioned in Section 2, there are two distinct procedures to

use the data in the regression. The first consists of binning the data

(BID hereafter) into classes at 0.5 intensity intervals and calculating

for each class the PGM mean and its standard deviation. The second

procedure does not involve any averaging and adopts the whole

data set although some robust statistics can be applied (e.g. remove

the tails of the data distribution) to remove the influence of the

outliers. In the following we adopt the geometric mean approach

(see also the Appendix). The geometric mean, μg, is calculated

as

μg =
1

n

n
∑

1

log PG Mi , (1)

where n is the number of data points for each intensity class.

The use of the geometric mean is motivated by the PGM data

distribution about the arithmetic and logarithmic means as shown

in Fig. 3. The expected normal distribution curves are also shown

for reference purposes and it is evident that the deviations from the

arithmetic mean are not approximated by a normal distribution. For

both PGA and PGV the distributions about the arithmetic means

are skewed to the lower side of the mean value where the great

majority of the residuals fall. In contrast, the distributions computed

using the logarithmic mean agree well with the theoretical normal

distribution curve. To test the likelihood of the normal distribution

we have performed the 1-sample Kolmogorov–Smirnov test. We can

reject the null-hypothesis of a normal distribution for the PGA and

PGV with an α-value less than 1 per cent. Conversely, we cannot

reject the null-hypothesis for log PG A and log PGV with an α-

value equal to 95 per cent and 45 per cent, respectively. This all

indicates that the data appear to be nearly log-normally distributed
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Figure 2. Distance coverage of the assembled PGM–MCS intensity pairs data set.Top panel: MCS Intensity; middle panel: log PGA and bottom panel: log PGV.

The distance is calculated using the epicentral location of the events. Adoption of this distance for large events, rather than the fault distance, will introduce

some differences in the diagrams but it is inconsequential to the analysis carried out here.

Figure 3. PGM data distribution. Original data (bottom panel) and after application of the logarithm in base-10 (top panel). (PGA: left-hand panel and PGV:

right-hand panel). For each intensity bin, the data set is normalized to obtain standardized values, having zero mean and unit standard deviation. To the purpose

of reference, the expected normal distribution curves are also shown as thick solid lines.

and will be treated as such in the following analyses. Our results are

very similar to those presented by Murphy & O’Brien (1977).

For what concerns the standard deviation associated to the mea-

surements, a value of 0.5 for the intensity seems a conservative but

reasonable value. For the ground motion data, we use, for each class,

the sample geometrical standard deviation, σ g, defined as

σg = exp

⎡

⎣

√

∑n

1(log PG Mi − μg)2

n

⎤

⎦ . (2)
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In summary, 12 pairs of intensity and PGM data are used to fit

using BID. The PGM values are calculated using the geometric mean

average. The intensity standard deviations have been set equal to the

conservative value of σ I = 0.5 while the corresponding PGM value

is determined from the geometric standard deviation (see eq. 2).

4 M E T H O D : O RT H O G O NA L D I S TA N C E

R E G R E S S I O N

The ordinary least-squares (OLS) fitting is the most commonly

applied criteria for fitting data to models and for estimating param-

eters of the models. The mathematical and statistical validity of this

method is based on the stringent, important constraint that the in-

dependent variable must be known to a much greater accuracy then

the dependent variable. It follows that this regression can never be

inverted, that is, the regression of y against x can not be inverted to

derive the regression of x against y.

The orthogonal distance regression (Fuller 1986; Boggs et al.

1988; Castellaro & Bormann 2007; Gómez Capera et al. 2007)

is a more appropriate technique in problems where dependent and

independent variables are both affected by uncertainty. ODR extends

least square data fitting to problems with independent variables that

are not know exactly (Boggs et al. 1988) and it can be used for

fitting linear and non-linear models. The data fitting problems arise

by considering a data set (xi, yi; i = 1, . . . , n) and a model that is

purported to explain the relationship of yi ∈ R1 versus xi ∈ Rm .

Assuming errors in both variables, with ǫi the error for the dependent

variable yi and δi that for the independent variable xi, the functional

to be satisfied is

yi = f (xi + δi ; β) − ǫi , (3)

where β ∈ Rp is the parameters vector, f () is a smooth function

that can be either linear or non-linear in xi and β.

