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Regression analysis of variates observed on (0, 1):
percentages, proportions and fractions

Robert Kieschnick1 and BD McCullough2

1Department of Finance and Managerial Economics, University of Texas at Dallas,

Richardson, Texas, USA
2Department of Decision Sciences, Drexel University, Philadelphia, PA, USA

Abstract: Many types of studies examine the in�uence of selected variables on the conditional expectation
of a proportion or vector of proportions, for example, market shares, rock composition, and so on. We
identify four distributional categories into which such data can be put, and focus on regression models for
the �rst category, for proportions observed on the open interval (0, 1). For these data, we identify different
speci�cations used in prior research and compare these speci�cations using two common samples and
speci�cations of the regressors. Based upon our analysis, we recommend that researchers use either a
parametric regression model based upon the beta distribution or a quasi-likelihood regression model
developed by Papke and Wooldridge (1997) for these data. Concerning the choice between these two
regression models, we recommend that researchers use the parametric regression model unless their sample
size is large enough to justify the asymptotic arguments underlying the quasi-likelihood approach.
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1 Introduction

Many studies in different disciplines examine how different variables in�uence some
percentage, or proportion, or fraction or vector of such variates. For example, Webb
(1983) studies the determinants of cable television subscribership as measured by the
proportion of houses that are passed by a cable system that subscribe to that system. As
another example, DeSarbo et al. (1993) study the proportions of household television
viewing across different streams of programming.

We surveyed many such studies and arrived at two broad conclusions. Our �rst
broad conclusion is that the data being analysed can be put into one of four
distributiona l categories. The �rst distributiona l category comprises proportions on
the open interval (0, 1). Figure 1 illustra tes such data using cable penetration data (the
proportion of homes that have cable in each of 278 different market areas). The second
distributiona l category comprises proportions observed on the closed interval [0, 1].
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Figure 2 illustra tes such data using US corporate capital structure data. A comparison
of Figures 1 and 2 reveals a critical difference between these two types of data:
observations at 0 or 1 are typically mass points. (Most software procedures for
producting histograms do not automatically capture point masses. The leftmost bin

Figure 1 Distribution of cable penetration with superimposed normal distribution

Figure 2 Distribution of corporate debt loads with superimposed normal distribution (crosshatched bin
represents the mass point at zero)
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in this histogram represents 454 observations with the value zero. The number of bins
for all histograms was determined using the method of Scott (1979).) Consequently,
while the data in the �rst distributiona l category can be modeled using a continuous
distribution, the data in the second distributiona l category cannot, because they follow
a mixed discrete–continuous distribution.

Our third and fourth distributional categories are multivariate extensions of the �rst
two distributional categories. For example, one might be interested in the proportion of
a household’s wealth invested in different classes of assets. If the investment classes are
broad enough, then typically each household has some of its wealth invested in each of
the categories and there are no boundary observations. Thus, our third distributiona l
category comprises vectors of proportions for which no component proportion is a
boundary observation (e.g., 0s or 1s). However, if the investment classes are more
narrowly de�ned, then a number of households will not have some of their wealth in
some of these classes. Consequently, our fourth distributiona l category comprises
vectors of proportions in which some component proportions are boundary observa-
tions. Each of these distributiona l categories presents additional problems that do not
occur in their univariate analogs, such as the structure of the correlations between
elements of these vectors.

The second broad conclusion that we derive from our survey of the published
literature is that there are no commonly accepted distributiona l models for these data,
nor any commonly accepted regression models for these data. Further, some of the
regression models for these data appear dubious at best. For example, we �nd that
researchers most frequently estimate the parameters of a linear regression model for the
�rst two distributiona l categories using ordinary least squares (OLSs). However, such an
approach contravenes two conditions: the conditional expectation function must be
nonlinear since it maps onto a bounded interval; and its variance must be heteroskedastic
since the variance will approach zero as the mean approaches either boundary point.

The diversity of practices and the questionable nature of some of these practices
motivate this study. We, however, only focus on our �rst distributional category,
proportions observed on (0, 1), because the issues presented by our other three categories
are quite different, and yet might build in some degree upon how one addresses this �rst
category. For this category, we surveyed the literature to identify the various speci�ca-
tions employed in prior research and synthesized the various practices into a number of
groups. We present the essentials of these groups in section 2.

In section 3, we use a common data set, cable penetration data, and a common set of
regressors to compare the different regression models. We do this, rather than perform
a Monte Carlo based comparison, because a Monte Carlo study would have required
us to assume some data generating process. However, there is no clear agreement on the
data generating process for such data. Thus, we �t the different regression models to a
common data set using a common speci�cation of the regressors to determine which
regression model best describes the data.

