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Abstract

The present article discusses alternative regression models and estimation methods for

dealing with multivariate fractional response variables. Both conditional mean models, es-

timable by nonlinear least squares and quasi-maximum likelihood, and fully parametric mod-

els (Dirichlet and Dirichlet-multinomial), estimable by maximum likelihood, are considered.

In contrast to previous papers but similarly to the univariate case, a new parameterization

is proposed here for the parametric models, which allows the same specification of the con-

ditional mean of interest to be used in all models, irrespective of the specific functional form

adopted for it. The text also discusses at some length the specification analysis of fractional

regression models, proposing several tests that can be performed through artificial regres-

sions. Finally, an extensive Monte Carlo study evaluates the finite sample properties of most

of the estimators and tests considered.
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1 Introduction

In several economic settings, the dependent variable of interest is often a proportion or, more

generally, a vector of proportions, y ≡ (y1, y2, . . . , yM)′, corresponding to a set of shares for

a given number (M) of exhaustive, mutually exclusive categories. Examples include pension

plan participation rates, fraction of land allocated to agriculture, percentage of weekly time

devoted to each of a given set of human activities, market shares of firms, fractions of income

spent on various classes of goods, asset portfolio shares, and proportions of different types of

debt within the financing mix of firms. While in the first two cases there are only two categories

(M = 2, usually a characteristic and its opposite, or absence) and a single proportion is modelled,

the remaining examples illustrate the more general situation (encompassing the former), where

M > 2 and the joint behaviour of a multivariate fractional variable is of interest.

The regression analysis of fractional data, inherently bounded within the unit simplex, raises

a number of interesting research issues that challenge conventional approaches of estimation and

inference. For the univariate case, the main issues are discussed in the seminal paper by Papke

and Wooldridge (1996), who propose the robust quasi-maximum likelihood method (QML) of

Gouriéroux, Monfort and Trognon (1984) for the estimation of the so-called fractional regression

models, on the basis of a Bernoulli quasi-likelihood and a logit conditional mean function. Al-

though less common, maximum likelihood (ML) estimation on the basis of the beta distribution

has also been proposed in the literature (e.g. Paolino, 2001; Ferrari and Cribari-Neto, 2004). In

a recent paper, Ramalho, Ramalho and Murteira (2011) survey the main alternative regression

models and estimation methods that are available for dealing with univariate fractional response

variables and propose a unified testing methodology to assess the validity of the assumptions

required by each model and estimator.

In a multivariate setting, as in the univariate case, researchers’ main interest frequently lies in

the estimation of the conditional means of the elements of y, given a set of explanatory variables,

E (y|X). One seminal methodological contribution to this goal is provided by Woodland (1979),

who presents maximum likelihood estimation of systems of share equations on the basis of the

Dirichlet distribution, a well known multivariate generalization of the beta distribution. Like the

latter, the Dirichlet is not applicable when the response variables assume either value in {0, 1}
with nontrivial probability, a constraint that can be violated in several situations.1 More recently,

QML estimation based on the multivariate Bernoulli (MB) probability function (p.f.) has also

1For instance, in demand analysis the phenomenon of ‘zero expenditures’ becomes increasingly important

when individual data are analyzed and shorter time periods are observed (e.g., the tobacco share of a family

budget may be zero in a certain period).
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become relatively popular; see inter alia Sivakumar and Bhat (2002), Ye and Pendyala (2005),

and Mullahy and Robert (2010), who model, respectively, commodity flows, transportation time

and household time allocation. When interest is confined to the conditional mean parameters,

QML can prove a satisfactory approach, often dealing well with boundary observations. However,

unlike in the univariate case, the specifications used for E (y|X) in conditional mean models,

estimable by QML (or nonlinear least squares - NLS), and fully parametric models, estimable

by ML, usually differ and are often not compatible. Moreover, the specification analysis of

multivariate fractional models has not merited much attention in the literature.

The present paper considers both conditional mean models and fully parametric models for

multivariate fractional responses. For fully parametric models, a new parameterization is pro-

posed that enables the use of any valid specification of E (y|X) and facilitates a ready evaluation

of the covariates’ relationships to E (y|X). The multinomial logit model stands out as the most

analytically tractable and widely used conditional mean specification, so, although not confined

to it, the text devotes special attention to this model and some of its extensions. Meanwhile,

alternatively to Dirichlet regression, the paper also discusses multinomial-based specifications,

potentially advantageous when the data are obtained as ratios of observable integers, possibly

exhibiting boundary values with nontrivial probability.2

The specification analysis of multivariate fractional models is also discussed at some length in

the present text. In particular, the paper proposes several tests of the first moment assumptions,

which can be obtained by making use of the robust testing procedure introduced by Wooldridge

(1991), adequately performed upon QML or NLS estimation. In addition, some specification

tests for other assumptions implied by fully parametric models are also briefly discussed. All

the proposed tests can be implemented through artificial least squares regressions.

The remainder of the paper is organized as follows. Section 2 describes the notation and

critically reviews previous modelling approaches for share regressions. Section 3 discusses al-

ternative regression models and estimation methods that are available for use with multivariate

fractional response variables. Section 4 proposes specification tests for the various models and

methods considered in the paper. Section 5 is dedicated to a Monte Carlo study, illustrating the

behaviour of several estimators and tests. Finally, section 6 concludes the paper and suggests

future research.

2One word about terminology seems advisable here: in microeconometrics the adjective “multinomial” usually

refers to models based on a p.f. that is termed “multivariate Bernoulli” in the statistics literature. In the latter

context, as is well known, the term “multinomial” refers to a different p.f. (encompassing the MB). In this paper,

use of both p.f.’s is discussed, so, to avoid ambiguity, the statistical terminology is preferred.
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2 Framework

Let y ≡ (y1, . . . , yM)′ denote theM-vector of fractional dependent variables, or shares, confined,

by definition, to the unit (M − 1)-simplex,3

SM−1 ≡
{
y ∈ RM :

∑M

m=1
ym = 1, ym ≥ 0, ∀m

}
.

For quite some time, the most popular econometric specifications of systems of share equa-

tions did not take into account the intrinsic characteristics of fractional responses. Typically,

each share ym was decomposed into a deterministic function of covariates, Dm (X;β), and a

stochastic disturbance term, um,

ym = Dm (X;β) + um, m = 1, ...,M , (1)

with β a parameter vector. Then, usually: (i) a multivariate normal distribution was assumed

for um; (ii) to deal with the singularity of the share equation system, one equation (the M-th,

say) was deleted from the system and the corresponding predicted share was calculated as

DM

(
X; β̂

)
= 1−

M−1∑

m=1

Dm

(
X; β̂

)
;

(iii) the restrictions observed on ym were not fully taken into account in the specification of

Dm (X;β). Clearly, this setup fails to guarantee that, similarly to actual shares, predicted

shares fall into the unit simplex, due to a nonzero probability of greater than unity or negative

predictions.

In view of this problem, various alternative approaches have been suggested. Hermalin and

Wallace (1994), Wang, et al. (2006), Pu, et al. (2008) and Yin, et al. (2010) use a probit

or logit fractional specification for each of the deterministic components of (1). However, each

equation is estimated individually, so predicted shares do not necessarily fall within the unit

simplex, irrespective of deleting one equation from the system (the predicted share for equation

M may be negative) or not (the predicted shares do not sum up to unity).

