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Abstract

We address the task of accurately localizing the eyes
in face images extracted by a face detector, an impor-
tant problem to be solved because of the negative effect
of poor localization on face recognition accuracy. We
investigate three approaches to the task: a regression
approach aiming to directly minimize errors in the pre-
dicted eye positions, a simple Bayesian model of eye
and non-eye appearance, and a discriminative eye de-
tector trained using AdaBoost. By using identical train-
ing and test data for each each method we are able to
perform an unbiased comparison. We show that, per-
haps surprisingly, the simple Bayesian approach per-
forms best on databases including challenging images,
and performance is comparable to more complex state-
of-the-art methods.

1. Introduction
We address the task of localizing the eyes in grey-

level face images output by a face detector. Typically
the position of the eyes would subsequently be used to
warp the input image to a canonical frame for recog-
nition: given the pair of 2-D coordinates a similarity
transform is defined which transforms the eyes to fixed
image positions e.g. [1]. The task of eye localization
has attracted much attention in the face recognition
community, not least because the accuracy of popular
approaches to face recognition such as PCA or LDA
has been shown to degrade with poor localization [15].

We investigate three approaches to the eye local-
ization problem: (i) the regression approach directly
tries to minimize the distance between the predicted
and true positions by learning a functional mapping
from the input image to the eye positions. Alterna-
tively, one can aim to minimize the distance indirectly
by classifying patches of the image correctly as eye or
non-eye: (ii) the Bayesian approach learns models of
the eye appearance and non-eye appearance and ap-
plies Bayes rule to produce a “probability of eye” out-
put for patches around each pixel of the input image,
from which a prediction can be extracted. (iii) the
discriminative approach treats the problem as one of

classification: a classifier is trained to produce positive
output for patches around the eye and negative output
elsewhere.

Often it may be difficult to determine from pub-
lished results if a particular method is successful per se
or because of differences in training data or test proto-
col. Here, we train and test each method with identical
images, allowing unbiased comparison.

1.1. Previous work
In the area of ‘passive’ feature localization, requiring

no control of illumination, a wide variety of approaches
have been proposed. Methods include heuristic rules or
hand-built templates [11], Gabor wavelet networks [4],
and PCA-based ‘Eigeneyes’ [8]. Recently many authors
have focused on discriminative learning of feature de-
tectors using classifiers including support vector ma-
chines (SVM) [1]. There has been particular interest
in discriminative methods based on boosting, because
of their potential computational efficiency [3, 7, 16].
Methods using boosting have placed emphasis on spa-
tial models of multiple features [3], improving precision
by verification [7] or defining more discriminating weak
classifiers [16].

2. Approach

We begin by describing face detection and geometric
normalization of the detections used as pre-processing
for all methods, followed by description of the three
methods investigated.

2.1. Face Detection and Normalization
All the localization methods investigated take the

region output by a face detector as input. We used the
publicly available implementation of the Viola-Jones
face detector [14] from the OpenCV library. The face
detector outputs a bounding box 〈x, y, s〉 where 〈x, y〉
is the predicted centre of the face, and s the scale (half-
width of the square). Fig. 1a shows example detections
for images in the FERET database (left two) and our
own WWW database (see Sec. 3). The detected face



(a) Face detections in original images

(b) Normalized images and ground truth

Figure 1. Face detection and normalization. De-
tected faces are scaled to size 100×100 pixels
for processing. Some variation in translation and
scale remains, particularly in the WWW database
(right two) due to inaccuracy of the face detector
localization with variation in pose.
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(a) Training positions (b) Search region

Figure 2. Sliding window approach. (a) The ground
truth positions of the right eye plotted on the mean
training image. (b) The bounding box of the search
region and an example input window.

images are normalized by scaling to a standard size
of 100×100 pixels to reduce the amount of translation
and scale variation in the images. Note that, particu-
larly in the case of out-of-plane rotation of the head,
considerable variation remains.