In section 4, we repeat the analysis reported in section 3, but this time using a
different data set, voting for President Bush in the 2000 Presidential election. We do this
to check the robustness of our conclusions about which regression model best describes
this distributiona l category of proportional data.
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Section 5 concludes our paper by providing a summary of our �ndings and directions
for further research. Our basic recommendation is that researchers use either the beta
regression model developed herein or a quasi-likelihood model developed in Papke and
Wooldridge (1996). Our case studies suggest that the larger the sample, the closer the
results of these models will be, but that in small samples the beta regression model is
preferred.

2 Alternative regression models

We searched the literature to identify how different researchers conducted regression
analyses of proportions observed on (0, 1), and what their regression models implied
about their maintained assumptions. (Speci�cally, we searched various electronic
databases for the keywords percentage, proportion and fraction, to identify potentially
relevant research.)

While there are a variety of ways that we could organize the different approaches we
observed in published papers, we use the likelihood principle to organize our discus-
sion. From the likelihood principle viewpoint, such research assumes that h(x, y)
implies f (yjx)g(x) and E(yjx) ˆ k(x), where k(¢) is a function of a vector of exogenous
variables and h(x, y) is the joint distribution of x and y. (Sometimes k(x) is called the
response function, and sometimes it is called the conditional expectation function.)
Thus we will distinguish approaches according to what the researcher assumed about
k(x) and f (yjx). Further, we will distinguish between parametric and quasi-parametric
speci�cations of f (yjx).

2.1 Parametric regression models

We organize our discussion of the identi�ed parametric regression models in order of
their frequency of use. In this regard, we should note that the �rst three regression
models account for most of what we observe being used in published papers. The last
three regression models are rarely used. Because the normal distribution �gures
prominently in the commonly used models, all our histograms have superimposed a
normal distribution parameterized by the sample mean and sample variance.

2.1.1 Normal distribution: linear response function

By far the most common practice of researchers is to apply OLS to their data (Mehran,
1995). The use of OLS presents a problem in characterizing these studies, as sometimes
the sample sizes were large enough to invoke asymptotic arguments to rationalize less
stringent characterizations of their regression models. Nevertheless, we focus on their
most stringent characterization, for as Godfrey (1988) points out, when these research-
ers examine t tests or F tests, they are implicitly assuming that the conditional
distribution is a normal distribution unless the sample size is large. Further, some
commonly reported tests (e.g., Breusch–Pagan’s test for heteroskedasticity) assume that
the conditional distribution is a normal distribution regardless of sample size.
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Consequently, we categorize all such studies as implicitly assuming a conditional
normal distribution for their regression model (i.e., f (yjx) is N(k(x), s2 )). In addition
to assuming a conditional normal distribution, these researchers also assume that k(x) is
equal to x0b, that is, that the conditional expectation function is linear.

Conceptually this approach is subject to a number of �aws. First, it is obvious that
proportions are not normally distributed because they are not de�ned over <, which is
the domain over which the normal distribution is de�ned. A quick examination of any
of our �gures con�rms this point. Further, as mentioned earlier, the fact that these
variables are only observed over a closed interval implies that the conditional expecta-
tion function must be nonlinear, and that the conditional variance must be a function of
the mean. Clearly, both of these conditions are violated by the assumptions of this
regression model.

2.1.2 Additive logistic normal distribution

The next most frequent practice we observed is that the researcher would transform the
dependent variable and then �t a linear response function to the transformed dependent
variable using the least squares principle (Demsetz and Lehn, 1985). While it is not
always clear what the researcher is assuming about the conditional distribution of the
untransformed variable, it was possible to infer their assumptions in all the studies we
examined, because they all used the logit transformation. (Atkinson (1985) devotes a
chapter to discussing various transformations for percentages and proportions. While
we cannot report �nding any studies that follow Atkinson’s proposed approach for
implementing these transformations, we do note that most of the transformations he
studied have the logit transformation as a limiting case.)

The logit regression model has a long history in economics and related disciplines (see
Dyke and Patterson (1952) for its earliest development). Using this approach, research-
ers (e.g., Webb, 1983) will estimate:

ln
y

1 ¡ y

³ ´

ˆ x0b ‡ E (2:1)

where ln(y=(1 ¡ y)) is the logit transform of the dependent variable using the least
squares principle. Thus, as noted earlier, these researchers are assuming that E is
distributed N(0, s).

Aitchison (1986) calls the above transformation the additive logratio transformation,
and shows that z ˆ ln(y=(1 ¡ y)) will follow a normal distribution, N(m, s2), if y follows
an additive logistic normal distribution. Thus, if y is distributed according to an
additive logistic normal distribution, then E is distributed according to the standard
normal distribution. (Aitchison (1986) proposes that one should test if y is distributed
as an additive logistic normal distribution by testing if z is normally distributed. We
follow his proposed testing strategy in our subsequent analysis by testing if E is
distributed as a standard normal random variate.)