While OLS resolves the parameters vector, βOLS, for which the

sum of the squares of the n vertical distances from the curve f (xi;

β) to the n data points is minimal, ODR minimizes the weighted

orthogonal distances from the curve. Thus, the parameter vector,

βODR, is found by minimizing the following problem

minβ,δ

n
∑

i=1

[(

f (xi + δi ; β) − yi

)2

+δT
i D2

i δi

]

, (4)

where Di ∈ Rm×m(i = 1, . . . , n) is a set of positive diagonal

matrices that allow ǫi and δi to have different variance (Boggs

et al. 1987b, 1988). Problem (4) is non-linear even if f (xi;β) is

linear in both x and β, that is, the model is a straight line. When

eq. (3) is satisfied, and ǫ, δ1, . . . , δn are independent and normally

distributed, then eq. (4) results in the maximum likelihood estimator

of β (Britt & Luecke 1973; Boggs et al. 1988). In the simplest use

of ODR, it is assumed that each Di = d I where d is the ratio

of the standard deviation of the errors in the y and x data, that

is, d = σ ǫ/σ δ . In this work, we used the algorithm developed by

Boggs et al. (1987a)—a FORTRAN code wrapped within the SciPy

Python module (http://www.scipy.org).

5 A P P L I C AT I O N

We fit the data using a linear relation between the intensity (I) and

the logarithm in base 10 of the peak-ground motion, PGM (i.e. PGA

or PGV)

I = a + b log PG M. (5)

Use of the ODR technique allows also for the direct inversion be-

tween PGM and I so that the calculated coefficients can be used

to express PGM as function of I . This is a nice property of ODR

since it allows, using the same coefficients, for prompt conversion

between the sought variables.

5.1 PGA

We fit the data using ODR using both a single- and a double-line

parametrization. With the single-line regression, we have obtained

a = 1.68 ± 0.22 and b = 2.58 ± 0.14, with a standard deviation of

the regression line of σ singleline = 0.35.

The data, however, seem to show some different scaling between

low and high intensity values and, as in Wald et al. (1999a) (see also

Atkinson & Kaka 2007), the data set is subdivided into two parts—

intensities less than 5 and intensities greater or equal to 5. The

resulting coefficients from application of ODR using the double-

line regression are aI≥5.0 = −0.21 ± 1.12, bI≥5.0 = 3.54 ± 0.57 (7

data out of 12 belong to this group), and for the data with intensity

less than 5, the parameters are aI<5.0 = 2.02 ± 0.09, bI<5.0 = 2.02 ±
0.06. The standard deviation of the double-line fitting is σ doubleline =
0.28 (see Fig. 4a).

The decrease of the value of the standard deviation with the

double-line regression when compared to that of the single-line may

suggest it more appropriate a regression with two lines. However

the standard deviations associated to our estimates for the I ≥ 5.0

coefficients are quite large to indicate the indeterminacy that arises

when attempting to fit with a double-line the available data set.

This aspect will be analysed more thoroughly below using synthetic

tests.

5.2 PGV

The procedure described for PGA has been also applied to PGV.

The parameter for the single-line regression using our binned data

set are a = 5.11 ± 0.07 and b = 2.35 ± 0.09, with a standard

deviation of the model as σ singleline = 0.26.

The value of the coefficients of the double-line regression are

aI≥5.0 = 4.68 ± 0.22, bI≥5.0 = 2.93 ± 0.30, and for the data with

intensity <5.0, the parameters are aI<5.0 = 4.79 ± 0.01, bI<5.0 =
1.94 ± 0.10. The standard deviation of the model is σ doubleline =
0.26. The comparable values of the standard deviation between

single- and double-line ODR fitting and the relatively small values

of the uncertainties of the coefficients would suggest the former to

be adequate to fit the intensity-PGV data set (Fig. 4b).

5.3 Appraisal of the results

The results shown for PGA and PGV in the previous sections do

leave some ambiguities on which of the regression results should

be chosen.

First, we have verified whether our results depend on the values

of the standard deviation assigned to the PGM. To this regard, we

have repeated the analysis using the standard deviation of the mean

[i.e. σg/
√

n, in eq. 2] as uncertainty and found results in agreement

to those shown in Sections 5.1 and 5.2.

Secondly, studies similar to those presented here but carried out

on different data sets (e.g. Wald et al. 1999a; Atkinson & Kaka

2007) evidence an apparent change in slope at intensity 5 whereas

our data set does not seem to replicate clearly the same behavior

(see Fig. 4). The reason for this could be, however, attributed to the

differences of the MCS scale when compared to the MM (and other
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Figure 4. MCS Intensity versus PGM for BID (i.e. the PGM geometric mean binned data set). Data (black solid circles), data geometric mean (yellow

diamonds) and standard deviations (yellow error bars), single-line ODR (solid orange line) and double-line ODR (solid cyan line). The associated 1σ standard

deviations (dashed lines) are shown on each regression line. The diamonds and the error bars are slightly shifted for plotting purposes. Left-hand panel is for

PGA, right-hand panel for PGV.

scales) in the range of intensities between 5 and 7 (e.g. Margottini

et al. 1992) or, more simply, to lack of resolving power of the data

set employed. To test this latter hypothesis, we have used synthetic

data sets generated to replicate the statistical features (and range of

values) of the observed data set. We restrict the analysis to PGA

although analogous conclusions can be drawn from PGV.