Aitchison (1982) and Fry, Fry and McLaren (1996) propose a one-to-one transformation

from the unit simplex SM−1 to the real set RM−1, namely the additive log-ratio transformation
defined by rm = log (ym/yM), m = 1, ...,M − 1. This yields the model

rm = log [Dm (X;β) /DM (X;β)] + vm, m = 1, ...,M − 1, (2)

with vm assumed to follow a multivariate normal distribution.4 The inverse transformation

from RM−1 to SM−1 is the additive logistic transformation, which implies a multinomial logit
3This type of data are known in the statistical literature as ‘compositional data’ (Aitchison, 1982).
4This method is widely used in fields like geology, pedology, geochemistry and biology (see the survey by

Aitchison and Egozcue, 2005), and political science (see e.g. Katz and King, 1999).
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specification for the ym’s. While effectively restricting predicted shares to the unit simplex, this

method presents some disadvantages such as not being well defined for the boundary value 0,

thus requiring ad hoc adjustments if that value is observed in the sample (e.g. replacing the

resultant infinite values of rm by an arbitrarily chosen large number).

One approach for dealing with boundary values in the fractional context has been the use

of multivariate tobit models, namely for data censored at zero (e.g. Heien and Wessells, 1990).

However, with such models there is again a nonzero probability of some shares, or their sum-

mation, being greater than unity. One alternative, adopted by, e.g., Poterba and Samwick

(2002) and Klawitter (2008), is to assume that shares follow a multivariate normal distribu-

tion truncated at the boundaries of the (M − 1)−unit simplex. Use of this approach, however,
may be discouraged by the fact that, as for tobit-type models, estimation is often fraught with

computational complexity, which may lead researchers to adopt questionable assumptions. For

instance, Poterba and Samwick (2002) assume non-correlated disturbances across latent vari-

ables equations underlying shares of financial assets, in order to avoid a log-likelihood with

eight-dimensional normal integrals.

Given the limitations of the foregoing approaches, this paper considers various alternative

regression models that fully account for the bounded, unit-sum nature of fractional variables

without requiring transformations of the response variables. As described in the next sections,

these models differ on a number of respects, such as the adoption, or not, of full distributional

assumptions for shares, and the possibility, or not, of dealing with boundary observations. In

any case, they all have in common the use of functional forms for E (y|X) which enforce the

conceptual requirement that, as for y, its elements belong to the unit simplex.5

In the ensuing text a random sample of i = 1, ...,N observations on y and X is supposed to

be available for estimation of the parameters of interest, usually those of the conditional mean

function, E (y|X). Let E (y|X) = G (X;β0) ≡ [G1 (X;β0) , ...,GM (X;β0)]
′, the column

M-vector of the conditional mean functions of y, with β0 denoting the true value of β. To

simplify the notation, E (y|X) and its components, E (ym|X), m = 1, ...,M , will often be

referred to without explicit mention to its arguments: G ≡ G (X;β), Gm ≡ Gm (X;β). When

intended, the corresponding individual entities may be denoted as Gi ≡ G (Xi;β) and Gim ≡
Gm (Xi;β). Given the definition of the elements of y, their conditional means are also subject

to the constraints Gm ≥ 0, ∀m, and ∑M
m=1Gm = 1. Usually, Gm is specified as a function

5For brevity sake, multivariate two-part and similar models are not included in the text. Indeed, the consid-

eration of this subject would be elaborate enough so as to deserve a separate paper on its own. Some keynote

references in this regard are Wales and Woodland (1983) and Lee and Pitt (1986), who address the estimation of

demand systems with nonnegativity constraints.
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of M indices of covariates, that is, Gm = Gm (Xβ) and Xβ = [x′1β, ...,x
′
Mβ]

′, where X =

[x1, ...,xM ]′, with column K−vectors xm conformable to β. With an appropriate redefinition

of covariates and parameters vectors (as described below for the special case of the multinomial

logit), alternative invariant covariates and alternative specific parameters can also be considered.

3 Regression Models and Estimation Methods

Two main approaches for dealing with multivariate fractional data are considered here. The first

only requires correct specification of the conditional mean of y, given covariates, whereas the

second is a fully parametric approach based on the assumption of a particular distribution for y,

whose mean may be specified as in the first approach. Most situations with a finite number of

boundary observations preclude application of the second approach, except when the fractional

response variables can be interpreted as ratios of integers and these integers are observable.

3.1 Alternative Specifications for E (y|X)

The specifications used for modelling binary response variables in the univariate case are also

employed to describe the conditional mean of fractional responses; see Papke and Wooldridge

(1996). Analogously, the specifications that are commonly used to model the probability of an

individual choosing betweenM mutually exclusive alternatives may also be employed to describe

E (y|X) in the multivariate context, since they satisfy the bounded, unit-sum nature of the

conditional means of fractional variables. Next, three of the most popular of those specifications

are briefly reviewed.

In the multivariate context, special attention has been devoted to the multinomial logit

specification, which can be expressed as

Gm =
exp (x′mβ)∑M
l=1 exp

(
x′lβ

) , m = 1, ...,M . (3)

This formulation is general enough to allow for alternative invariant covariates and alternative

specific parameters, if interactions of alternative specific indicators with alternative invariant

explanatory variables are included as covariates. For instance, if Gm = exp (z′mα+ αmz) /[∑M
l=1 exp (z

′
lα+ αlz)

]
, then, in expression (3), x′m ≡ [z′m, d1z, ..., dMz] and β ≡ [α′, α1, ..., αM ]′,

where dl, l = 1, ...,M , denotes an indicator variable equal to one if l = m.6 To avoid ambiguity,

the special case with only alternative invariant covariates and alternative specific parameters

will hereafter be designated “MNL”.

6As is well known, the unit-sum identity of the conditional means imply normalization of coefficients associated

with alternative-invariant covariates.
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A limitation of the multinomial logit model, usually known as independence of irrelevant

alternatives (IIA), is that discrimination among alternatives reduces to a series of pairwise

comparisons which are unaffected by the characteristics of alternatives other than the pair under

consideration. One alternative approach that does not have this weakness is the nested logit,

which is the most common member of the “generalized extreme-value” class of models, widely

used in discrete choice analysis (see, e.g., Train, 2009, Ch. 4). In the present context, this model

is suitable when proportions are attributed to alternatives in a way that involves a sequence of

allocation decisions over some level hierarchy. Examples of its use with fractional responses are

provided by Ye and Pendyala (2005) and Dubin (2007), who model, respectively, time allocation

among different activities and market shares. The nested logit can be expressed as follows:

suppose that M > 2 and the alternatives can be distributed into L nonoverlapping subsets of

categories, S1, ..., SL, L < M . Then, considering only two decision levels, the conditional mean

of ym, where alternative m belongs to the subset Sl, can be expressed as

Gm =
exp [x′mβ/ (1 + ηl)]

{∑
j∈Sl

exp
[
x′jβ/ (1 + ηl)

]}ηl

∑L
k=1

{∑
j∈Sk

exp
[
x′jβ/ (1 + ηk)

]}1+ηk . (4)

This formulation nests the multinomial logit for ηl = 0, l = 1, ..., L.

Another possible generalization of the logit model is the “random parameters logit”, which

takes β as random. This model can result from several concerns, e.g., the possibility of individual

heterogeneity of regression parameters, the occurrence of measurement errors or the omission of

covariates. When this type of concern is allowed for and no repeated observations on individuals

are available, econometric analysis must be based on conditional means marginal with respect

to parameter variation. Formally,

Gm = Eβ

(
Gβm

)
=

∫
GβmdFβ (β) , m = 1, ...,M , (5)

where Gβm is typically defined as in (3) and Fβ denotes the joint distribution of β. Among other

possibilities, this distribution can be specified as multivariate normal (the most frequent choice)

or, e.g., lognormal (if the elements of β are known to be positive).

Even though the main focus of this paper is the empirical analysis of fractional regression

models, irrespective of the economic theory that may have generated the system of share equa-

tions to be estimated, it should be noted that these models also conform with the constrained

economic optimization framework that underlies some applications of multivariate fractional re-

gression models. For example, Considine and Mount (1984) demonstrated that a multinomial

logit specification can represent a “well-behaved” set of demand functions and Dubin (2007)

produced a similar proof for the nested logit model.