The obvious concern with the application of this regression model to the analysis of
proportions is that it assumes, �rst, that the link function (using generalized linear
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model terminology) is the logit function, and second, that this transformation stabilizes
the conditional variance. The �rst concern is lessened by evidence reported in Cox
(1996) on different link functions for these data. The second concern, however, remains
important since alternative distributiona l models for these data (e.g., the beta and
simplex distributions) imply that such a transformation will not stabilize the variance.

2.1.3 Censored normal distribution

Recently, researchers have begun to apply the censored normal model, or Tobit model,
to proportional data (e.g., Barclay and Smith, 1995). Speci�cally, such researchers
typically assume that:

y¤
i ˆ x0

ib ‡ ui, i ˆ 1, 2, . . . , n (2:2)

and

yi ˆ
0, y¤

i µ 0
y¤

i , 0 < y¤
i < 1

1, y¤
i ¶ 1

8

<

:

(2:3)

where {ui} are assumed to be i.i.d. draws from a N(0, s2 ) distribution.
There are problems with the use of this approach to examining the conditional

expectation of a proportion observed over the interval (0, 1). First, one is making the
assumption that y¤

i is normally distributed, but only observes values within a speci�ed
range. We fail to observe values outside the [0, 1] range for proportional data not
because they are censored, but because they are not de�ned outside this interval. Thus,
there is no censoring, and the censored normal model is inappropriate for these data
(see Maddala (1991) for further discussion of this point). Second, for the data observed
on the interval (0, 1), the Tobit regression is observationally equivalent to the normal
regression model. Thus the Tobit regression model is subject to the same criticisms as
the linear normal regression model.

2.1.4 Normal distribution: nonlinear response function

Another alternative is to �t a nonlinear regression model to these data using least
squares. For example, Hermalin and Wallace (1994) use the cumulative normal
function as their conditional expectation function and estimate its parameters using
least squares.

Rather than follow their practice, we will model the conditional expectation function
in our study using the cumulative logistic function because of the evidence reported in
Cox (1996) and because it will allow us to focus more on the effect of distributiona l
assumptions. Further, this speci�cation is consistent with the speci�cation recom-
mended in Kmenta (1986) for these data. Speci�cally, we assume:

yi ˆ
1

1 ‡ e¡(a‡bx i)
‡ Ei (2:4)
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where Ei follows N(0, s2) distribution. We will estimate this equation using the least
squares principle, as that comports with prior practice.

2.1.5 Beta distribution

Johnson et al. (1995) provide over a dozen examples from different physical sciences in
which the beta distribution was found to be a better �tting distribution for the
proportional data under study than considered alternatives. Hviid and Villadsen
(1995) provide a recent example from economics. Even textbooks have suggested that
the beta distribution is a good distributiona l model for proportional data. For example,
Mittelhammer (1996, pp. 195–97) uses an example of the proportion of a tank
containing heating oil measured at different times to illustra te the beta distribution.

All of these examples assume that y is distributed as follows:

f (y) ˆ
1

B(p, q)
yp¡1 (1 ¡ y)q¡1 (2:5)

where 0 µ y µ 1 and B(p, q) is the beta function. We will focus on this two-parameter
beta distribution, rather than the generalized beta distribution developed in McDonald
and Xu (1995), for two reasons. First, it is the distribution most often �tted to
proportional data in prior literature and so it is the distributiona l assumption that
has the most empirical support. Second, this family of distributions is part of the class of
exponential distributions, which have served as the basis for the generalized linear
model paradigm. (see Mittelhammer (1996, pp. 213–15) for a discussion of the
exponential class of distributions, and see McCullagh and Nelder (1989) for a
discussion of the generalized linear model paradigm.)

One approach to specifying a beta regression model is to follow the linear regression
model and assume that the mean is a linear function of the exogeneous variables. This is
the approach taken in the econometrics program SHAZAM version 7 (Vancouver,
Canada) and is also the approach taken in McDonald and Xu (1995). Speci�cally,
SHAZAM’s user manual sets out the following model. They assume that y is distributed
as a beta random variate and that

E(yjx) ˆ
p

p ‡ q
ˆ x0b (2:6)

Further they assume that q is the parameter that is conditional on x and so they derive:

q(x) ˆ
p

x0b
¡ p (2:7)

They substitute (2.7) into (2.5) above to derive the conditional density function (i.e.,
f (yjx)). They then derive the log-likelihood function for the beta regression model using
this speci�cation.

This approach does not, however, restrict the range of the conditional mean. Thus it
implicitly requires restrictions on the values of the exogeneous variables to give sensible
results. Such restrictions are not recognized in SHAZAM’s estimation of this model,
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and so the beta regression model speci�ed in SHAZAM is not a very good approach to
specifying a beta regression model.

