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Abstract

Background—The modified Rankin scale (mRS) is the most common functional outcome 

assessed in stroke trials. The proportional odds model is commonly used to analyze this ordinal 

outcome but it requires a restrictive assumption that a single odds ratio applies across the entire 

outcome scale.

Aims—To model the effect of tissue-type plasminogen activator on ordinal mRS, test model 

assumptions, and compare fits and predictive ability of the statistical models.

Methods—Several ordinal regression methods are presented and applied to a re-analysis of the 

1995 NINDS tissue-type plasminogen activator study. Violations of the proportional odds 

assumption are demonstrated using graphs and statistical tests, and the partial proportional odds 

model is introduced and recommended as an alternative for the analysis of mRS.

Results—The partial proportional odds model relaxes the assumptions about treatment effect on 

the ordinal outcome scale and provides a better fit to the data than the commonly used 

proportional odds model (likelihood ratio test chi square = 8.05, p=0.005). It provides easily 

interpretable odds ratios and it is able to detect efficacy at the lower end and a lack of efficacy at 

the upper end of the mRS scale. Further, it provides lower prediction error than the proportional 

odds model (0.002 versus 0.005).

Conclusions—Assuming proportional odds when it does not hold can mask differential 

treatment effects at the upper end of the ordinal mRS scale and has implications for reduced power 

when studies are designed under this assumption.
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Introduction

The modified Rankin Scale (mRS), one of the commonly used outcome measure in acute 

stroke trials, is a 7-point ordinal measure ranging from 0 (no symptoms) to 6 (dead) (1-3). 

Although acute neurological clinical trials collect ordinal outcome data, trials are usually 

designed and analyzed based on a dichotomized outcome obtained by collapsing them into 

“good” and “bad” categories (4). This does not allow for the examination of treatment 

effects at finer gradations of the scale and in some situations decreases the statistical power 

of the study. A meta-analysis by the Optimising Analysis of Stroke Trials (OAST) 

Collaboration showed that statistical approaches that analyze the data using the ordinal 

functional outcomes in their original form are more efficient than those applied to 

preprocessed data that do not exploit the ordinality (4). Specifically, when assessed by how 

many trials were statistically significant, those tests which do not collapse the data into 

groups out-performed the other approaches (i.e., 26% of non-collapsed versus 9% of 

collapsed trials were significant).

Recently, alternatives have been proposed using the full ordinal scale in the analysis under 

the assumption of proportional odds (1, 4-6). Under the proportional odds assumption the 

odds ratio comparing t-PA to placebo in patients with mRS of 0 versus 1 – 6, then 0 – 1 

versus 2 – 6, and so on, are assumed to be the same. The analysis under this assumption is 

performed by fitting a model to the cumulative logits, called the proportional odds model 

(POM). If the assumption of proportional odds holds, fitting the POM is parsimonious and 

does not require a strict dichotomy based on an arbitrary cut off, and can increase statistical 

power over a dichotomous analysis. However, if the proportional odds assumption fails to 

hold, this analysis has the capacity to mask a lack of or harmful effects at one end of the 

ordinal outcome spectrum.

The statistical test for verifying the assumption of proportional odds (score test) is not well-

powered (7). Consequently, the justifications for using the POM are not satisfactory. 

Consider the data from the NINDS t-PA trial (8). The score test for proportional odds results 

in a p-value slightly above the 5% significance level (p-value = 0.06). In Figure 1 the 

cumulative log odds of each mRS score for t-PA versus placebo are shown. The difference at 

each point on the ordinal scale (for each value on the x-axis) is equivalent to the log odds 

ratio. If the proportional odds assumption held, the line for t-PA would be parallel to the line 

for the placebo indicating a constant difference in the cumulative log odds. However, since 

the lines intersect, the assumption of proportional odds may be inappropriate. In such cases, 

alternative approaches that use the entire spectrum of the ordinal mRS scale should be 

considered.