7



3.2 Conditional Mean Models

As in the univariate case, the simplest solution for dealing with multivariate fractional response

variables is the use of conditional mean models, i.e. models that only involve the specification of

E (y|X). Apart from some complex specifications that may be adopted for Gm (e.g., the random

parameters logit specification), the parameters of the model for E (y|X) may be estimated, in

general, by, among other methods, systems NLS or QML. In the former case, as in (1), one can

write this model as a system of nonlinear regression equations of the form

ym = Gm + um, m = 1, ...,M ,
∑M

m=1
ym = 1.

Under random sampling and standard assumptions (namely correct and twice continuously

differentiable specification of G), the NLS estimator, β̂NLS , minimizer of the sum of squared

residuals,
∑N
i=1 û

′
iûi, ûi ≡ yi − G

(
Xi; β̂NLS

)
≡ yi − Ĝi, is consistent and asymptotically

normal, that is,
√
N

(
β̂NLS − β0

)
d−→ N

(
0,A−10 B0A

−1
0

)
,

where

A0 ≡ E
[
∇βGi (β0)

′∇βGi (β0)
]
,

B0 ≡ E
[
∇βGi (β0)

′ uiu
′
i∇βGi (β0)

]
,

ui ≡ yi −Gi (β0) and N denotes the multivariate normal distribution (see, e.g., Wooldridge,

2002, Theorems 12.2 and 12.3). These matrices can be consistently estimated in the usual

way upon NLS estimation, by substituting sample averages for population expected values and

evaluating β at β̂NLS .

Potentially more efficient estimators of β may be obtained by assuming some reasonable

model for the conditional second moments and estimating the model by systems weighted NLS.

An alternative approach is provided by QML, which is based on the maximization of a linear

exponential family (LEF) likelihood. In the present context, a natural choice for this likelihood,

generalizing the approach of Papke and Wooldridge (1996) in the univariate case, is provided

by the MB p.f. (see Johnson, et al., 1997, Ch. 36). This p.f. is appropriate when there are

M alternatives and each individual chooses only one alternative. Let the m-th component of

b ≡ (b1, ..., bM)′ be a binary variable equal to one if alternative m is taken, and zero otherwise.

Considering πm ≡ Pr (bm = 1) = E (bm), the MB p.f. can be written as

fb (b) =
∏M

m=1
πbmm ,

M∑

m=1

πm = 1.

In a regression context, the parameters πm can be replaced by conditional expectations given

covariates.
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With multivariate fractional variables, substituting E (ym|X) for πm, the i-th term of the

likelihood can be expressed as LMBi (β) =
∏M
m=1G

yim
im . This yields the individual contribution

to the log-likelihood,

logLMBi (β) =
M∑

m=1

yim logGim =
M−1∑

m=1

yim log
Gim
GiM

+ logGiM , (6)

where GiM = 1−∑M−1
m=1 Gim and the last expression evinces the LEF form of the likelihood. The

QML estimator β̂QML maximizing LLMB (β) ≡∑N
i=1 logL

MB
i (β) is consistent and asymptot-

ically normal regardless of the true conditional distribution of y, provided that G is correctly

specified (Gouriéroux, et al., 1984). Formally,

√
N

(
β̂QML − β0

)
d−→ N

(
0,A−10 B0A

−1
0

)
,

where

A0 ≡ E
[
−∇ββ′LLMBi (β)

]
β=β0

(7)

B0 ≡ E
[
∇βLLMBi (β)∇β′LLMBi (β)

]
β=β0

.

Consistent estimators for A0 and B0 are obtained in the usual manner, replacing population

expectations by sample averages, with β = β̂QML. QML estimation of fractional MNL models

has been considered by Sivakumar and Bhat (2002), Ye and Pendyala (2005), Mullahy (2010)

and Mullahy and Robert (2010).

As an alternative to NLS or QML, one may resort to ML estimation, which requires full

knowledge on the joint conditional density of the response variables.

3.3 The Dirichlet Regression Model

Let β̂ML denote the ML estimator of β. As is well known, under correct specification of the

joint conditional density, f (y|X),

√
N

(
β̂ML − β0

)
d−→ N

(
0,A−10

)
,

with A0 defined in (7). Several statistical distributions are suited to model data confined to the

unit simplex. The most popular choice is the Dirichlet distribution, a multivariate generalization

of the beta distribution (see Kotz, et al., 2000, Ch. 49).7 Its joint density function can be

expressed as

fDy (y;γ) =
Γ (γ0)∏M

m=1 Γ (γm)

∏M

m=1
y
γm−1
m ≡ Dirichlet (γ) ,

ym : ym > 0,
∑M

m=1
ym = 1, m = 1, ...,M ,

7For alternative distributions for fractional data, see Kotz, et al. (2000), Ch. 49 (Sec. 8) and Ch. 50.
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where γ ≡ (γ1, ..., γM)′ denotes a vector of positive parameters and γ0 ≡
∑M
m=1 γm. Under this

parameterization,

E (ym) =
γm
γ0

(8)

and the elements of the covariance matrix of y can be expressed as

COV (yl, ym) =
γl (δlmγ0 − γm)

γ20 (γ0 + 1)
, l,m = 1, ...,M , (9)

where δlm denotes the Kronecker delta equal to one if l = m and zero otherwise. The Dirichlet

distribution is defined only for ym ∈ (0, 1) and, therefore, cannot be used when the probability

of limit observations is nontrivial.

With an appropriate choice of parameters, the Dirichlet distribution allows for great flexibil-

ity. It also constitutes a simple probability structure endowed with some attractive mathematical

features. For instance, any subvector of y is absolutely continuous with density having the same

form as above. Also, a desirable property for applications is that permutation of y components

simply leads to a Dirichlet by permuting the corresponding parameters. Moreover, aggregation

of some elements of y also leads to a Dirichlet distribution with the same type of aggregation in

the vector of parameters. Furthermore, each component ym is distributed as Beta(γm, γ0−γm).

Finally, if all γm parameters are proportionately large, then the Dirichlet can be approximated

by a multivariate normal density. Note, however, that the Dirichlet distribution is not a LEF

member, so any regression model based on it is not robust to distributional misspecification.

In order to allow for relationships between Dirichlet random vectors and a set of explanatory

variables, a regression structure can be considered by introducing covariates in γm, m = 1, ...,M .

However, estimating the covariates’ relationships to γm may not be of much interest, so this paper

proposes the reparameterization γm ≡ φGm, m = 1, ...,M , with φ > 0, from which one obtains

γ0 ≡ φ
∑M
m=1Gm = φ, and the expression for the Dirichlet density becomes

fDy|X (y;φ,β|X) =
Γ (φ)

∏M
m=1 Γ (φGm)

∏M

m=1
yφGm−1m . (10)

Consequently, (8) and (9) yield E (ym|X) = Gm and

COV (yl, ym|X) =
Gl (δlm −Gm)

φ+ 1
, l,m = 1, ...,M . (11)

With this new formulation, β has the same interpretation as in conditional mean models and

the parameter φ can be interpreted as a precision measure in the sense that, for fixed G, the

larger the value of φ, the smaller the elements of the covariance matrix COV (yl, ym) — note that

y degenerates at G if φ→∞.8
8 Instead of treating φ as a nuisance parameter, one may also specify it as a function of covariates (possibly

distinct fromX), namely if interest lies in analyzing whether a variable contributes to the variances and covariances

of y beyond its effect on the means.
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Previous applications of the Dirichlet regression model (e.g., Woodland, 1979; Chotikapanich

and Griffiths, 2002) used different parameterizations, which, in contrast to the one proposed

in this paper, are not generalizable to any possible specification for E (ym|X). For example,

Woodland’s (1979) proposal requires that

E (ym|X) =
µm (X;β)

∑M
l=1 µl (X;β)

, m = 1, ...,M ,

since he sets γm ≡ φµm (X;β), where µm (·) are index functions of the covariates.9

3.4 Regression Models for Proportions Obtained as Ratios of Observable

Integers

In some applications, the response variables can be interpreted as ratios of integers, a situation

that occurs when, e.g., the elements of y are the proportions of individuals in a given group

who select each of M mutually exclusive alternatives. When the number of individuals in each

group (n) and the number of individuals in a given group who choose alternative m (nm) are

known, one can resort to models that make explicit use of this extra information. The alternative

models now described may or may not produce more efficient estimators than the approaches

previously discussed (which may be still valid), a fact that depends on the actual covariance

structure of the data generating process. Unlike the Dirichlet regression model, the parametric

models discussed next are defined for both boundary and interior values of the unit interval.