2.2. Regression Method
The first localization method considered formulates

the task in a direct manner as a regression problem.
We are given a set of training data {xi,yi} where x is
the input image and y = 〈x, y〉 is a corresponding 2-D
eye position. A linear regressor is defined which maps
from the input image to the predicted eye position:

f(x) = W�φ(x) (1)

where φ(x) transforms the input image to some high-
dimensional space. The parameters of the regressor are
learnt by minimizing the Euclidean distance between
the true and predicted eye positions. To avoid over-

fitting, a regularization term is added which penalizes
solutions with large weights W:

E(W) =
1
2

∑
i

||yi − W�φ(xi)||2 +
1
2
λ||W||2 (2)

This is known as kernel ridge regression [13]. The so-
lution can be shown to be:

f(x) = Y(G + λI)−1z (3)

where columns Yi = yi, Gij = φ(xi)�φ(xj) and zi =
φ(xi)�φ(x). Since only dot products φ(u)�φ(v) are
required, explicit definition of the mapping φ(x) is
avoided by defining a kernel K(u,v) = φ(u)�φ(v) di-
rectly. We use the radial basis function (RBF) kernel:

K(u,v) = exp
(
−γ||u − v||2

)
(4)

Input Representation. In implementing the re-
gression method we have a choice of how to represent
the input image x. One possibility is simply to present
the entire face image as a vector of pixel values. How-
ever, one might expect this to be suboptimal: much
of the face image is likely to contain little informa-
tion about the position of the eye, and the model must
learn to ‘ignore’ this irrelevant variation, which is hard
to achieve with limited training data. Instead we make
explicit the region of the image considered relevant: the
input vector x is extracted as the concatenation of pix-
els in a square region of k × k pixels; the centre of the
region is fixed at the mean over the training images of
the ground truth eye positions. The vector x for each
image is normalized by subtracting the mean and di-
viding by the standard deviation; this gives invariance
to affine transformations of intensity.

Learning. The regression method has three param-
eters which must be set during learning: the size of
the input region k, the kernel parameter γ (4), and the
regularization parameter λ (2). These parameters were
set using a validation set: half of the training data was
held out as validation data and a grid search over the
three parameters was conducted. The parameters min-
imizing the mean squared error between ground truth
and predicted positions on the validation data were
selected, and the method re-trained on the complete
training set.

2.3. Classification Methods
An alternative view of the localization problem,

which has been adopted in much previous work [1, 3,
7, 16] is that of classification: a classifier is built which
conceptually produces positive output if its input is an
eye, or negative output otherwise. The classifier is ap-
plied at different locations in the input image and the
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Figure 3. Selecting training examples. Informa-
tive negative examples are taken from within the
rectangular search region (red) but excluding the
uncertain circular region (yellow).

coordinates at which the output is positive are selected
as the predicted eye position.

Sliding Windows. We investigate two classification
methods which use distinctive approaches to training:
Bayesian and discriminative. For both methods the
inputs to the classifier are square patches of k × k pix-
els extracted around each pixel in a ‘sliding window’
fashion. Given the set of ground truth positions in the
training images one can estimate the region of the face
image in which the eye is likely to appear, for example
the eyes are unlikely to appear in the lower half of the
image. Fig. 2a shows the distribution over the position
of the right eye for the training images in the FERET
database. The bounding box of the points is used to
define the search region (Fig. 2b). The classifier is ap-
plied to square patches around each pixel within this
region.

Selecting Training Examples. For the classifica-
tion methods, both positive (eye) and negative (non-
eye) example patches are required for training. Fig. 3
illustrates the scheme used for selecting examples. Pos-
itive patches are extracted around the ground truth
points in the training image (green cross in Fig. 3).
For effective training, negative examples should match
those likely to be encountered during testing; this sug-
gests selecting negative examples within the search re-
gion (red box in Fig. 3). However, errors in the train-
ing data may mean that patches near to the ground
truth points cannot reliably be considered negative ex-
amples. To cope with this a circular “uncertain” region
(yellow circle in Fig. 3) is defined, and patches within
this uncertain region are not used during training.