Several acute stroke trials such as the SAINT I and II pooled analyses have utilized 

assumption free ordinal tests such as Cochran Mantel Haenzel and van Elteren test for 
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stratified data that use the whole distribution of mRS and avoid the potential issue of non 

proportional odds (e.g., 9,10), and are well-established alternatives to proportional odds 

models. These authors have also drawn attention to the different results obtained by using 

assumption free tests versus those based on the proportional odds model. In fact, the ESO 

Working Group on Outcomes distinguishes between statistical testing (not necessarily 

invoking the proportional odds assumption) and the expression of effect size (perhaps with 

common odds ratio). Howard et al. discuss the violation of the assumption of proportional 

odds in the context of the NINDS t-PA and SAINT 1 trials for acute stroke, and propose an 

alternative nonparametric permutation test for the analysis of the ordinal mRS that 

circumvents the need for modeling and hence any assumptions regarding proportional odds 

(11). However, the assumption free and non parametric approaches do not result in odds 

ratios, which are commonly understood by a clinical audience and in addition, these 

approaches do not easily allow one to control for covariates, which can be important if there 

are baseline group imbalances.

This article proposes a model-based alternative for analyzing ordinal outcomes that does not 

require the proportional odds assumption. The approach is based on a well-established 

theoretical framework in the statistical analysis of categorical data (12-14). Applications of 

alternative ordinal regression models have been mostly absent from the acute stroke trials 

literature. The purpose of this article is therefore to introduce commonly used and alternative 

approaches to analyzing the mRS using the entire ordinal scale, illustrate their use on stroke 

data, and provide various presentation methods to guide the assumptions and interpretations 

of these models. Specifically, two alternative logistic regression models that have been 

widely studied in the statistical literature, namely the partial proportional odds model 

(PPOM) and the adjacent categories logit (ACAT) model, which does not require strong 

assumptions, will be introduced (12, 13). The NINDS t-PA trial data will be used to illustrate 

them.

METHODS

Trial Data

The National Institute of Neurological Disorders and Stroke Tissue Plasminogen Activator 

trial was performed in 1995 to test effectiveness of t-PA versus placebo on four outcomes - 

the Barthel index, modified Rankin scale, Glasgow outcome scale, and National Institutes of 

Health Stroke Scale (NIHSS) in 624 patients at 3 months. The primary analysis using a 

generalized estimating equations approach resulted in a significant global test score for the 

four outcomes at 3 months (15). Results indicated a sustained improvement in t-PA versus 

placebo groups and no difference in mortality across groups. Specifically, much attention 

has been paid to analysis of the mRS outcome. The ordinal regression analyses of mRS 

presented in this paper are based on 581 completers of the study (those who had mRS data at 

3 months).

Proportional Odds Model

The proportional odds model is a commonly used generalization of logistic regression, 

where a single odds ratio (OR) is calculated by summarizing ORs that are cumulatively 
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calculated over the mRS scale. The summary OR is a clinically interpretable parameter that 

represents “the odds of a higher versus lower mRS score in the t-PA versus placebo group” 

that holds for any cut point of the mRS scale. The model is favorable for presentation 

because it parsimoniously describes the data with only a single odds ratio but is meaningful 

only if the proportional odds assumption is valid.

The proportional odds assumption is often tested via a global score test that is routinely 

produced by statistical software (16, 17). However, this test lacks power and therefore often 

fails to reject when the alternative hypothesis of non-proportional odds is true (7), for 

example, when the non-proportionality exists for some portion of the scale, as illustrated for 

the t-PA data in Figure 1. Often, score test results are not reported in clinical journals, 

irrespective of their significance (18).