3.4.1 The Multinomial Regression Model

Consider, as a statistical unit, a group of n > 0 individuals (so, N now denotes the number of

different groups in the available sample) and let ym = nm/n, with nm ≥ 0 observable integers

such that n =
∑M
m=1 nm. Thus, ym can be viewed as the proportion of individuals belonging

to the same group who select alternative m. Let πm denote the probability that an individual

selects alternative m. Then, (n1, ..., nM) = n× y follows a multinomial p.f. with parameters n
and π ≡ (π1, ..., πM). Formally,

fMy (y;n,π) =
n!

∏M
m=1 (nym)!

∏M

m=1
πnymm , (12)

where πM = 1 −∑M−1
m=1 πm. Under this parametrization, E (ym) = πm and COV (yl, ym) =

πl (δlm − πm) /n.

9Note that Woodland (1979) did not impose the constraint µm (·) > 0 that is necessary to enforce the required

positivity of the Dirichlet parameters. In fact, he used a linear specification for µm (·) in his empirical analysis.
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A regression model can be accommodated by considering covariates in πm. As before, let

πm = Gm, which leads to a conditional p.f. fMy|X (y;n,β|X) and a conditional covariance matrix

of y|X with typical element

COVM (yl, ym|X) =
Gl (δlm −Gm)

n
, l,m = 1, ...,M . (13)

The individual contribution to the log-likelihood can then be written as

logLMi (β) = log

[
ni!∏M

m=1 (niyim)!

]
+ ni logL

MB
i (β) ,

where logLMBi (β) is the individual contribution to the MB log-likelihood defined in (6).

The multinomial p.f. is a member of the LEF, so it can be used for QML estimation of the

Gm parameters. If the data are actually generated by a multinomial law, then fully efficient ML

estimation is achieved.

3.4.2 The Dirichlet-Multinomial Regression Model

Extra-multinomial dispersion can be allowed for by considering a joint distribution for π. Mosi-

mann (1962) shows that, if π follows a Dirichlet distribution, then n × y follows a Dirichlet-
multinomial (DM) mixture p.f.. In a regression context, with the proposed mean-dispersion

parameterization for the Dirichlet conditional distribution,

fDπ|X (π;φ,β|X) =
Γ(φ)∏M

m=1 Γ (φGm)

∏M

m=1
πφGm−1m ,

one can formally write the DM conditional p.f. as

fDMy|X (y;n, φ,β|X) =
n!Γ (φ)

Γ (φ+ n)

M∏

m=1

Γ (φGm + nym)

Γ (φGm) (nym)!
. (14)

Several remarks about this expression seem appropriate. First, for M = 2, (14) reduces to

the beta-binomial p.f. (see Johnson, et al., 2005, Ch. 6); see inter alia Heckman and Willis

(1977) and Santos Silva and Murteira (2009) for examples of the use of the beta-binomial model

in a regression context. Second, the DM mixture has beta-binomial univariate marginals with

parameters such that E (ym|X) = E (πm|X) = Gm and

COV DM (yl, ym|X) =
Gl (δlm −Gm)

n

φ+ n

φ+ 1
(15)

(see Johnson, et al., 1997, Ch. 36). Thus, the DM mixture preserves the conditional means

of the dependent variables, with reference to the multinomial p.f.. It is also obvious that

the DM approach accommodates extra-multinomial dispersion, since COV DM (yl, ym|X) =

a · COVM (yl, ym|X), with a = (φ+ n) / (φ+ 1) > 1. Also, expression (11) (with πm replacing
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yl and ym) implies that limφ→∞ V (πm|X) = 0, so the conditional distribution of πm becomes

degenerate at Gm and the DM model collapses to the multinomial as the parameter φ grows

infinitely large. It is noted, however, that the DM p.f. is not a LEF member; therefore, ML

estimation of its parameters is not robust to distributional misspecification.

One example of the use of the DM model (with a different parameterization) is provided by

Mullahy (2010), in the context of financial asset portfolio shares.

4 Specification Analysis

All the alternative estimators for fractional regression models described above require the correct

specification of the conditional mean of y. Therefore, the primary focus of this section is on

tests for assessing the appropriateness of G (X;β) as a model for E (y|X). The second part of

the section considers tests for assessing distributional assumptions other than the conditional

mean, implied by the Dirichlet, multinomial and Dirichlet-multinomial models.

4.1 Tests for the Conditional Mean

All the tests proposed in this section are tests for the exclusion of an L−dimensional vector of
parameters η in the generalized model

E (y|X) =H (X;β,η) = [H1 (X;β,η) , ...,HM (X;β,η)]′ .

Under the null hypothesis H0: η = 0, H (X;β,0) = G (Xβ) is an appropriate specification

for E (y|X). Such tests can be carried out in the usual manner, through a Lagrange multiplier

(LM), Wald or likelihood ratio test. Given that the model under the alternative may be difficult

to estimate, LM tests are proposed, which can be carried out by making use of Wooldridge’s

(1991) robust regression-based procedure, implemented upon QML or NLS estimation.

To this effect consider y− ≡ (y1, . . . , yM−1)
′,G− ≡ (G1, . . . ,GM−1)

′ andH− ≡ (H1, . . . , HM−1)
′,

vectors of nonredundant fractional responses and corresponding conditional means under the null

and alternative hypotheses, respectively. Also, let the alternative functional form of E (ym|X)

be denoted by Hm ≡ Hm (X;β,η). LM tests for the null conditional mean specification can be

computed according to the following procedure, where (̂·) represents evaluation at the restricted
NLS or QML estimators

(
β̂
′
,0′

)′
:

i. For the i-th observation, i = 1, ...,N , obtain the (M − 1) × L matrix W̃ i ≡ Ĉ
−1/2
i ·

∇η′Ĥ
−

i and the (M − 1) × K matrix X̃i ≡ Ĉ
−1/2
i · ∇β′Ĥ

−

i = Ĉ
−1/2
i · ∇β′Ĝ

−

i , with

Ci an (M − 1)−square matrix whose expression is detailed below and depends upon the

estimator that is used.
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ii. Compute the matrix OLS regression of W̃ i on X̃i, i = 1, ...,N , and obtain the (M − 1)×
L−matrix of residuals, R̃i.

iii. For the i-th observation, i = 1, ..., N , obtain the (1× L)−vector ẽ′iR̃i, where ẽi ≡ Ĉ
−1/2
i êi

and êi ≡ y−i − Ĝ
−

i .

iv. Compute the OLS regression of the constant 1 on the (1× L)−vector ẽ′iR̃i and obtain the
corresponding sum of squared residuals SSR.

v. Compute the LM statistic as N −SSR, which, under H0, is asymptotically distributed as

a chi-squared random variable with L degrees of freedom.