2.4. Bayesian Approach
In the Bayesian approach, probabilistic models of

the appearance of a patch x are built independently
for positive (eye) and negative (non-eye) classes. De-
noting the estimated probability of a patch given the

eye model p(x|e) and the probability given the non-eye
model p(x|ē), the log-likelihood ratio is used to assign
confidence that a patch is an eye:

llr(x) = log p(x|e) − log p(x|ē) (5)

For each class c (eye or non-eye), the distribution over
patch appearance is modelled as a Gaussian distribu-
tion:

p(x|c) =
1

(2π)d/2|Σ|1/2
exp

{
−1

2
(x − µ)�Σ−1(x − µ)

}

(6)
where d = k × k is the dimensionality of the patch.

For a given set of training data it can be shown that
the maximum likelihood estimates of the mean µ and
covariance Σ are the empirical mean and covariance

µ̃ =
1
N

N∑
i=1

xi (7)

Σ̃ =
1

N − 1

N∑
i=1

(xi − µ̃)(xi − µ̃)� (8)

While there is no reason to favour another estimate
for the mean, when limited data is available, caution
must be applied to the estimate of the covariance since
d(d + 1)/2 parameters must be estimated. We adopt a
simple method to regularize the estimate of covariance
by adding a scaled identity matrix to the empirical co-
variance:

Σ = Σ̃ + λI (9)

A positive value of λ has the effect of ‘expanding’ the
distribution. The eigenvalues of the covariance matrix
are increased by the constant λ, increasing the variance
in each dimension; considering the size of λ relative to
each eigenvalue, this also has the effect of diminishing
the confidence in the directions of the trailing eigen-
vectors, which might well be poorly estimated. An
intuitive view of the regularization is that of augment-
ing the training set with a set of ‘virtual’ examples
sampled by adding Gaussian noise with variance λ to
each training example. Training with noise is a well-
established technique for increasing generalization in a
classifier [2].

Localization. The output from the method is a log-
likelihood ratio (5) at each pixel in the search region.
The estimate of the eye position is taken as the position
of the patch yielding the greatest log-likelihood ratio.
Other possibilities such as estimating the conditional
mean of the eye position are possible but not robust to
outliers.
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Learning. The Bayesian method has two parame-
ters which must be set during learning1: the size of
the input patches k, and the regularization parameter
λ (9), which is set equally for both eye and non-eye
classes. These parameters were set as in the regression
case (Sec. 2.2) using a validation set held out from the
training data.

Relation to Other Work. The Gaussian model
used here has recently been applied to face detec-
tion [10]; that work applies a more complicated form of
regularization to the covariance matrix. The method
here is related to the ‘probabilistic’ PCA model [8]
which models p(x|c) as Gaussian with a form of regular-
ization obtained by averaging the trailing eigenvalues
of the covariance matrix; a key difference is that no
negative model p(x|c̄) is used in [8].

2.5 Discriminative Approach

In the discriminative approach, we directly minimize
a measure of error in the assignment of patches to pos-
itive (eye) or negative (non-eye) classes. This is in
contrast to the Bayesian approach which models the
classes independently. The original discrete AdaBoost
algorithm [5] is used to learn a ‘strong’ classifier H(x)
as a linear combination of ‘weak’ classifiers:

F (x) =
∑
m

wmfM (x) (10)

where the sign of H(x) is used to assign examples to
positive or negative classes. It can be shown that Ad-
aBoost minimizes the criterion

E(F ) =
∑

i

exp−yiF (xi) (11)

where yi ∈ {−1, 1} is the class assigned to each training
example. This criterion can be viewed as an upper-
bound on the misclassification error [12], though other
interpretations are possible [6]. In terms of localization
error, the ‘uncertain’ region used for training (Sec. 2.3)
can roughly be viewed as defining a ‘bounded error’
model, though there is no direct connection between
the classification and localization errors.

As weak classifiers we use the set of thresholded
Haar-like features proposed by Viola and Jones [14].
These have the attraction of being very efficient to com-
pute via the integral image. Full details can be found
in [14]. Given the strong classifier output at each pixel,
the eye position is estimated as the position with max-
imum output, as for the Bayesian classifier.