We argue that a better approach is derived by considering the work of Cox (1996),
who tested various link functions for regression models of continous proportions using
the quasi-likelihood framework. Based upon Cox’s evidence, we use the logit link
speci�cation. (Separate from Cox’s evidence, we are also motivated to use the logit link
speci�cation so that there is a consistency in our �rst moment speci�cation across
different parametric and quasi-parametric models.) Speci�cally, we assume that

E(yijxi) ˆ mi ˆ h(Zi) ˆ
1

1 ‡ exp(¡Zi)
ˆ

1

1 ‡ exp(¡x0
ib)

(2:8)

This equation then implies the following re-expression:

Zi ˆ g(mi) ˆ ln
mi

1 ¡ mi

³ ´

ˆ x0
ib (2:9)

Note that this speci�cation restricts the conditional mean of a beta distributed
regressand to the interval (0, 1), which is appropriate for this distributiona l model.

In order to derive an estimatable regression model, we must now relate the above
relationships to the parameters of the beta distribution. Speci�cally, for the beta
distribution de�ned in (2.5), we have

E(yi) ˆ
p

p ‡ q
(2:10)

We map x0
ib into q because q is the shape parameter for the beta distribution. Given this

approach, we develop the following expression for q that is consistent with equation
(2.10) above:

q(xi) ˆ p exp(¡x0
ib) (2:11)

We then substitute this expression for q into (2.5) to derive the conditional distribution
of the beta distributed random variate:

f (yijxi) ˆ
G(p)G(q(xi))

G(p ‡ q(xi))

µ ¶¡1

y
p¡1
i (1 ¡ yi)

q(xi)¡1

ˆ
G(p ‡ q(xi))

G(p)G(q(xi))

µ ¶

y
p¡1
i (1 ¡ yi)

q(xi)¡1 (2:12)

To estimate the effect of the different conditioning variables (x1 , x2 , . . . , xr) we can use
the maximum likelihood estimation principle to derive estimates of the vector b by
maximizing the implied log-likelihood function with respect to the parameters b and p .
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Because the beta distribution is a member of the exponential class of distributions, these
maximum likelihood estimators have all the statistical properties established for
maximum likelihood estimators for this class of distributions (see Jorgensen (1983)
or Fahrmeir and Tutz (1994) for further discussion of these issues and the literature
addressing them).

2.1.6 Simplex distribution

Our �nal parametric regression model for proportions measured on (0, 1) is based upon
the simplex distribution developed by Barndorff-Nielsen and Jorgensen (1991) for such
data. Jorgensen (1997) argues that this distribution has the virtue of being a dispersion
model, while the beta distribution is not. Consequently the analysis of deviance
approach to generalized linear models can be applied to regression models based
upon the simplex distribution, and not to regression models based upon the beta
distribution.

We follow Jorgensen (1997) and de�ne the univariate simplex distribution as:

f (y; m, s2 ) ˆ [2ps2 {y(1 ¡ y)}3 ]¡1=2 exp ¡1
2d(y; m)

© ª

(2:13)

for 0 < y < 1, where

d(y; m) ˆ
(y ¡ m)2

y(1 ¡ y)m2(1 ¡ m)2
(2:14)

is the unit deviance, and 0 < m < 1. We can either maximize the associated log-
likelihood function or minimize the associated unit deviance function to estimate a
regression model based upon this distribution. Again, following the evidence of Cox
(1996) and our speci�cation of the beta regression model, we assume that the link
function, g(m), is the logit link function.

2.2 Quasi-parametric regression models

The prior approaches have presumed some speci�c family of distributions for the
conditional distribution for the proportions under study. Cox (1996) and Papke and
Wooldridge (1996) take a different tack and use the quasi-likelihood approach. The
quasi-likelihood approach speci�es the �rst and second moments of the conditional
distribution, but does not specify the full distribution.

Cox (1996) examines the �t of four speci�cations of the �rst two moments of the
conditional distribution to two samples of proportional data observed over the interval
(0, 1). Speci�cally, he examines the use of the logit and complementary log-log link
functions, with canonical and orthogonal speci�cations for the variance functions. He
concludes that the logit link function with the orthogonal variance function is the
preferred combination for his data sets. (Cox describes his use of the terms canonical
and orthogonal speci�cations and speci�es on p. 455 his examined combinations.
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His preferred combination, which he calls the orthogonal pair, is: m(y) ˆ 1=(1 ‡ e¡y);
u(m) ˆ m2(1 ¡ m)2 .)

Papke and Wooldridge (1996) use a similar approach, but for a slightly different
problem. They are interested in specifying a quasi-likelihood regression model for
continuously measured proportions with a �nite number of boundary observations (i.e.,
0s and 1s). They use the following log-likelihood speci�cation,

`i(b) ˆ yi ln[G(xi)] ‡ (1 ¡ yi)ln[1 ¡ G(xi)] (2:15)

which they point out is well de�ned for 0 < G(¢) < 1. While Papke and Wooldridge
discuss the use of different speci�cations for G(¢), they use the logistic function in their
analysis, which is equivalent to Cox’s logit link speci�cation. Further, they use a slightly
more robust approach to the estimation of the standard errors. Consequently we will
focus on their approach in the subsequent analysis.