As mentioned, the formal expression of the (M − 1)−square matrix Ci varies according to
the estimation method that is used. Following Wooldridge (1991), under an LEF log-likelihood

of the form

LLi = a
(
G−i ,νi

)
+ b

(
y−i ,νi

)
+ y−′i c

(
G−
i ,νi

)
≡ ai + bi + y

−′
i ci,

with νi a vector of covariates and nuisance parameters, a (·) and b (·) scalars, and c (·) an

(M − 1)−column vector of functions, Ci is defined as the inverse of the (M − 1)−square matrix
of derivatives ∇G−′

i
ci. In the MB-QML case,

ci =

(
log

Gi1
GiM

, . . . , log
GiM−1
GiM

)′
, GiM = 1−

M−1∑

m=1

Gim,

from which,

Ci =




G−1i1 +G−1iM G−1iM · · · G−1iM

G−1iM G−1i2 +G−1iM · · · G−1iM
...

...
...

G−1iM G−1iM · · · G−1i,M−1 +G−1iM




−1

.

Under multinomial-based QML,

ci = ni

(
log

Gi1
GiM

, . . . , log
GiM−1
GiM

)′
,

so the previous matrix Ci should be scaled by the factor n−1i . With NLS estimation (which can

be interpreted as QML based on a Gaussian likelihood with uncorrelated, unit-variance, errors),

after replacing GiM by 1−∑M−1
m=1 Gim, one obtains

ci =




2Gi1 +Gi2 + · · ·+GiM−1

Gi1 + 2Gi2 + · · ·+GiM−1

· · ·
Gi1 +Gi2 + · · ·+ 2GiM−1



⇒ Ci =

(
IM−1 + ιM−1ι

′
M−1

)−1 ,
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with IM−1 the identity matrix of order (M − 1) and ιM−1 an (M − 1)−column vector of ones.
This inverse matrix can be checked to equal IM−1 −M−1ιM−1ι

′
M−1.

10

The remainder of this section describes one general procedure valid to assess any conditional

mean specification (RESET-type tests), as well as two special cases designed to assess the validity

of the multinomial logit against, respectively, the nested logit and the random parameters logit.

To the best of our knowledge, none of the three tests have been previously used to assess

multivariate fractional models.

4.1.1 RESET-type Test

The RESET test was proposed originally by Ramsey (1969) as a general test for functional

form misspecification for the (single equation) linear regression model but since then it has been

applied to many other models. In fact, Papke and Wooldridge (1996) use the RESET test as

a general functional form diagnostic for models of univariate fractional responses. Moreover,

in the multivariate framework, various generalizations of the original RESET test have been

presented for linear models (e.g., Giles and Keil, 1997; Shukur and Edgerton, 2002; Alkhamisia,

et al., 2008). However, to the best of the authors’ knowledge, the RESET test has never been

applied to multivariate nonlinear regressions. The following extends the RESET test to the

multivariate fractional case.

Assume that the components of the mean vector function under the null hypothesis,Gm (Xβ),

m = 1, ...,M , are continuously differentiable and injective (the case for any specification based

on continuous, strictly monotonous functions). Then, G (Xβ) is invertible, in which case one

may write the alternative vector model as

H(Xβ) = G
{
G−1 [H(Xβ)]

}
⇔

Hm (Xβ) = Gm
{
G−1 [H(Xβ)]

}
, m = 1, ...,M ,

where G−1 denotes the inverse vector function of G.11

10For M = 2, the above definitions of Ci yield, respectively, Ĉ
−1/2
i =

[
Ĝi2

(
1− Ĝi2

)]
−1/2

(MB-QML es-

timation) and Ĉ
−1/2
i = 1 (NLS estimation). As expected, these constitute the weights that intervene in the

artificial regressions used for testing the specification of the fractional conditional mean in the univariate case (see

Ramalho, et al ., 2011, Section 4.1.1).
11A K−vector function of K variables

G ≡ [G1 (Z) , ..., GK (Z)]
′ , Z ≡ (Z1, ..., ZK) ,

where the G functions are continuously differentiable with domain and counterdomain open subsets of RK , is

invertible in the neighborhood of the point z, if and only if the Jacobian determinant of G with respect to Z

is non-zero at z. That is, an inverse vector function, Z = G−1, exists in some neighborhood of G (z). The

assumption that the G functions are injective prevents the Jacobian determinant from ever being zero, so G is
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In general, the components of the vector G−1 [H(Xβ)] are nonlinear functions of its ar-

guments (the elements of Xβ), which can be arbitrarily well approximated by Taylor polyno-

mials of given order. For J large enough, each element of G−1 {name it gm ≡ gm [H(Xβ)],

m = 1, ...,M} can thus be approximated by
∑J
j=1 Pmj, where each Pmj ≡ Pmj (Xβ) represents

a homogeneous polynomial of degree j in the elements of Xβ. That is, Pmj denotes a linear

combination of the powers and cross-products (with degree j) of all the elements of Xβ. For

the m-th component of G−1, one can write Pm1 = (Xβ)′ δm with δm a vector of constants,

Pm2 = (Xβ)′∆m (Xβ) with ∆m a matrix of constants, and so forth. If, for each component

gm, the appropriate constant in δm is equal to one and the remaining constants (in δm, ∆m,

...) are all zero, then gm equals x′mβ (the m-th element of Xβ), in which case G−1 [H(Xβ)]

collapses to Xβ. Thus, the null model is nested within this approximation to H(Xβ), a result

that suggests an easy way to test the statistical validity of the null model.

The approximation to the alternative model can be generally expressed as

Gm
[
x′1β +w′m1ηm1, ...,x

′
Mβ +w′mMηmM

]
, m = 1, ...,M ,

where wml and ηml, l = 1, ...,M , denote, respectively, the vectors of added powers and cross-

products, and associated coefficients. In all generality, this approximation augments the null

model E(ym|X) = Gm(Xβ) by adding powers and cross-products of all the elements of Xβ

to each of its arguments. Therefore, testing the null hypothesis is equivalent to testing the

significance of these (estimated) added terms in the augmented model. Clearly, the number

of additional terms can be quite large, even with small J and M , so a fully fledged version

of the RESET-type test can use a large number of degrees of freedom and be cumbersome to

implement. Consequently, besides choosing a small enough value for J (2 or 3, say), one may

carry out a simplified form of the test, by adopting exclusion restrictions that limit the number

of terms to be added as arguments of G under the alternative hypothesis. For instance, a null

MNL specification with M = 3 and Xβ = [x′β1,x
′β2]

′ can be assessed by testing the joint

significance of η1 and η2 in

exp

[
x′βm + ηm

(
x′β̂m

)2]

∑3
l=1 exp

[
x′βl + ηl

(
x′β̂l

)2] , m = 1, 2, 3,

where β3 = 0 and η3 = 0.

In general, let η denote the full vector of coefficients associated with the added terms;

then, the null hypothesis H0: η = 0 is easily tested with a LM procedure. The LM test

invertible in all its domain. The existence of an inverse function of G is equivalent to saying that the system of

equations Gk = Gk (Z1, ..., ZK) , k = 1, ...,K, can be solved for Z1, ..., ZK , as functions of G1, ..., GK .

16



is performed by considering, for the m−th row of the matrix ∇η′Ĥ
−

i , a vector with typical

element ∇(x′ilβ)
Ĝm (Xiβ)⊗w′iml, where wiml denotes the i-th observation of wml, l = 1, ...,M .