Partial Proportional Odds Model

The partial proportional odds model (PPOM) can be used in two situations. The first 

situation is where one covariate but not another meets the assumption of proportional odds 

(7, 13, 19). The second situation, which is more relevant for the NINDS t-PA data, is where 

a “linear deviation” from the proportional odds assumption occurs as one moves up the mRS 

scale (13, 14). Linear deviation simply means a violation of the proportional odds 

assumption in one direction. To adjust the POM for this scenario, an additional term using a 

second parameter that allows for the odds ratios to increase proportional to the outcome 

scale is introduced. The PPOM is a special and more parsimonious case of a fully (non 

parsimonious) nonproportional odds model. Specifically, in the current case, it addresses the 

situation where the cumulative logits cross, as shown in Figure 1. The appropriateness of the 

PPOM model over the POM is formally tested either by testing the significance of the added 

(second) parameter (using a Wald test), or equivalently by using a one degree of freedom 

likelihood ratio test (LRT). A significant p-value on these tests provides evidence against the 

proportional odds, favoring evidence of a linear deviation from proportional odds.

Adjacent Categories Logit Model

Like the POM and PPOM, the adjacent categories logit model (ACAT) assumes there is an 

inherent ordering of responses but does not require the assumption of proportional odds. 

Instead, separate odds ratios are simultaneously calculated for each adjacent category of 

response in relation to covariates. This approach is natural when one wants to describe 

treatment effects in terms of odds relating to particular response categories (13). For 

example, one may be interested in comparing how well the treatment works for those in 

mRS category 1 in reference to 0, or category 2 in reference to 1, and so on. Essentially, this 

could be used as a surrogate for measuring the effect of the treatment in reducing patients’ 

mRS score by one category. Further, the entire matrix of pairwise ORs can be computed 

under this model, which allows for comparisons of reduction in mRS of two or more 

categories. Unlike the POM, the ACAT model makes no additional assumptions about the 

mRS response scale beyond ordinality, consequently the model has the disadvantage of 

being less parsimonious (requiring the interpretation of 6 different odds ratios for each 

adjacent category of the 7 point ordinal scale). However, it is a well-studied alternative 

approach for situations where neither the POM nor PPOM fit the data well. A reduced 
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ACAT model that assumes the same linear logit effect applies simultaneously for all pairs of 

adjacent categories is often fit as a more parsimonious form of the ACAT. The ACAT model 

and the POM or PPOM cannot be compared by likelihood ratio tests, and therefore the 

adequacy of ACAT is determined by comparing information criteria (such as Akaike 

information criteria, AIC, and Bayesian information criteria, BIC) that measure the deviation 

of unknown “true” model, from the fitted model. Smaller values of AIC and BIC indicate 

better fitting models.

Model Comparison

Model comparison is based on both the fit as well as the predictive ability of the models. 

This is presented through graphs, through formal likelihood ratio hypothesis tests (for nested 

models) and AIC and BIC (for non-nested models), and through the prediction error 

estimated by the square of the difference between the observed probability and the estimated 

probability. Odds ratios and 95% confidence intervals (CI) are presented as OR [95% CI]. 

Odds ratios are also transformed to the probability scale for ease of interpretation.

Results

The anti-conservative score test for the proportional odds assumption resulted in a borderline 

p-value (p=0.06). Further, it is apparent from Figure 1 that the assumption is not appropriate. 

To further substantiate this, odds ratios for all collapsed mRS categories are shown in Figure 

2. If the assumption of proportional odds held, the odds ratios would be constant across all 

possible mRS categorizations. However it is clear from Figure 2 that the odds ratios show an 

increasing trend across the categories (with ORs increasing from 0.51 to 0.97), indicating 

that they are not constant and therefore a summary odds ratio produced under the POM is 

questionable.

In Table 1 the odds ratios with 95% CI resulting from the POM and PPOM models are 

presented. The summary odds ratio from the POM indicates the odds of a higher mRS in the 

t-PA versus placebo group is 0.81 [0.71, 0.94], demonstrating a protective effect of t-PA. Via 

the introduction of a second parameter for linear deviation, the PPOM model results in the 

six odds ratios in Table 1, corresponding to the six possible categorizations. The PPOM odds 

ratios are closer to the observed odds ratios shown in Figure 2 than the POM odds ratio. The 

PPOM results indicate that the t-PA has a significant benefit irrespective of whether 0, or 0-1 

or 0-2 is defined as the “favorable” outcomes to dichotomize the data. These 

dichotomizations are widely discussed in the literature, in the context of responder analyses 

or ‘sliding dichotomy’ (20).