In practice, we have generated two log-normal distributed, data

sets consisting of PGA-Intensity pairs for a single- and a double-

line data distribution. The data sets consist of 500 PGA-Intensity

pairs for each intensity level class. A conservative value of 0.5

has been assigned to the standard deviation of the intensity values.

The classes range between 1 and 10 at 0.5 interclass intervals. The

true values of the coefficients for the single-line in eq. (5) are a =
1.82 and b = 2.40. The double-line data set was generated using

the following values for the coefficients in eq. (5) aI≥5.0 = 0.214,

bI≥5.0 = 3.54 and aI<5.0 = 2.024, bI<5.0 = 2.023. These values are

all comparable to those of the observed data. We refer to these data

sets including all the values (i.e. 18 class values times 500 PGA

points each) as the ‘whole’ data set.

We first test the accuracy of the coefficient estimates using the

‘whole’ data set; we have generated 1000 synthetic data sets using

the coefficient values above and the purpose is to investigate the

robustness of the parameters estimates using the BID data process-

ing. The results show the coefficient estimates to be accurate and

tightly distributed (see Fig. 5 as example for the single-line esti-

mates of the intercept and slope coefficients). In practice the results

obtained with the ‘whole’ data set indicate that with a large data set

featuring the same statistical properties of our data set it would be

possible to estimate accurately the parameter vector in both single-

and double-line parametrization.

Our goal is, however, to verify the robustness of the estimates

obtained with the observed data. Therefore, we repeat the analysis

using different sampling of the single- and double-line synthetic

data sets. Each sampled subset matches, in terms of number of data

points drawn for each intensity level, that of the observed data set.

We refer to these (re)sampled data sets (i.e. 266 PGA-intensity data

points each) as the ‘sampled’ data set.

In Fig. 6, we present an example, for one of the data sets, of the

BID set regressions for both the single- and the double-line data

sets. The BID set has been determined for both the ‘whole’ data

set and for one of the ‘sampled’ data sets drawn from the selected

‘whole’ synthetic data set. As anticipated, we see that the determined

regression lines for the ‘whole’ data set match very closely those

used to construct the synthetic PGA-Intensity pairs. In contrast, this

is not the case when fitting the data for one of the ‘sampled’ cases

(see Fig. 6).

To test the accuracy of our estimates obtained with the observed

data, we need to construct enough replications of the ‘sampled’

synthetic data set to then compute some adequate statistics. To this

end the sampling was repeated for 1000 times on one of the ‘whole’

data sets above. To provide a better perception of the uncertainties

associated to the coefficient estimates, we present the results of the

investigation using cumulative distributions.

In Fig. 7, we show the distribution of the single- and double-

line slope regression coefficient of the ‘sampled’, BID processed,

data set. We note that the true values do match closely the median

value of the cumulative distribution. However, there is a remarkable

difference for the distribution of the b value of eq. (5) for the

single- and the double-line fits. The single-line distribution is very

tight around the median value (i.e. the 80 per cent of the sampled

outcomes lies in the range 2.38–2.42) whereas the slope coefficients

of the double-line regressions display a much larger scatter. This is

particularly apparent for the I > 5 line which relies on a very small

number of data points at the higher intensity values (Fig. 7b) and

the 80 per cent of the estimates falls in the broad range 2.2–5.0,

approximately.

Our final step has been to investigate the distribution of the single-

and double-line model standard deviations. We want to assess the

significance of the relatively small value of the standard devia-

tion found when fitting the intensity values using the double-line

parametrization to the observed data (i.e. σ doubleline = 0.28 ) when

compared to that of the single-line (i.e. σ singleline = 0.35). An uncrit-

ical examination of these data may in fact lead to the conclusion that

the observed smaller values of the double-line regression are sig-

nificant. To this purpose, we have determined the mean average of

the synthetic standard deviations from the ‘sampled’ data sets. The

results are summarized in Table 1. We see first that the mean stan-

dard deviation from the ‘sampled’ single-line synthetic data sets,
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Figure 5. Synthetic test addressing the robustness of the whole data set. Cumulative distribution of the ODR regression on 1000 whole data sets for the

single-line case. The true values of 1.82 and 2.40 for the a and b coefficients are shown as vertical, thick solid lines. The figure shows the results for PGA but

similar results are found also for PGV.