2.3 Comparing regression models

We have presented the essentials of various regression approaches that have been
applied to the analysis of proportions observed on the interval (0, 1). While we have
given reasons to question the application of one or another of these approaches to this
kind of data, we now turn to a comparison of their application to real data to judge
their relative merits. We do this because, as stated earlier, there is no agreement in the
literature on the proper probability models for these data.

3 Case study 1: cable penetration

3.1 Description of the data

We �rst examine in�uences on cable penetration. To do this we will use a sample that
was collected by the Federal Communications Commission (FCC) in conjunction with
the implementation of the Cable Television Consumer Protection and Competition Act
of 1992. On 23 December 1992 the FCC mailed out 748 questionaires to a strati�ed
sample of ‘cable community units,’ which are essentially individual franchise areas. Of
the 748 questionaires sent out, 687 respondents supplied usable responses on prices,
costs and other cable operator data for each franchise. Because the sampling metho-
dology and data elements requested in the questionaire are described in detail in
Appendix E of FCC 93-177, we will refer the reader to this source for further discussion
of these topics (Federal Communications Commission, 1993).

To supplement these data, the FCC collected additional economic and demographic
information from the US Department of Commerce, Census Bureau. Appendix C of
FCC 94-38 describes the data, matching procedures (i.e., county to cable community
unit matching), and variable de�nitions used to extend the original sample data for
additional economic and demographic information (Federal Communications
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Commission, 1994). Again, we refer the reader to this source for detailed descriptions
of the added data.

For the above sample, we will only use a portion of the data collected as we are more
interested in comparing the results of different regression procedures than in exploring
the best speci�cation of regressors. Consequently we use the same set of regressors in
each estimated regression model to focus on the effect of the statistical model on the
results obtained. Speci�cally, we use:

E(yjx) ˆ h(b0 ‡ b1 lin ‡ b2child ‡ b3ltv ‡ b4dism ‡ b5agehe) (3:1)

In this equation, we are using the logarithm of franchise median income (lin), the
percentage of franchise households with children (child), the number of local broadcast
television signals (ltv), the age of the cable system headend (agehe), and a measure of
consumer dissatisfaction with the cable operator (dism). The dependent variable,
displayed in Figure 1, is the proportion of households within a market area that
subscribe to cable television.

We include the logarithm of franchise median income because prior studies (e.g.,
Park, 1972; Reagan et al., 1985, etc.) have shown household income to in�uence a
household’s decision to subscribe to cable television. We adjust for scale effects by using
the logarithm of median franchise income. We include the percentage of franchise
households with children because prior studies (e.g., Park, 1972; Reagan et al., 1985)
have shown that the presence of children in a household is a signi�cant in�uence on a
household’s decision to subscribe to cable television. We include the number of local
broadcast television signals because prior studies (e.g., Park, 1972) have found the
number of local broadcast television signals available to a household to be a signi�cantly
negative in�uence on whether a household subscribes to cable television. We include the
age of the cable system headend because this proxies for extent of diffusion of the cable
system within its franchise (see Sparkes and Kang (1986) for further discussion of why
this is important). Finally we create a consumer satisfaction variable, dism, by
computing the number of net disconnectors (number of disconnecting households 7

number of reconnecting households) and substracting this number from the number of
new subscribing households. We presume that if more households are leaving a cable
system than entering it, then consumers are dissatis�ed with the service provided by the
cable system operator. LaRose and Atkin (1988), Atkin (1992), and Albarran and
Umphrey (1994) provide evidence that such a variable signi�cantly in�uences cable
penetration.

3.2 Comparison of regression models

In Table 1, we report the results of �tting the various regression models described above
to the data, also described above. Before discussing these results, we should address a
couple of computational issues since a number of these regression models require
nonlinear optimization to derive parameter estimates. First, starting values for the
coef�cients of the independent variables were obtained from the logit or logistic normal
regression model as its conditional expectation is consistent with the functional form of
their conditional expectation function. (We estimated the simplex regression model by
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both maximizing its associated log-likelihood function and by minimizing its unit
deviance function. Each approach gave the same results, but the second approach
converged to a solution in 1

6 the number of iterations. Consequently we recommend the
use of the second approach for estimating these types of regression models.) In addition,
the beta regression model requires a starting value for p, which we derived by �tting the
two-parameter beta distribution to our sample data using both maximum likelihood
and method of moment estimators. (For this we use a STATA program developed by
Nicholas Cox to implement procedures developed in Mielke (1975). Note, however,
that the coef�cient estimates of the beta regression model were very robust with respect
to variations of our starting parameter estimates. Consequently it is clear that these
starting values were not important to our �nal estimates.) Second, all functions were
optimized and standard deviations estimated using �rst and second analytic derivatives
where appropriate (derivatives were con�rmed using Mathematica (version 4)). Third,
we used both STATA (version 7) and TSP (version 4.5) on a Pentium 400 PC running
under Windows 2000 to perform our computations in order to con�rm that our results
were robust across software packages. (In an earlier draft, we used S-PLUS v4.5 release
2 on a Pentium 400 PC running Windows 98 and obtained similar estimates to those
reported.) Given these computational notes, we begin our discussion of our results.