The POM and PPOM are formally compared using likelihood ratio tests (Table 2). Since 

there is only one additional parameter in PPOM, the test statistic is a chi-square with one 

degree of freedom (df). The chi-square value is 8.05(df=1) (p = 0.005), which is highly 

significant at 5% level indicating PPOM provides a significantly better fit than the POM. 

Thus the PPOM is better able to replicate the true underlying treatment effects.

The fitted probabilities from a well-fitting model should replicate the observed probabilities. 

Figure 3 displays the observed and fitted probabilities of being in each mRS category at 3 
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months for the placebo and t-PA groups. Observed probabilities are calculated from the 

actual dataset while fitted probabilities are calculated from fitting the respective models to 

the data set. Figure 3 indicates that the fitted probabilities obtained from the PPOM better 

replicate the observed (true) data. This is further substantiated by the smaller prediction 

errors resulting from the PPOM (0.002 versus 0.005). The reason for the better fit of the 

PPOM is that in order to exploit the proportional odds assumption of the POM for the t-PA 

data, the fitted probabilities for t-PA and placebo groups are forced by the POM to be closer 

together across the spectrum of mRS as compared to the observed probabilities, resulting in 

a substantial overestimation of a treatment effect at the higher end of the spectrum.

The ACAT odds ratios for adjacent categories are presented at the bottom of Table 1. In 

terms of the AIC and BIC (Table 2), the ACAT is comparable to the POM, which is not 

surprising since AIC penalizes for the large number of parameters in the ACAT model. The 

ACAT model results are presented below. The easily interpretable category-wise odds ratios 

offer some additional clinical insights. Although the study was not powered under an ACAT 

model, given the current sample size, the only significant odds ratio under this model is the 

one comparing mRS category 2 to category 1 (OR=0.42 [0.22, 0.79]). One could interpret 

this to suggest that the most relevant impact of t-PA is to result in the reduction in odds of 

observing a category 2 versus category 1 on the mRS scale at 90 days, which is arguably one 

of the most important mRS contrasts. The effects of t-PA versus placebo for other adjacent 

categories are insignificant, demonstrating no effect of t-PA for some pairwise comparisons. 

The pairwise odds ratios resulting from this adjacent categories regression confirm a reversal 

in direction when comparing categories at the higher end of the mRS spectrum. In Table 3, 

the upper-triangle of the entire symmetric matrix of pairwise comparisons is presented for 

completeness. The relative merits of this model is that it is has fewer assumptions and 

pairwise comparisons can be represented in matrix form; however, it is underpowered in 

most scenarios.

In the interest of parsimony, a reduced ACAT model was fit, which assumes the same effect 

applies to all pairs of adjacent categories was also fit to the data. This model also has only 

one odds ratio describing effects of treatment on adjacent categories (e.g., one OR for 1 vs. 

0, 2 vs. 1, etc). The log likelihood for this model is approximately the same as that for the 

POM but the AIC and BIC are larger indicating that this model does not provide a better fit 

to the data than any of the other models considered in Table 2. This is not surprising since 

one summary odds ratio for all adjacent categories is impractical since these ORs are not in 

the same direction.

Conclusion

In most stroke trials, ordinal outcomes are analyzed by dichotomizing the outcome (21). 