Figure 6. Regression results for the synthetic data. The ‘whole’ data set includes 500 PGA points at each intensity level. Double-line synthetic data set (a) and

single-line synthetic data set (b). The ‘sampled’ data (grey solid diamonds) indicate an instance of synthetic data sampling replicating that of the observed data

(i.e. 266 PGM-MCS pairs). The solid black circles indicate the true values determined from the adopted regression lines. See legend for detail on the symbols

and line coding used.

fitted through a single-line, does not differ from that obtained from

the ‘sample’ double-line synthetic data fitted also through a single-

line (see second column in Table 1). The values obtained from the

synthetic tests are very similar to those found from the observed

data. Similarly, the mean standard deviations obtained from fitting,

through a double-line, the single- and the double-line ‘sampled’

synthetic data sets also display very similar values (≈0.4; see third

column in Table 1). In this latter case, however, the values obtained

from the synthetic analysis differ to some extent from the observed

value although the latter still lies within the ±σ .

In conclusion, we do not feel of significance that the observed

standard deviation is lower when using the double-line parametriza-

tion (see Fig. 7b) and our data set does not allow to discriminate

between single- and double-line regression parametrization. Since

this all follows also from the limited resolving power of the data

set used, it seems that inclusion of additional degrees of freedom in

the regression (e.g. epicentral distance or magnitude) would most

likely increase the indeterminacy of the analysis.

5.4 Discussion

In Fig. 8(a) we summarize the results for PGA obtained in Sec-

tion 5.1 using the regression

IMCS = 1.68 + 2.58 log PG A (6)
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Figure 7. Synthetic tests. (a) cumulative distributions showing the distribution of the single-line regression slope coefficient. The thick dashed line marks the

true value. (b) same as the top panel but for the double-line regression. In grey, the cumulative distribution of the slope coefficients of the data set for I < 5.0;

the black thick dashed line marks the true value; in light blue the same kind of distribution but for the data set with I ≥ 5.0; the dark blue thick dashed line

marks the true value.

Table 1. ODR standard deviation values.

Data type observed Single-line proc. Double-line proc.

σ sl = 0.35 σ dl = 0.28

Synthetic: single line σ̄sl = 0.38 ± 0.13 σ̄dl = 0.39 ± 0.16

Synthetic: double line σ̄sl = 0.36 ± 0.16 σ̄dl = 0.41 ± 0.19

(σ a = 0.22 and σ b = 0.14) together with the regressions obtained

by Margottini et al. (1992), Faccioli & Cauzzi (2006) and Gómez

Capera et al. (2007) for Italy, and the regression of Wald et al.

(1999a) currently in use in the generation of maps of shaking in

Italy (Michelini et al. 2008). The uncertainties expressed as ±σ

bounds associated to each regression are also shown. Similarly, in

Fig. 8(b) we also present the results for PGV and we compare the

results of the determined single-line regression (with the ±σ bound)

with those of Faccioli & Cauzzi (2006) and Wald et al. (1999a).

In general and in the range of values I PGA ≥ 5, we find that our re-

gression line features a slope coefficient intermediate between that

found by Faccioli & Cauzzi (2006) (i.e. smaller value) and those

obtained by Margottini et al. (1992) and Gómez Capera et al. (2007)

(i.e. larger values). Specifically, at intensities between 5 and 6, the

regression line determined in this study matches closely the results

of Faccioli & Cauzzi (2006) and at intensities between 7 and 8, our

regression predicts PGA values (and viceversa) consistent to those

Figure 8. Comparison between the intensity versus PGM regressions obtained using the BID set and the ODR technique. PGA and PGV in (a) and (b) panels,

respectively. For comparison, the recently published regressions of Gómez Capera et al. (2007), Faccioli & Cauzzi (2006), Margottini et al. (1992) and Wald

et al. (1999a) are also shown (see legend).
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of Gómez Capera et al. (2007). For I PGA ≥ 7.5, our regression pre-

dicts PGA values intermediate between those of Faccioli & Cauzzi

(2006), that seem to overestimate the values of PGA at larger inten-

sities, and those of Margottini et al. (1992) that, conversely, seem to

overestimate the level of intensity at relatively smaller PGAs. The

observed differences can be accounted by the different data sets

used, the range of intensity values, the criteria adopted to pair the

intensity values with the recorded ground motion and by the regres-

sion technique adopted. For example, Faccioli & Cauzzi (2006) do

not describe the criteria used and do not comment on the different

and inhomogeneous intensity scales grouped together—MCS and

MM—in their data set. Furthermore, in this study we adopt a dif-

ferent regression technique, which takes into account explicitly the

uncertainties in both dependent and independent variables, and that

we do bin the data whereas Faccioli & Cauzzi (2006) do not.

The considerations made for PGA are in part applicable to PGV.