For instance, under the previous null MNL model, with the m−th element ofXβ equal to x′βm,
m = 1, 2, w11 =

(
x′β̂1

)2
, w22 =

(
x′β̂2

)2
, w12 = w21 = 0, η = [η1, η2]

′ and

∇η′Ĥ
−

i =


 Ĝi1

(
1− Ĝi1

)
w11 −Ĝi1Ĝi2w22

−Ĝi1Ĝi2w11 Ĝi2
(
1− Ĝi2

)
w22


 .

4.1.2 Tests of the Multinomial Logit

The RESET test can be used to assess the validity of any null model for the conditional mean of

E (y|X). The following procedures are less general, specifically intended to assess the multino-

mial logit specification.

4.1.2.1 Test of the Multinomial Logit Against the Nested Logit

As previously mentioned, the standard logit model exhibits the IIA property, which implies

zero correlation between fractions associated with any two alternative categories. When this

stringent property does not hold, a more general specification is needed. The nested logit model

is an analytically tractable generalization of the multinomial logit, suitable when proportions

are distributed among alternatives as a result of a hierarchical decision sequence.

The expression of the nested logit model is given in (4). This expression nests the multinomial

logit model, which corresponds to the null hypothesis H0: ηl = 0, l = 1, ..., L. The LM test of

this hypothesis can be implemented by using, for each conditional mean function, the (1× L)

vector of partial derivatives ∇η′Ĥim with typical element

∇ηlĤim = Ĝim


1 (m, l)



log


∑

j∈Sl

exp
(
x′ijβ̂

)

− x′imβ̂



−

∑

j∈Sl

Ĝij



log


∑

j∈Sl

exp
(
x′ijβ̂

)

− x′ijβ̂






 , l = 1, . . . , L,

with 1 (m, l) denoting an indicator function equal to one if alternative m belongs to subset Sl,

and zero otherwise.

4.1.2.2 Test of the Multinomial Logit against the Random Parameters Logit

The random parameters logit expressed in (5) provides another generalization of the basic

multinomial logit model. Frequently, this model involves non-analytical expressions, requiring

simulation or numerical approximation to be computed. As a consequence, approximate models

that facilitate estimation and inference in this context are useful. One such approximation,
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that allows for a full range of correlation structures across alternatives and does not depend

on the form of the distribution of β, is provided by the “heterogeneity adjusted logit” (HAL)

model, proposed by Chesher and Santos Silva (2002). This approximation also nests the basic

multinomial logit, so the approach enables easy assessment of the latter model.

The HAL approximation to the random parameters logit can be expressed as

Hm =

exp

(
x′mβ +

∑M
j=1

∑M
k=1

j,k �=m∗

ηjkw
jk
m

)

∑M
l=1 exp

(
x′lβ +

∑M
j=1

∑M
k=1

j,k �=m∗

ηjkw
jk
l

) , m = 1, ...,M ,

where m∗ is arbitrarily chosen from the set {1, ...,M}, wjkm = 0 for m = m∗ and, for m �= m∗,

wjkm =





1
2 −Gm, j = k = m

0, j = k �= m

−Gj, j �= k = m

−Gk, k �= j = m

0, j �= m,k �= m

,

Gm denotes the multinomial logit conditional mean E (ym|X), and ηjk are parameters. The

choice of m∗ is equivalent to measuring parameter heterogeneity relative to alternative m∗. The

additional variables, wjkm , and the interpretation of the ηjk parameters vary with the choice of

m∗ but the approximate means, Hm, are invariant to this choice (see Chesher and Santos Silva,

2002, Sec. 2, for details).

In this setting, the multinomial logit corresponds to the null hypothesis H0: η = 0, with η

the vector of coefficients of added terms, ηjk. The LM test for the omission of these terms can

then be implemented by using

∇η′Ĥim = Ĝim
(
1− Ĝim

)
w′m,

where wm denotes the vector of added terms, wjkm , in Hm.

4.2 Tests for Other Distributional Assumptions

Testing the correct specification of E (y|X) is clearly the most important issue in fractional

regression models. Nevertheless, once the functional form is selected, one may also examine

whether a given distribution is appropriate for modelling, so as to obtain efficient ML estima-

tors. This, in turn, prompts the convenience of assessing the statistical validity of the selected

parametric model. The standard test for misspecification of a parametric likelihood function

is the information matrix (IM) test introduced by White (1982), which, however, can be very
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burdensome to compute. A less ambitious approach, corresponding to a restricted version of

the IM test and not too difficult to implement, is to resort to a conditional moment (CM) test

(Newey, 1985, Tauchen, 1985) of the moment assumptions imposed by the specification that is

adopted for the conditional distribution of the response variables. In case of rejection of the

null hypothesis, the model imposing the moment assumptions under test should obviously be

discarded and a different model should be entertained.

If the CM test is conducted under the assumption of correct specification of E (y|X), then

typically one will be interested in assessing the validity of the second moment conditions,

E [ (yil −Gil) (yim −Gim)− αiGil (δlm −Gim)|Xi] = 0, 1 ≤ l ≤ m ≤M − 1,

where αi is given by 1/ (φ+ 1) (Dirichlet), 1/ni (multinomial) or (φ+ ni) / [(φ+ 1)ni] (Dirichlet-

multinomial). The OPG version of the test statistic can be computed as N times the uncentered

R2 from the auxiliary OLS regression

1 = m̂′
iλ1 + ŝ

′
iλ2 + error,

where m̂i ≡m
(
yi,xi, ni, β̂, φ̂

)
denotes the i-th observation of the vector of moment conditions

imposed by the model under consideration, ŝi refers to the i-th element of the corresponding

score vector, and (̂·) now denotes evaluation at ML estimates. The expressions of the individual
contribution to the score vector are given by, respectively,

Dirichlet

si =


 ∇φ logLDi
∇β logLDi


 =


 Ψ(φ) +

∑M
m=1 {Gim [log yim −Ψ(φGim)]}

∑M
m=1 [φ log yim −Ψ(φGim)]∇βGim


 ,

Multinomial

si = ∇β logLMi = ni

M∑

m=1

yim
Gim

∇βGim,

Dirichlet-multinomial

si =


 ∇φ logLDMi
∇β logLDMi


 =


 Ψ(φ)−Ψ(φ+ ni) +

∑M
m=1Gim [Ψ (φGim + niyim)−Ψ(φGim)]

φ
∑M
m=1 [Ψ (φGim + niyim)−Ψ(φGim)]∇βGim


 ,

where Ψ(·) denotes the digamma function (first derivative of the log-gamma function, log Γ (·))
and

∇βGim =
M∑

l=1

g
(l)
imxil, m = 1, ...,M ,

with g
(l)
im ≡ ∇(x′ilβ)

Gim, the partial derivative of Gim with respect to the l-th component ofXiβ.

Under the null hypothesis of correct moment specification, the test statistic is asymptotically
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distributed as a chi-squared random variate with number of degrees of freedom equal to the

dimension of the m̂i vector.

The multinomial model can also be tested against the DM, as the latter nests the former

model under H0: δ ≡ 1/φ→ 0+. Given that the Wald and likelihood ratio tests’ null asymptotic

distributions are affected by the location of the null hypothesis on the boundary of the parameter

space, also in this case it is easier to implement an LM test, which retains its usual asymptotic

chi-squared null law.

5 Monte Carlo Study

This section uses Monte Carlo methods to illustrate the finite-sample performance of most of the

estimators and tests discussed throughout this paper. In the first subsection, all experiments

involve estimation (by NLS, QML or ML) of a conditional mean function which is correctly

specified as MNL. The second subsection illustrates the small sample size and power of the

conditional mean tests discussed in the paper when the null hypothesis is a MNL. All experiments

are based on 5,000 replications of samples of size N = 100, 250, 500 or 1000, with computations

performed using the R software.