Dichotomizing discards information and therefore could be less powerful than the methods 

that model the probabilities using the whole spectrum, under appropriate assumptions. For 

outcomes measured on an ordinal scale, when the assumption of proportionality is not 

violated, the proportional odds model analysis is the most powerful and recommended 

option in addition to or in place of the use of assumption free tests (9-11). We note that the 

assumption was not violated in the majority of acute stroke trials (1).Under appropriate 
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assumptions the POM, in straightforward trial design approaches, results in an easily 

interpretable common odds ratio, and a tighter confidence interval than other ordinal 

methods or approaches that dichotomize the ordinal scale. However, any assumptions made 

in the analysis should be scrutinized carefully using appropriate hypothesis tests and 

diagnostic tools. The acceptance of the proportional odds assumption in the NINDS t-PA 

trial was based on a marginal significance of the score test that rightly drew criticism in 

Howard et al (11).Authors in other clinical research fields have also cautioned against the 

use of the proportional odds model when the assumption of proportionality is violated (18, 

22, 23). The violation of this assumption was supported in this paper by the graphical 

illustrations of a deviation from proportional odds. Several alternatives to proportional odds 

model, such as the sliding dichotomy based on a baseline covariate (20), assumption free 

tests (10), or the randomization test (11), have been proposed in the literature. While these 

approaches address the non-proportionality of the odds, they fail to exploit all the 

information provided by the ordinal scale of the outcome measure, which is not optimal in 

all applications (4).

Using the analysis of the NINDS r-tPA study the article demonstrates that fitting a 

proportional odds model and reporting a summary OR can potentially mask contradictory 

effects observed at the upper end of the mRS scale. Alternatively, partial proportional odds 

models and adjacent category logit models should be considered. For the current data, these 

alternatives are demonstrated to fit better and indicate a significant effect of t-PA at the lower 

end of the mRS scale but a diminishing effect of t-PA at the upper end of the mRS scale that 

was undetectable under other approaches. Moreover, the adjacent categories logit model 

allows one to fill in a table of odds ratios for every possible category-wise mRS comparison, 

which is helpful for clinicians wishing to risk-stratify patients.

The results presented in this paper are potentially consistent with prior evidence 

demonstrating intravenous t-PA to be less effective in patients with severe baseline deficits 

and high NIHSS; the one year outcome data of the 1995 NINDS study (8) found a benefit 

for t-PA versus placebo, with one exception, namely the subgroup of patients with NIHSS 

scores of more than 20 at baseline (24). Patients with high NIHSS often have proximal 

vessel occlusions (carotid artery or proximal middle cerebral artery) known to be less 

susceptible to the thrombolytic effect of intravenous t-PA (25). The alternative approaches 

presented in this paper provide numerical quantification of the efficacy of t-PA among the 

different mRS groups via the application of an appropriate statistical model. This is not 

meant to discourage consideration of the use of t-PA to eligible patients even in the higher 

spectrum of the NIHSS scale, but to better inform clinical decision making and future 

clinical trial design and interpretation. We emphasize that results of any model must be 

interpreted considering the clinical importance of the mRS grades. The difference between 

mRS of 0 versus 1 could be quite different in societal terms from the difference between 

mRS of 4 versus 5 thus it should be underscored that under the PPOM, t-PA is effective in 

the most clinically important region of the scale.

Due to the possibility of misclassification of the ordinal mRS scale after treatment, it is 

arguable that the average treatment effects for the sample or even treatment effects derived 

from dichotomized outcomes could be more relevant. We note that ordinal regression has 
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also been extended to the setting of such misclassification error, and could therefore be 

considered if misclassification is a concern (26-27).

In light of the fact that researchers have recently proposed that design of acute stroke trials 

are based on ordinal outcomes the current message is timely (2,3). Specifically, Bath et al. 