As for the single-line PGA fit, we find that the regression

IMCS = 5.11 + 2.35 log PGV (7)

(σ a = 0.07 and σ b = 0.09) displays a slope coefficient larger than

that of Faccioli & Cauzzi (2006). Thus, while both our regres-

sion and that of Faccioli & Cauzzi (2006) feature a very similar

I PGV–PGV pair values at I PGV ≈ 5, they do differ progressively at

increasing intensities (or PGV). This results in almost one intensity

unity difference at PGV ≈ 101.5 cm s−1, that is, I PGV ≈ 8 and

I PGV ≈ 9, for Faccioli & Cauzzi (2006) and this study, respectively.

When our regression is compared to that proposed by Wald et al.

(1999a) for the MM scale, we find that the two regressions differ

between one and two intensity units up to PGV ≈ 101.5 cm s−1.

The maximum difference occurs at PGV = 100.75 cm s−1. These

differences can originate significant differences in the values of the

instrumentally derived intensities when compared to those obtained,

for example, from the ‘Did You Feel It’ questionnaire (e.g. ‘hai sen-

tito il terremoto’, http://www.haisentitoilterremoto.it/) or from more

thorough macroseismic post-earthquake investigations.

Finally, in the range of values I PGA<5 and I PGV<5 it is not possible

to compare the obtained regressions because both Faccioli & Cauzzi

(2006) and Gómez Capera et al. (2007) confined their analysis to

intensities larger than 5.

6 A P P L I C AT I O N T O S H A K E M A P

One of the main goals that motivated this study was the determi-

nation of a reliable, instrumentally derived, MCS intensity scale

which can be adopted in the USGS-ShakeMap procedure (Wald

et al. 1999b) for the Italian territory (Michelini et al. 2008) to pro-

vide rapid MCS intensity maps following M > 3 earthquakes. In

addition, correct calibration of the intensity conversion gives the

opportunity to generate maps of PGM parameters (PGA and PGV)

exploiting the very large intensity database for past earthquakes

available in Italy (Stucchi et al. 2007). This reverse approach is

important when attempts are made to provide first-order estimates

of the ground shaking of historical earthquakes without relying

on sophisticated and costly waveform modeling techniques, or the

creation of earthquake scenarios that use just peak ground motion

attenuation relations without any constraint provided by observed

data.

In defining the conversion we have followed Wald et al. (1999b);

we first compute the instrumental intensity adopting the PGA re-

gression and if the instrumental intensity is larger than six, we adopt

the instrumentally derived intensity from PGV. This choice follows

from the observation that near-source strong ground-motions are

often dominated by short-duration, pulse-like peaks and therefore

PGV appears to be a more robust measure of intensity for strong

shaking (Wald et al. 1999b, 2006).

To show the validity of the regressions determined in this study,

we have applied eqs (6) and (7) to the data of all the earthquakes

with at least 4 instrumental records used in this study. For each

earthquake, the shakemaps that adopt the observed PGM data are

compared to those obtained after conversion from I MCS to PGM.

In the S2 online supplement (see Supporting Information section),

we provide all the shakemaps expressed both in terms of MCS

intensity and of PGA and PGV for the 25 earthquakes selected.

In the following, we show two significant examples (M4.6 and

M6.4 in Molise and Friuli, respectively) drawn form the calculated

shakemaps that are explicative of the results of our study. These two

earthquakes have been chosen to show application to earthquakes

representative of the seismicity occurring in Italy. In fact, about ten

M4+ earthquakes occur annually and are widely felt although they

generally induce only much awareness without causing damage;

M6+ earthquakes take place only a few per century but result in

extensive damage and large number of fatalities.

In Fig. 9 top panels, we show the intensity shakemap for the M4.6,

2002 November 12, Molise event. We see a remarkable similarity

between the strong motion data and the intensity derived maps of

MCS intensity. The only notable difference between the two maps

lies in the level of local resolution that depends on the number

of observations. The standard shakemap that relies on PGM data

alone has been determined using many fewer data (yellow triangles

in the left panel of Fig. 9) and this results in a much smoothed

local shaking distribution when compared to that obtained using

the much larger number of intensity data (yellow triangles in the

right-hand panel of Fig. 9). In Fig. 9 (middle and lower panels),

we compare the PGM data shakemaps with those obtained after

converting the MCS intensities into PGM using the relations of this

study. Again, we note a remarkable similarity in the PGA and PGV

shakemaps obtained directly from the data and from the intensity

to PGM conversion. This result corroborates that the regressions

found in this study can be adopted to provide first order, maps of

peak ground motion although in these examples the level of local

resolution is hampered by the paucity of observations when using

the PGM data in the standard ShakeMap manner.