Additionally, since the conditional expectation function in the �rst two regression
models differs from the conditional expectation function in the last �ve regression
models, we cannot simply compare coef�cient estimates across regressions to gain a
sense of the estimates of the marginal effect of a change in a regressor on the regressand.
The last �ve regression models assume: k(x) ˆ 1=(1 ‡ exp(¡(x0b̂b))). Thus,

@k(x)

@xi

ˆ
b̂bi exp(¡(x 0b̂b))

[1 ‡ exp(¡(x0b̂b))]2

To facilitate comparison, we report in Table 2 the partial derivatives of the conditional
expectation function of the nonlinear regression models with respect to the different
regressors, evaluated at the sample means of the regressors.

Returning to Table 1, an inspection reveals that one does derive different inferences
regarding the statistica l signi�cance of different regressors depending upon one’s choice
of regression model. Speci�cally, we see that the linear models (columns 2 and 3) reject
the signi�cance of the dism variable. The transformed=logistic normal (column 4) and
the logistic=normal (column 5) regression models also reject the signi�cance of the dism

Table 2 Estimates of the marginal effects of regressors

k…x†
f …y jx†

Linear
normal

Linear
censored
normal

Transformed
logistic
normal

Logistic
normal

Logistic
beta

Logistic
simplex

Logistic
unspeci�ed

lin 0.0763 0.0763 0.0822 0.0740 0.0556 0.0775 0.0769
child 0.0007 0.0007 0.0006 0.0006 0.0007 ¡0.0003 0.0006
ltv ¡0.0147 ¡0.0147 ¡0.0172 ¡0.0143 ¡0.0135 ¡0.0176 ¡0.0147
dism ¡4.0 £ 10

¡6 ¡4.0 £ 10
¡6 ¡3.9 £ 10

¡6 ¡2.7 £ 10
¡7 ¡4.3 £ 10

¡7 ¡4.6 £ 10
¡7 ¡3.6 £ 10

¡7

agehe 0.0062 0.0062 0.0075 0.0064 0.0059 0.0057 0.0065
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variable. In contrast, the beta, simplex and quasi-likelihood models (columns 5, 6 and 7)
do not.

In addition to demonstrating that one’s choice of regression model for these data
in�uences one’s inferences, these results illustra te two other important points. First, the
fact that the beta, simplex and quasi-likelihood model pick up the signi�cance of the
dism variable while the other regression models do not, comports with our criticisms of
the homoskedasticity assumption of these models. Consistent with this conjecture, we
note that for the transformed=logistic normal (column 4) and the logistic=normal
(column 5) regression models, the dism variable becomes statistically signi�cant when
we correct the standard errors for heteroskedasticity. Second, the results of the beta and
quasi-likelihood models comport with discrete choice studies of the cable subscription
decision. One of the reasons for examining cable penetration data is that we could
relate our results using aggregate data to results using disaggregate data to discern
which models for proportional data gave similar results to those of individual choice
data. Several probit analyses have shown that consumer satisfaction with a cable service
(our dism variable) is an important determinant of the cable subscription decision.
Consequently we conclude that the beta, simplex and quasi-likelihood models provide
similar conclusions to those derived in discrete choice studies.

Inspection of Table 2 suggests that there is not much difference across regression
models in their estimates of the marginal effects of the various regressors when
evaluated at the same means of the regressors. This result is not surprising in that the
linear models should be �rst-order approximations to a nonlinear surface when
evaluated at the sample means. Despite this point, we note that the nonlinear models
tend to ascribe a much lower marginal effect to the dism variable than do the linear
models. Further we must point out the linear and nonlinear models will give quite
different estimates of the marginal effects of different regressors as those regressors are
evaluated at points other than their means. This fact should not be overlooked when
evaluating the economic signi�cance or policy implications of one’s regression results.