(1) showed that sample size needed for ordinal outcome data are in general lower and 

therefore they argue that the whole spectrum should be considered, especially for acute 

stroke trial designs. Since such a design would subsequently necessitate the use of statistical 

approaches for ordinal outcomes, it will be important to assess in the design stage whether 

the proportional odds assumption is expected to hold after the data have been collected. The 

reason is that if a study is powered on an ordinal outcome assuming proportional odds, the 

assumption would have to hold for the treatment and for all covariates in the regression 

model. If the assumption consequently proves to be wrong for some or all covariates, power 

will be sacrificed and therefore the study may not lead to definitive conclusions. Thus to 

specify the mRS scale (or another ordinal scale such as the Barthel index or Glasgow 

Outcome Scale) as a primary outcome in acute stroke trials, there must be strong a priori 

insight on the legitimacy of the proportional odds assumption. The alternative proposed in 

this article, the PPOM could also be considered at the design stage, and it would also be 

straightforward to develop simulation-based power analyses under different scenarios to 

determine the sample size that adequately powers the study for the ordinal analysis of 

interest. Currently, sample size under a proportional odds model is obtained by specifying 

the single odds ratio (often from preliminary data)and estimating the treatment group-

specific proportions from that odds ratio (i.e., marginal cell probabilities), from which the 

sample sizes are estimated (28-29). In the case of PPOM, an odds ratio and a linear deviation 

from that odds ratio need to be specified from previous trials or clinical experience in acute 

stroke. From there, it would be similarly straightforward to calculate the expected 

proportions in each treatment group from which the sample sizes could be estimated.

Although only one example is presented here, it is important to note that the proportional 

odds assumption has been questionable in other acute neurological studies as well. For 

example, in the intent-to-treat analysis of the SAINT 1 trial, the p-value for the test of 

proportional odds was also marginal at 0.059. In light of this borderline finding, other 

diagnostic tools could have been used to scrutinize this assumption. In the current study, 

assumption-checking using a variety of plots are recommended and demonstrated to be 

useful in identifying the nature of the violation of the proportionality assumption.
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Figure 1. Cumulative log odds for the t-PA and Placebo (PLB) groups indicating a violation of 
the proportional odds assumption
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Figure 2. Odds ratios for and 95% confidence intervals (t-PA versus placebo) for individual 
logistic regressions and the proportional odds model
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Figure 3. Observed, POM, and PPOM probabilities for each mRS category at 90 days for the 
placebo group (left) and t-PA group (right). The PPOM better replicates the observed 
probabilities (prediction error = 0.002 for the PPOM versus 0.005 for the POM)
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Table 1
Odds ratio [95% CIs] for the three ordinal regression models

OR 95% CI

POM 0.81 [0.81,0.94]

Partial POM

1-6 vs 0 0.48 [0.33,0.71]

2-6 vs 0-1 0.56 [0.41,0.78]

3-6 vs 0-2 0.64 [0.48,0.86]

4-6 vs 0-3 0.74 [0.55,1.01]

5-6 vs 0-4 0.86 [0.61,1.22]

6 vs 0-5 0.99 [0.65,1.51]

ACAT

1 vs 0 0.86 [0.49,1.50]

2 vs 1 0.42 [0.22,0.79]

3 vs 2 1.43 [0.73,2.80]

4 vs 3 0.78 [0.43,1.38]

5 vs 4 1.38 [0.66,2.89]

6 vs 5 1.05 [0.49,2.64]
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Table 2
Model comparison for 4 ordinal models. A significant value indicates the model with more 
parameters (listed first) is preferred

−2Log L Number of
parameters

Prediction
Error

AIC BIC

POM 2194.4 1 0.005 2208.4 2238.6

PPOM 2186.3 2 0.001 2202.3 2237.2

ACAT 2184.1 6 0 2208.1 2260.5

Reduced ACAT 2195.5 1 0.005 2209.5 2240.1

Likelihood Ratio Test Chi
Square

DFs P-value

Partial vs POM 8.05 1 0.005

ACAT vs mod Acat 11.42 5 0.044
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Table 3
Pairwise ORs for mRS categories resulting from the adjacent categories logit model

0 1 2 3 4 5 6

0 0.86 0.36 0.51 0.40 0.55 0.58

1 1.00 0.42 0.61 0.47 0.64 0.68

2 1.00 1.43 1.11 1.53 1.61

3 1.00 0.78 1.07 1.13

4 1.00 1.38 1.45

5 1.00 1.05

6 1.00
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