In Fig. 10, we show the results obtained for the May, 6, 1976

Friuli main shock. This earthquake caused very extensive damage

and nearly one thousand fatalities. The PGM and intensity derived

shakemaps (Fig. 10 – top panel) are similar although there seems to

be some slight overestimation of intensities with the PGM data de-

rived intensity; in terms of PGA the two maps are remarkably similar

whereas in terms of PGV the instrumental, data derived shakemap

has PGV values somewhat larger than that inferred using the rela-

tionships of this study. Nevertheless we feel that, to first order, the

PGV shakemap obtained from the MCS intensities does provide,

within the limitations imposed by a relationship calibrated using

earthquakes throughout all Italy, a rather faithful representation of

the level of shaking experienced in the area. These conclusions are

confirmed by the maps shown in S2, which shows an overall agree-

ment between the Intensity, PGA, and PGV maps based either on

instrumental records or on macroseismic data.

Finally and in order to summarize concisely the differences be-

tween the shakemaps determined using recorded data and those de-

rived from the macroseismic surveys using the relations found here,

we have calculated the per cent differences for all the shakemaps

shown in S2 and in Figs 9 and 10. The points used to determine the

differences include the phantom grid points of USGS-ShakeMap
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Figure 9. Shakemap of the ML = 4.6, 2002 November 12, earthquake in the Molise area in Southern Italy. We have applied the site conditions derived from the

geological VS30 and the regionalized Italian ground motions equation (see Michelini et al. 2008), with standard deviation σ PGA = 1.698 and σ PGV = 1.940.

Top panel: shakemaps expressed in terms of MCS Intensity; Middle panel: shakemaps expressed in terms of PGA (in per cent g); Bottom panel: shakemaps

expressed in terms of PGV (in cm s−1). PGM and MCS intensity derived shakemaps are shown in the left- and right-hand columns, respectively. The yellow

triangles are the stations (left-hand panels) and intensity site (right-hand panels) used as input in the analysis.
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Figure 10. Shakemap of the ML = 6.4, 1976 May 6, Friuli main shock in Northern Italy. We have applied the site conditions derived from the geological

VS30 and the Akkar and Bommer PGM relations, see Michelini et al. (2008), with standard deviation σ PGA = 1.779 and σ PGV = 1.862. (Same format as

Fig. 9).
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Figure 11. Comparison between MCS intensity, PGA and PGV values determined from instrumental (inst) data and from macroseismic (macro) surveys

(e.g. (PG Ainst − PG Amacro)/PG Amacro × 100) using cumulative distributions. More than 250 000 data points are used in each graph. Mean, standard deviation

and median values are (4.63, 16.54, 2.97) for intensity, (3.37, 40.21, −2.49) for PGA, and (12.59, 39.17, 8.39) for PGV.

(e.g. Wald et al. 1999b; Michelini et al. 2008) within a radius of

140 km from the epicentre for a total of more than 250 000 ge-

ographical points. Fig. 11 shows the residuals for intensity, PGA

and PGV. The three cumulative distributions show that the per cent

differences for all three parameters are centred around zero. In par-

ticular, we find that 90 per cent of the intensity values are comprised

within ±30 per cent. For PGA and PGV, we find that 80 and 70 per

cent of the values, respectively, lie within ±50 per cent differences.

Finally, we have verified whether a correlation of the residuals

with distance and magnitude occurs in our analysis. To this end, we

have determined 2-D histogram of the residual distribution as func-

tion of magnitude and epicentral distance for all the data available.

The results shown in Fig. 12 do not seem to support the existence

of such dependencies although we cannot exclude them given the

scatter of the data used in the analysis.

7 C O N C LU S I O N S

In this study, we have performed regression analysis between MCS

intensities and instrumentally recorded peak ground motion data

expressed in terms of PGA and PGV. The data set has been as-

sembled for earthquakes that have occurred in Italy in the time

period 1972–2004. The work has been driven by the need to rep-

resent intensities using the MCS scale within the implementation

of ShakeMap for the Italian territory. This should insure improved

interconsistency between the rapid shakemaps obtained from ap-

plication of the USGS-ShakeMap procedure (Wald et al. 1999b;

Michelini et al. 2008) using observed PGM data, and the character-

izations of ground motion shaking that rely on either ‘Did You Feel

It’ analysis (http://www.haisentitoilterremoto.it/) and/or macroseis-

mic data in general (Stucchi et al. 2007).

Because both the intensity and the PGM data are affected by

inherent uncertainties, we have adopted the ODR technique which

explicitly takes into account the uncertainties in dependent and

independent variables. In order to apply the technique, we have

chosen to bin the data using the geometric mean. This is motivated

by the PGM data conforming to a log-normal distribution.