Turning to an analysis of the distributiona l assumptions of the different regression
models, we �nd evidence to reject the normal, the censored normal and the logistic
normal distributional assumptions. We �nd that either a Shapiro–Wilk or a Jarque–
Bera test rejects the normality of the residuals of the �rst regression model at the 1%
marginal signi�cance level. Further, we tested for a nonlinear expectation function
using by �tting a Box–Cox model to these data and testing whether the null hypothesis
that d ˆ 1 holds. (We use this testing procedure because it imposes fewer assumptions
than alternatives (e.g., testing the signi�cance of quadratic terms).) Consistent with our
previous conclusion, we �nd that the likelihood ratio chi-square of 72.47 rejects the null
hypothesis at the 1% marginal signi�cance level. Hence, the data not only suggest that
the residuals are not normally distributed, but also that the conditional expectation
function is nonlinear. (We should note that this result is also consistent with Cox’s
(1996) evidence on the appropriateness of the logit link for the two data sets he
examined.) Because the censored normal model provides estimates and residuals similar
to those of the linear normal regression model, these criticisms also apply to it.
(We should note that these criticisms also apply to the truncated normal distribution
since it generates the same estimates and residuals as the normal regression models do
for these data.)
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The rejection of the conditional distribution as a normal distribution is not simply a
consequence of the nonlinearity of the conditional expectation function. We tested the
residuals of the nonlinear normal regression model. While a Shapiro–Wilk W test fails
to reject the normality of the residuals at the 10% level, a separate test of skewness and
kurtosis of the residuals of this model reject the hypothesis that the kurtosis is consistent
with a normal distribution at the 5% level. These last results makes sense in that
Godfrey (1988) points out that the least squares residuals will tend to fail to reject the
normality of the residuals even when the generating model was not a normal distribu-
tion. Further, our earlier argument that the variance of bounded variables should tend
to zero as the mean approaches the boundary points suggests that we might observe the
distribution of the residuals of a nonlinear least squares regression model to show more
kurtosis. Supplementing this evidence, we regress the squared residuals on the predicted
values and �nd the coef�cient (¡0:0331) on ŷy to be signi�cant at the 1% marginal
signi�cance level. This result suggests that the variance is a function of the mean, which
is consistent with our earlier discussion about bounded variables. (We should note that
this conclusion is consistent with Cox’s (1996) characterization of the variance of the
two data sets he examined.)

While not based upon the normal distribution, the regression model based upon the
additive logistic normal distribution does suggest that its residuals should be normally
distributed (as noted earlier, this point comes from Aitchison (1986)). This implication
is not supported by the data as both the Shapiro–Wilk and Jarque–Bera tests reject the
normality of its residuals at the 1% marginal signi�cance level. Consequently, our
earlier arguments for questioning the distributional assumptions underlying the logit
regression model are borne out by our data.

While we reject the normal, censored normal, and logistic normal distribution models
for our data, we cannot reject the distributiona l models underlying the beta, simplex or
quasi-likelihood models. In the case of the quasi-likelihood model, this is because we
have simply assumed the functional form of the conditional expectation function, which
the data do not reject. For the beta and simplex distributions, q±q plots do not suggest
that the data are inconsistent with either model.

Consequently, we compare the different regression models using Akaike’s Informa-
tion Criteria (AIC), as it is the most widely used and accepted model selection criteria .
However, there are different variations of the AIC statistic depending upon the class of
regression models being evaluated and the sample size. We use a variation of the AIC
statistic named the AICc statistic, as McQuarrie and Tsai (1998) show that it is the
preferred Kullback–Leibler information-based model selection criterion for non-normal
and quasi-likelihood regression models. The AICc is de�ned as:

log(ŝs) ‡
n ‡ k

n ¡ k ¡ 2

where log(ŝs) represents the natural logarithm of a regression’s mean square error, n
represents the number of observations, and k represents the number of parameters to be
estimated. Note that this measure adjusts for sample size and so is appropriate for small
as well as large samples.
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An examination of Table 1 reveals that the beta regression model dominates the other
regression in terms of the AICc statistic. (The lower the value of the AICc statistic the
better the model �t to the data. Since the number of observations and regressors are
�xed across regressions in our study, this statistic will choose the regression with
the lowest mean square error.) However, the differences between the beta regression
model and the quasi-likelihood model are so small as to suggest that these two models
�t the data equivalently well. As we show in the next case study, this last inference is
driven by sample size, and so consistent with quasi-likelihood methods being asympto-
tic approximations.

4 Case study 2: Presidential voting

4.1 Description of the data

As a second case study we examine factors that in�uenced the proportion of a state’s
votes for President George Bush in the 2000 Presidential Election. We obtained the
voting data from the web site www.uselectionatlas.org, which provides data on past
presidentia l elections. We then obtained demographic, employment and income data
for each state for the year 2000 from the US Bureau of Census’ web site, fact�nder.
census.gov. However, one can also obtain these data from the US Department of
Agriculture’s Economic Research Service web site, www.ers.usda.gov.