1Note in a strict Bayesian framework we should marginalize
over these parameters.

Table 1. Errors in right eye localization for FERET
and WWW databases. All errors are Euclidean dis-
tance in pixels measured in the normalized im-
ages. For each method the mean, median (50%)
and 90th percentile (90%) are shown.

FERET WWW
mean 50% 90% mean 50% 90%

mean 2.41 2.11 4.33 3.60 3.19 6.46
human – – – 1.54 1.38 2.90
regress 1.29 1.08 2.34 1.78 1.51 3.29
generat 1.18 0.98 2.04 1.73 1.30 2.74
discrim 1.36 1.15 2.39 2.40 1.73 3.77

Learning. To avoid the extreme computational ex-
pense of cross-validation with boosting, the size of the
input patch for the discriminative method was set equal
to that selected by validation for the Bayesian method.
A single strong classifier (no cascade) was learnt by
bootstrapping [2]. For each round of bootstrapping,
boosting was halted when the margin of F (x) between
positive and negative examples exceeded one. Training
was terminated when the false positive rate (per patch)
on the training data fell below 10−6.

3 Experimental Results

In this section we report results of the three ap-
proaches investigated. All methods were tested on two
independent image databases: gray-scale FERET [9]
and WWW. The FERET images are all taken indoors,
with good resolution, image quality, and limited vari-
ation in lighting. Pose of the faces in these images is
typically very close to frontal. Of the 3,368 frontal im-
ages for which ground truth eye positions are provided,
the 3,337 images for which the face detector detected
a face correctly were retained for experiments.

The WWW database contains images obtained from
the world wide web. Images are typically of much
poorer quality than in face recognition databases, with
highly variable image resolution, lighting, and pose of
the face. The 10,118 images in the database for which
the face detector operated correctly were retained for
experiments. In each database, 1,000 images were se-
lected randomly as the test set. All parameter estima-
tion for the methods was performed on validation data
taken from the training sets.

Evaluation Method. Methods were principally
evaluated by graphing the trade-off in each method
between localization error and proportion of success-
ful localizations [3], see Fig. 4. On the x-axis is plotted
a threshold on the Euclidean distance between the pre-
dicted eye position and ground truth position; on the
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(a) FERET database (b) WWW database

Figure 4. Results of right eye localization for (a) FERET and (b) WWW databases. The left-most plot shows
distances normalized by the inter-ocular distance. The right two plots show distances in pixels measured in the
normalized images (note the different scales on the x-axes); we consider this measure more meaningful for the
WWW database which contains large pose variation.

y-axis is plotted the proportion of images for which the
distance is below this threshold.

Results. For brevity we report here the results of
right eye localization; results on the left eye were very
similar. Fig. 4 shows the error curves for each method
on the two databases. The left plot shows ‘normalized’
distance reported in some previous work [3]. The other
plots show distance in pixels. The curve marked ‘mean’
is the performance obtained by simply predicting the
mean eye position in the training set for every image.

All methods perform significantly better than pre-
dicting the mean position. For both databases the
Bayesian method consistently performs best, both in
terms of mean localization error and bounds on the er-
ror up to 90% (Table 1). For the FERET database, in
90% of images the eye is localized to within 2.04 pix-
els using this method (approximately 4.7% in terms
of inter-ocular distance). For the much more vari-
able WWW database, the corresponding localization
error is 2.74 pixels. Fig. 5 shows examples of good and
bad localization by the Bayesian method on challeng-
ing WWW images. The regression method performs
second best, and the discriminative method is consis-
tently worst. On the FERET database the difference
in mean error between the best method (Bayesian) and
worst (discriminative) is only 0.07 pixels. On the more
challenging WWW images, the discriminative method
is markedly worse than the other methods. It is partic-
ularly interesting that the Bayesian approach performs
best since this method is conceptually simple, and com-
putationally inexpensive to train. It is also interesting
to observe that this method achieves lower mean error
than the regression method, which is trained explicitly
to minimize this error.