The data set used in the analysis has been assembled from two

thoroughly verified data sources—the database of the Italian strong

motion recordings, ITACA (Luzi et al. 2008) and the Macroseismic

Database of Italy 2004 (Stucchi et al. 2007). Compilation of the

data set resulted in 266 PGM-I MCS data pairs, which are two to

three times larger than those analysed in previous similar studies

for Italy.

The results show that with the data available a single-line regres-

sion is sufficient to fit the data without introducing two regression

lines, that is, for low and high intensities (or PGM), respectively.

Adoption of the single- rather than the double-line parametrization

has been explored thoroughly using synthetic tests for data distri-

butions replicating the observed data.

Finally, we have tested the determined relations by inserting

them in the USGS-ShakeMap procedure currently in use at INGV

(Michelini et al. 2008) to find (i) the instrumentally derived MCS

intensity maps do match closely the reported macroseismic data and

maps and (ii) the regression relations can be used to predict PGM

maps which we have found to be generally consistent with those
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Figure 12. Analysis of the dependencies of the per cent residual intensities (cf Fig. 11) versus epicentral distance (top panel) and magnitude (bottom panel).

The panels show that no significant trend of the residuals against magnitude and distance occur for our data set.

Figure 13. Regression tests: small black dots are the synthetic whole data set; black diamonds are the mean values for each class of the discrete variables;

black solid line is the true regression—the bisector; orange dashed line is the least-squares regression without errors in the variables; green dash–dotted line

is the ODR regression with much smaller errors in the continuous variables than in the discrete one (ODRcase1); red solid line is the ODR line with much

smaller errors in the discrete variables then in the continuous one (ODRcase2). Left-hand panels (a,c) show the results of the analysis when no data binning is

applied (i.e. whole data set). Conversely, data binning is applied on the right-hand side panels (b and d). In the context of the work (a) replicates the case of

the regression of I = f (PG M) without binning; (b) replicates the case of the regression of I = f (PG M) using the binned data set; (c) replicates the case of

the regression of PG M = f (I ) without binning; (d) replicates the case of the regression of PG M = f (I ) using the binned data set. The green error bar (b

and d) is relative to ODRcase1 while the red one to ODRcase2. The small differences observed between the regression lines and the bisector used to generate the

synthetic data set are to be attributed to the manner the data of the discrete variable have been constrained to the hard upper- and lower-bounds.
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from observed instrumental data. The residuals analysis made on

the shakemaps shown in this work appear to prove the consistency

of our regression equations, both for intensity versus PGM, and

PGM versus intensity. In addition, we have verified that the found

regressions do not depend on either magnitude or distance.

Overall, we find that the results obtained from application of

the regressions determined in this study do provide an improved

representation of the level of ground shaking in terms of the adopted

MCS intensity scale in Italy or, alternatively, the regressions can be

used to predict realistic ground motions from intensity data alone.
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delle relazioni tra intensità macrosismica e parametri del moto del suolo,

in Atti del 7 Convegno Nazionale Ingegneria sismica in Italia, Vol. 1,

pp. 63–72.

Dowdy, S. & Wearden, S., 1991. Statistics for Research, 2nd edn, John

Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore.

Faccioli, E. & Cauzzi, C., 2006. Macroseismic intensities for seismic scenar-

ios, estimated from instrumentally based correlations, in Abstract Book

1st ECEES, http://www.ecees.org/abstracts_book.pdf, p. 125.

Fuller, W.A., 1986. Measurement Error Models, John Wiley & Sons, Inc.,

New York, NY, USA.
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A P P E N D I X

In this Appendix, we present some issues that should be taken

into account when analysing data sets composed of data defined

at discrete intervals. In the following, we cannot deal exhaustively

the topic of regression strategies regarding continuous and discrete

variables but we rather focus on some features that we have found of
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great interest when performing the analysis object of this work. In

particular, we have found of importance (i) the need for a biunique

regression (i.e. correspondence between the two sets of data is

one-to-one along both directions); (ii) the specific definition of the

uncertainties for both variables and (iii) the data binning before

processing the data.

We start by discussing the least-squares technique. In general,

regression analyses are widely used in research since they are used

to explain a given variable (the dependent variable, y) in terms

of a combination (linear or not) of a given explanatorily variable

(the independent variable, x). If y and x are inter-related, a model

relationship can be used to predict the dependent variable given the

independent one. Application of the least-squares, LS, method for

a simple linear regression model, where ‘simple’ indicates here that

there is only one independent variable, and ‘linear’ indicates that

the model consists of a straight line, is based on four conditions

(Dowdy & Wearden 1991).

(i) The x values have negligible errors.

(ii) For each x value there is a normal distribution of y values—

this assumption is necessary for inference.

(iii) The distribution of y for each x has the same variance, that

means that the variance around the trend line is the same irrespective

to the value of x.