Using these data, we created the following variables. Our dependent variable is the
fraction of a state’s total counted vote that was for President George Bush. The
histogram of these data, displayed in Figure 3, clearly suggests that the data do not
follow a normal distribution. Our independent variables, or regressors, are the natural
logarithm of a state’s population (lnpop), a state’s unemployment rate (clfu), the
proportion of a state’s population that a male (male), the proportion of a state’s
male population that as older than 18 years of age (mgt18), the proportion of a state’s
population that was older than 65 years (pgt65), the proportion of a state’s population
that lived in ‘urban’ areas (urban), the proportion of a state’s households that had
annual incomes greater than $75 000 (gt75k), and �nally the proportion of a state’s
households whose annual income was below the ‘poverty’ level (bpovl). Using these
variables, we estimate the following common speci�cation:

E(yjx) ˆ h(b0 ‡ b1lnpop ‡ b2clfu ‡ b3male ‡ b4mgt18 ‡ b5pgt65

‡ b6urban ‡ b7gt75k ‡ b8bpovl)

We should note that we did not test to see whether this speci�cation of variables was the
best speci�cation or whether there might have been a better selection of potential
regressors. Rather, we simply chose a set of variables that seemed reasonable regressors
and used them. This approach is adequate for our purposes since we are only interested
in comparing the different regression models using a common data set and speci�cation
of regressors. Nevertheless, we should note that the predictions from our nonlinear
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regression models are highly correlated with actual values (around 88%). Thus our
speci�cation has some merit.

4.2 Comparison of regression models

Our results from �tting the different regression models to the voting data are reported in
Table 3. Because the patterns we observe in these data across models are so similar to
those that we observe using our cable penetration data, we will not discuss them as fully
as we did earlier. Thus, for example, we do not compute a table like Table 2, since it
would produce no new insights.

As before, we can see in Table 3 that one would be led to draw different inferences
about which regressors were statistically signi�cant and which were not depending
upon whether one used the beta, simplex or quasi-likelihood model or one of the other
regression models. Again, as before, these differences make sense as the linear models
fail nonlinearity tests (at the 5% level), and the residuals of regression models assuming
a conditional normal distribution fail kurtosis tests of normality (at the 5% level).
Consequently, we are once again able to reject the distributiona l assumptions of our
�rst four regression models but not our last three regression models.

Given the similarity of evidence between these two case studies, we will focus our
attention on the computed AICc statistic for each regression model. As before, the beta
regression dominates the alternatives, but it dominates the quasi-likelihood model in a
more pronounced way. The fact that a parametric model, such as the beta regression
model, dominates the quasi-likelihood model in a smaller sample is consistent with
the fact that quasi-likelihood models are expected to be better approximations to

Figure 3 Distribution of proportion of votes going to George Bush with superimposed normal distribution
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parametric models in larger samples. Our evidence is consistent with this fact and so
suggests that choice between the beta and quasi-likelihood regression models will turn
in part on the size of the sample that one is studying.

5 Summary

Many types of studies examine the in�uence of selected variables on the conditional
expectation of a proportion or vector of proportions. These studies can be sorted into
four distributiona l categories. Of these categories, we focus on proportions observed on
the open interval (0, 1).

Surveying what regression models prior researchers have used to analyse these types
of data, we identify seven basic regression models, when categorized according to their
characterization of the conditional distribution and the conditional expectation func-
tion. Several of these regression models ignore the fact that since these variates are
bounded, their conditional expectation function must be nonlinear. Further, a number
of these regression models also ignore the fact that since these variates are bounded,
their error distributions must be heteroskedastic since their conditional variance must
approach zero as their conditional mean approaches either of their boundary points.

We studied the application of these seven regression models to two common data sets
with common speci�cations of the regressors. These case studies allow us to examine
the conformance of the data to each model’s distributiona l assumptions, how the
parameter estimates and inferences differ across regression models, and which model
best describes the data.

Based upon these comparisons, we recommend that researchers in the future use
either a parametric regression model based upon the beta distribution or the quasi-
likelihood model developed by Papke and Wooldridge (1997). Concerning the choice
between the parametric and quasi-likelihood model, we recommend that researchers
use the parametric regression model unless their sample is large enough to justify the
asymptotic arguments underlying the quasi-likelihood approaches for the reasons
discussed in Godfrey (1988).

Regardless of choice, we strongly recommend that future research recognize that the
data are likely generated by a distribution for which the mean is a nonlinear function of
the regressors and the variance is a function of the mean. Consequently, even a linear
regression on a logit transformed dependent variable is preferable to a linear regression
on a nontransformed variable. This recognition is critically important when one tries to
derive policy implications from one’s parameter estimates since the effect of covariates
will change as they deviate from their sample means.

We hope that our comparisons will give researchers some guidance on how to
approach the analysis of these data in the future, and whether the inferences drawn in
some prior studies should be treated with caution. However, we recognize that our
evidence only applies to one of the four distributiona l categories that we identi�ed
earlier. We leave the question of how best to conduct regression analyses of the other
categories of proportional data to future research as they raise additional statistical
issues to those considered in this study.
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