5.1 Performance of Alternative Estimators

The experiments in this subsection assume correct specification of E (y|X) as MNL withM = 5

shares, thus involving only alternative-invariant covariates. Formally, the (‘true’ and specified)

model for the conditional mean of the dependent variables can be expressed as

Gm =
exp (x′βm)∑3
l=1 exp (x

′βl)
, (16)

where x ≡ (1, x2)
′, with conformable parameter vectors βm ≡ (β1m, β2m), m = 1, 2, 3, 4, and

β5 = 0. The variable x2 is newly drawn in each replica, obtained as i.i.d. draws from a displaced

Exponential(1) distribution with mean zero.

Different parameter values are considered in each of two different designs (named A and B)

for βm, m = 1, 2, 3, 4. While β2m = 1, m = 1, 2, 3, 4, in both designs, the values assigned to β1m

are chosen in order to yield two very distinct distributions of shares for the different alternatives.

As can be seen from Table 1, the mean shares for the five alternatives are identical in Design A

and quite unbalanced in Design B, where Gm ≃ 2Gm−1, m = 2, 3, 4, 5.

The observations on y are obtained as i.i.d. draws from three different distributions: the

Dirichlet p.f. presented in (10), with φ ∈ {10, 20, 30, 40, 50}; the multinomial p.f. presented
in (12), with Gm instead of πm and n obtained as an i.i.d. draw from a discrete uniform
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Table 1

Experimental Designs

β11 β12 β13 β14 Mean shares (%)∗

Design y1 y2 y3 y4 y5

A 0.23 0.23 0.23 0.23 20.0 20.0 20.0 20.0 20.0

B −2.72 −2.02 −1.32 −0.63 3.2 6.4 13.0 25.8 51.6

* Mean shares obtained from a simulated sample of size 100,000.

p.f. U (1, nmax), where nmax ∈ {11, 21, 31, 41, 51}; and the Dirichlet-multinomial mixture p.f.
presented in (14), with n and φ defined as in the previous experiments. In each case, the values

of φ and/or n imply different degrees of variability of the response variables and, thus, are bound

to influence the precision of the various estimators.

For the case of a Dirichlet-distributed response variable and N = 250, Figure 1 displays

the root mean squared errors (RMSE) of three alternative estimators of β2m, m = 1, 2, 3, 4:

NLS, MB-QML and Dirichlet-ML (D-ML), all consistent under the two designs considered. As

expected, in all cases D-ML exhibits an efficiency advantage over the other two estimators, which

may be substantial for smaller values of φ (i.e. when y displays more variability) but is largely

attenuated for higher values of φ. NLS performs invariably worst, namely for small values of

φ, proving to be the method whose estimates’ precision is most sensitive to the variability of

the dependent variables. The precision of the estimates is also very sensitive to the relative

importance of each alternative: in Design B, irrespective of the estimator considered, the RMSE

of the estimates of the parameters associated with alternatives exhibiting lower mean shares are

often much larger.

[Figure 1 about here]

In the second experiment, where the response variables are obtained as integers ratios from

a conditional multinomial distribution, the conditional mean parameters are estimated by NLS,

MB-QML, D-ML, multinomial-based ML (MULT) and Dirichlet-multinomial ML (DM-ML). For

the D-ML estimator to be computed, the samples were modified by replacing the zero and unit

values of the responses with, respectively, 10−6 and 1 − 10−6. Note that the D-ML estimator

is expected to be inconsistent in this case, even if no boundary values were observed. Figure 2

plots the RMSE of the parameters’ estimates, for the five different values considered for nmax.

[Figure 2 about here]
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With regard to the relative performance of NLS and MB-QML methods, once again NLS

is the least efficient. The MULT (ML) estimator appears more efficient than MB-QML, which

is due to the fact that the former estimator makes use of potentially useful information (on n)

that is ignored by the latter. Incidentally, the closeness of the MULT and DM-ML estimators’

performance is also expected because the latter method nests the former. However, unless there

is reason to suspect that the data suffer from extra-multinomial dispersion, the MULT estimator

should be preferred to DM-ML. Otherwise, with no extra-multinomial dispersion (the case here),

convergence of the DM-ML method is often difficult to achieve and (understandably) always for

quite large φ estimates (see the remarks on eq. (14)). As a practical consequence, difficulty

in obtaining DM-ML estimates may be taken as indication that there is simply no unobserved

heterogeneity to account for, so the MULT or MB-QML approaches may well suffice. In what

concerns the performance of D-ML, its estimates are biased, as expected. In fact, the difference

between its RMSE and that of the other estimators is entirely due to its bias.

Figure 3 sums up the RMSE results of the experiment where the response variables have a

conditional Dirichlet-multinomial distribution. The conditional mean parameters are estimated

with the same five methods used in the previous experiment (zeros and ones are again modified

in the case of D-ML estimation). The first two rows of Figure 3 refer to the case where φ

is set to 10 and nmax ∈ {11, 21, 31, 41, 51}, while in the last two rows nmax is set to 11 and

φ ∈ {10, 20, 30, 40, 50}. Note that for the same values of Gm and n, the variances of the

dependent variables are now considerably higher than in the previous experiment (in some

cases, they can be more than five times higher — compare expressions (15) and (13))

[Figure 3 about here]

Again, the inconsistent D-ML estimator fares much worse than the consistent estimators

and the NLS estimator displays the highest RMSE of the remaining estimators. The MULT

estimator outperforms MB-QML in all cases, so use of the available information on n seems

advantageous in what concerns QML methods. However, the best performer is DM-ML, which

shows again the importance of using ML estimators whenever reliable information on the data

distribution is available. Nevertheless, the gains in precision relatively to the MULT estimator

are relatively unimportant in most cases.

Finally, in Figure 4 the performance of alternative estimators under different sample sizes,

N ∈ {100, 250, 500, 1000}, is investigated for some selected cases of Design B. In most cases, the
RMSE’s of all estimators decrease substantially as N grows, with the efficiency advantage of

ML over QML and NLS estimation being much less relevant for large sample sizes. Actually, for

N large, using ML instead of QML produces sizeable gains in precision only for the regression
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coefficients of the alternatives displaying very low mean shares. On the other hand, note how

the estimates produced by NLS are often much less precise than those of their competitors, even

for N = 500. This is mainly a consequence of the extreme values that NLS occasionally yields.

For the cases where the responses variables are not Dirichlet-distributed, the D-ML estimator

displays a stable RMSE across different sample sizes, as a result os its inconsistency.

[Figure 4 about here]

5.2 Performance of Alternative Conditional Mean Tests

Next, the performance of alternative tests for conditional mean assumptions is investigated in

the particular case where the null hypothesis is the MNL model (16) and the responses have

a Dirichlet distribution with nuisance parameter φ ∈ {10, 50}. The three specification tests

proposed in Section 4.1 are included in this study: the RESET test, which is a general test for

model misspecification; and the tests designed to be sensitive to departures from the multinomial

logit in the direction of the nested logit or the random parameters logit, which are denoted by

NESTED and CSS, respectively.

For all tests, two different versions are computed; one more general, indexed by the subscript

‘g’, and a simplified version that results from the adoption of some exclusion restrictions, indexed

by the subscript ‘s’. For the RESET test, only the square of the fitted power x′β̂m is added

to equation m and the associated parameters ηm are allowed to differ across alternatives in one

case (RESETg) or are constrained to be identical across equations in another case (RESETs).

For the NESTED statistic, it is assumed that the practitioner thinks that the alternatives

may be grouped in two nests, one grouping two alternatives and the other the remaining three

categories. With this information, two versions of NESTED are implemented; one that considers

all the ten possible combinations of such two nests (NESTEDg), and another that is based on

the following two nests about which the empirical researcher is particularly suspicious: S1,

containing alternatives m = 1, 2; and S2, containing alternatives m = 3, 4, 5 (NESTEDs).