(iv) The expected values of y for each x lie on a straight line.

From the first point, it is obvious that this regression technique

is not biunique, unless we suppose that our variables have both

negligible errors, which is not the case. This constraint suggests the

use of a different regression method—the ODR—which allows for

the inclusion of errors in the variables along both axes making the

analysis more realistic, and biunique.

Some statistics books (e.g. Dowdy & Wearden 1991), define

the analysis where both variables are affected by uncertainties as

correlation rather than regression models. The characteristics of a

correlation model are:

(i) Both x and y contain sampling variability.

(ii) For each value of x there is a normal distribution of y, and

for each value of y there is a normal distribution of x.

(iii) The x distributions have the same variance; the y distribu-

tions have the same variance.

(iv) The joint distribution of x and y is the bivariate normal

distribution.

The ODR fits fully these requirements.

The last point we need to discuss regards the importance of data

binning before carrying out the regression analysis. We note that in

the literature it cannot be found a general agreement on a standard

methodology to apply to a given data set before regression. For

example, some authors discourage the binning since it causes loss

of information (e.g. Zar 1999) whereas others encourage its use

(e.g. Jorgensen 1997).

To test these different perspectives on the matter, we have per-

formed a numerical experiment adopting an ideal synthetic data

set featuring the same characteristics of our intensity-PGM data set

(i.e. with one discrete variable and one continuous) but consisting

of many more data points.

The data set belongs to a 2-D normal distribution, with mean

values centred at the bisector and σ = 1 uncertainties for both

variables (Fig. 13). For each value of the discrete variable 1000

pairs are generated, for a total of 18 000 pairs. For the discrete

variable, hard bounds were set at the upper- and lower-most values

of 2 and 10, respectively.

The test consists of applying three different regression models to

the whole and the binned data sets. The regressions applied are the

LS without uncertainties in both variables (orange dashed line in

Fig. 13), the ODR technique with much smaller uncertainties for the

continuous variable than in the discrete one (green dash–dotted line

in Fig. 13; hereinafter ODRcase1), and, lastly, the ODR with much

smaller uncertainties in the discrete variable than in the continuous

one (red solid line in Fig. 13; hereinafter ODRcase2). As anticipated,

the aim of this numerical experiment is to verity (i) the applicability

of LS in our analysis; (ii) the role of the uncertainties linked to both

variables in the ODR technique; (iii) the robustness and accuracy

of the results depending on binning (or not-binning) the data set.

When the three methods of analysis are applied to the binned data

set, we have found that all provide proper fits to the data regardless

of the choice of the independent variable (Figs 13b and d). Whereas

ODRcase1 and ODRcase2 regressions are biunique, indicating that the

line in Fig. 13(b) is the inverse of Fig. 13(d), LS is not.

The results change when the whole data set (i.e. without binning)

is used for the regressions. When the continuous variable is used

as independent, the LS regression method introduces some bias on

both slope and intercept (see the orange dashed line in Fig. 13a).

Conversely, the fit does not show any bias when the discrete vari-

able is used as the independent one (see the orange dashed line in

Fig. 13c). This result is not surprising since the LS regression min-

imizes the vertical distance. As remarked earlier, the LS regression

is not biunique.

Similarly, we have found that caution must be paid in the assign-

ment of the uncertainty to the variables when the ODR is applied to

the whole data set. Only the ODRcase2 provides correct fits regard-

less of the choice of the independent variable (red lines in Figs 13a

and c), whereas the ODRcase1 analysis introduces some bias (green

dash lines in Figs 13a and c).

In summary and recalling the constraints posed by our analysis

(i.e. a biunique regression), and by our data set (i.e. a mix of con-

tinuous and discrete variables) the results of this test would indicate

that the preferential procedure to be adopted consists of using the

binned data set and the ODR regression approach.

S U P P O RT I N G I N F O R M AT I O N

Additional Supporting Information may be found in the online ver-

sion of this article:

Table S1. Data set used for determining the regressions. The sup-

plement table is provided in both pdf and comma separated value

csv formats.

Table S2. Shakemaps for the 25 events analysed. Site conditions

have been derived from the geological VS30 and the regionalized

Italian ground motions equation (see Michelini et al. 2008). For

each event, the shakemaps are expressed in terms of MCS Intensity

(top), PGA (middle) and PGV (bottom). PGM and MCS intensity

data derived shakemaps are shown in the left and right columns, re-

spectively. The yellow triangles represent the strong motion stations

(left panels) and the intensity sites (right panels) used as input for

the analysis.

Please note: Wiley-Blackwell are not responsible for the content or

functionality of any supporting materials supplied by the authors.

Any queries (other than missing material) should be directed to the

corresponding author for the article.
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