Finally, the full version of the CSS test is implemented (CSSg) as well as a simplified version

that only assumes randomness of the parameters β21 and β22, independently distributed from

each other (CSSs).

All test versions are implemented as LM statistics based on MB-QML estimators and have

asymptotic chi-square distributions. However, the number of degrees of freedom of their distri-

butions is very different: it is 1 for RESETs, 2 for NESTEDs and CSSs, 4 for RESETg, 10

for CSSg and 20 for NESTEDg. Especially in small samples, the high number of degrees of

freedom displayed by the general versions of the tests may affect substantially their finite sample
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properties. However, being more general, the full versions of all tests are sensitive to a wider

range of model misspecifications.

5.2.1 Empirical size

To investigate the size properties of the tests in finite samples, the data are again generated

as in the experiments of the previous section. Figure 5 displays the percentage of rejections

of the (correct) null hypothesis for a nominal level of 5% for both Designs A and B and N ∈
{100, 250, 500, 1000}. The horizontal lines represent the limits of a 95% confidence interval for

the nominal size.

[Figure 5 about here]

Figure 5 reveals that the general versions of the tests are much more conservative than

the corresponding simplified versions. In fact, CSSg and NESTEDg are undersized for all

the sample sizes simulated and RESETg is also undersized in most cases. Unlike the general

versions, the performances of the simplified variants of each test are very heterogeneous. The

NESTEDs test is undersized in all cases. The CSSs test performs relatively well in Design A

but is undersized in Design B in most cases. The RESETs test is clearly the best performer,

displaying an empirical size that is not significantly different from the nominal level of 5% (most

cases) or only slightly higher.

5.2.2 Empirical power

The power properties of the tests are examined considering four distinct types of misspecification

sources. In the first two cases, the functional form adopted for the structural model is the correct

one but a relevant covariate is omitted or mismeasured. In the remaining two experiments,

the correct structural model is either a nested logit or a random parameters logit. All the test

variants are applied in the four cases, even the NESTED and CSS statistics that were constructed

to be particularly sensitive to the last two types of model misspecification, respectively. The

results are summarized in Figure 6 for N = 250.

[Figure 6 about here]

The first row of Figure 6 considers the case of the omission of a quadratic term of an included

regressor. In particular, the conditional mean of the responses variables is still generated from the

MNL model (16), but now x ≡
(
1, x2, x

2
2

)′, βm ≡ (β1m, β2m, β3m), β3m = θ, where m = 1, 2, 3, 4

and θ ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.25}, and β35 = 0. In general terms, the power of the tests
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increase as θ (i.e. the relative importance of the omitted covariate) and φ (i.e. the precision of

the parameter estimates) increase, as could be anticipated. Unsurprisingly, the RESET tests are

clearly the best performers in these experiments, with RESETs displaying the highest power,

which is a consequence of β3m being constant across alternatives, as assumed by this RESET

version. In contrast, the specific versions of the NESTED and CSS statistics exhibit very low

power, while their general variants are able to detect that some form of misspecification is present

in the estimated model but display in general much less power than the RESET tests.

The case of covariate measurement error is analyzed in the second row of Figure 6. The

conditional mean of the responses variables is generated from the MNL model (16) as in the size

experiments, but estimation is based on x∗ ≡ (1, x∗2)
′, where x∗2 = x2+u. The measurement error

u is generated from a Student-t distribution with five degrees of freedom, scaled to have variance

θ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}. Again, as expected, the most powerful tests are the two RESET
versions. Because the measurement error affects all share equations in a similar way, RESETs

performs better than RESETg. Regarding the other tests, the conclusions are relatively similar

to the previous experiments, with the main difference being that both CSS versions have very

low power in Design B.

A very different picture appears in the third row of Figure 6, where the data are generated

according to the nested logit specification (4). The same nests S1 and S2 defined above for

constructingNESTEDs are employed to generate the data, with the parameter ηl, l = 1, 2, that

appears in (4) being set to θ ∈ {−0.75,−0.6,−0.45,−0.3,−0.15, 0}. Now, the best performers are
the simplified versions of the NESTED and CSS tests (recall that the latter assumes randomness

of only β2m, m = 1, 2, and that nest S1 contains alternatives m = 1, 2), which, unlike in the

previous experiments, are more powerful than their corresponding generalized versions. Also

in contrast to the previous two experiments, RESETg is now more powerful than RESETs,

which reflects the fact that the simulated misspecification does not affect each share equation in

a similar way. More importantly, note that RESETg does not lag far behind the NESTEDs

and CSSs tests and performs similarly to, or better than, NESTEDg and CSSg.

Finally, in the last row of Figure 6 the data are generated assuming the random parameters

logit specification (5) for E (y|X). As in the construction of CSSs, only β2m, m = 1, 2, are

random, having independent distributions. In particular, we set β2m = 1 ± θ, m = 1, 2, with

θ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. Similar conclusions to the nested logit case are achieved, with the
RESET tests being again more powerful than NESTEDg and CSSg. As information on the

precise form of the nests or parameter randomness is often not available, this promising behaviour

of the RESET tests illustrates the usefulness of general misspecification tests also in this context.
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6 Concluding Remarks

This paper presents alternative estimating and testing empirical strategies for cross-section mul-

tivariate fractional regression models. These include models of the conditional mean, estimable

through NLS or QMLmethods, and fully parametric regression models, estimable by ML. Among

QML methods, the multivariate Bernoulli stands out as a tool of choice, due to its user friendli-

ness and appropriate statistical properties, requiring only correct specification of the conditional

mean of the response variables. In any case, when the data under study consist of ratios of ob-

servable integers, the multinomial and multinomial-based mixture models are viable alternatives

which may provide more efficient estimators. The multinomial and the Dirichlet-multinomial

mixture can also prove useful when the data contain boundary observations, which are incom-

patible with the Dirichlet-ML approach.

The simulation study included in the paper gives evidence of the relative advantage of QML

(multivariate Bernoulli and multinomial) approaches, which, besides being easy to use, compete

well with the ML estimators (Dirichlet and multinomial-Dirichlet), even when the latter are

implemented under fully correct distributional assumptions, especially when the sample size is

large, the responses variables are not too dispersed and some fractions are not too small in

relative terms. The same cannot be said of the NLS estimator, which is found to behave very

poorly in several situations. Thus, namely given the availability of the multivariate Bernoulli

and multinomial QML estimators, use of the NLS method seems inadvisable.

The article also discusses the specification analysis of multivariate fractional regression mod-

els, with an emphasis on tests of the conditional mean specification. Along with tests that are

applicable to any conditional mean functional form (RESET-type tests), specific tests of the

multinomial logit model are also proposed. All conditional mean specification tests are pro-

posed as LM tests, implemented upon QML estimation and using artificial OLS regressions.

The Monte Carlo study reveals that RESET-type tests are particularly useful in this context,

given its simplicity and good performance across a range of possible model misspecifications.

The present text has suggested several hints for future related work. Among others, the

extension of some of the proposed techniques to multivariate fractional panel data stands out

as an important avenue for future research.
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Figure 1: RMSE comparison of alternative estimators for multivariate fractional regression models
(Dirichlet−distributed response variable; N = 250)
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Figure 2: RMSE comparison of alternative estimators for multivariate fractional regression models
(Multinomial−distributed response variable; N = 250)
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Figure 3: RMSE comparison of alternative estimators for multivariate fractional regression models
(Dirichlet−Multinomial−distributed response variable; N = 250)
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Figure 5: Empirical size (Dirichlet−distributed response variable)
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Figure 6: Empirical power (Dirichlet−distributed response variable; N = 250)