Quantitative comparison with other methods is dif-
ficult due to unreported differences in the datasets

Table 2. Comparison between Bayesian method
and method of Wang & Ji [16]. The mean and stan-
dard deviation of the absolute errors in x and y-
coordinates are reported, measured in the original
FERET images.

mean(x) std(x) mean(y) std(y)

Wang & Ji 1.27 2.66 1.36 2.46
Bayesian 1.29 1.28 1.04 1.29

used. Table 2 offers one salient comparison, with the
boosting-based method of Jang & Ji [16], who report
results for 400 images of the FERET database. Table 2
shows corresponding results of the Bayesian method
evaluated on 1,000 FERET images. The mean dis-
placements for the two methods are comparable, with
our method giving slightly worse localization in x and
better in y. It is interesting to note that the standard
deviation of the displacements for our method is about
half that reported in [16], suggesting more stable re-
sults.

For the WWW database the test images have been
labelled with eye positions by two individuals. The er-
ror curve obtained using the predictions from the sec-
ond individual is shown in Fig. 4b as ‘human’. One
might expect this curve to have close to zero errors for
a high proportion of the images. This is clearly not the
case, due to errors in either individual’s marking of the
ground truth or disagreements on ambiguous images.
The curve for the second individual is essentially in-
distinguishable from that obtained using the Bayesian
method. It is particularly interesting to note that the
Bayesian method achieves lower error for some parts of
the curve than the second individual, suggesting that
the method has learnt some specificities of the first in-
dividual’s labelling.
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(a) Good localization

(b) Bad localization

Figure 5. Examples of (a) good and (b) bad localiza-
tion on images from the WWW database using the
Bayesian method. Good localization is achieved
in the presence of scale and pose variations. Per-
sistent causes of poor localization include specta-
cles, hair, eyebrows and extreme lighting.

4 Discussion

In this paper we have investigated three approaches
to the eye localization task, addressing the task directly
by regression, or indirectly as a classification problem.
A simple Bayesian approach was shown to perform
best, giving comparable performance to much more
complex state-of-the-art methods [16]. Informally our
explanation of these results is that in the discrimina-
tive model, the small localization errors in the ground
truth can affect performance greatly, whereas the sim-
ple model used in the Bayesian approach has limited
capacity to fit such errors. We do not argue for the
use of the Bayesian approach over discriminative ap-
proaches, but rather that the training criterion used
by discriminative methods needs to be refined for this
task to reflect the localization rather then classification
aims. We have also investigated other discriminative
approaches including SVM methods [1] which have ex-
plicit robustness to outliers, but the simple Bayesian
model has thus far performed better. This reinforces
our conclusion that the indirect nature of the classifi-
cation approach to localization requires refinement.

Comparison with human labelling suggests that for
perhaps 90% of images the limit on localization accu-
racy may already have been reached, and future work
should concentrate on achieving comparable accuracy
at even higher recall rates. Two areas seem worthy of
research: (i) incorporating a reliable ‘rejection’ mech-

anism so that uncertain or multiple detections can be
rejected or passed to a user for supervision, and (ii) in-
vestigating mechanisms for automatically correcting er-
rors or inconsistencies in the training data to improve
accuracy.

Acknowledgements. This work was supported by
the IST Programme of the European Community, un-
der the PASCAL Network of Excellence, IST-2002-
506778.

References

[1] T. Berg, A. Berg, J. Edwards, M. Maire, R. White,
Y. Teh, E. Learned-Miller, and D. Forsyth. Names
and faces in the news. In Proc. CVPR, pages 848–854,
2004.

[2] C. Bishop. Neural Networks for Pattern Recognition.
Oxford University Press, 1995.

[3] D. Cristinacce and T. Cootes. Facial feature detec-
tion using adaboost with shape constraints. In Proc.
BMVC03, pages 231–240, 2003.

[4] R. S. Feris, J. Gemmell, K. Toyama, and V. Kruger.
Hierarchical wavelet networks for facial feature local-
ization. In Proc. FGR2002, pages 118–223, 2002.

[5] Y. Freund and R. E. Schapire. Experiments with a new
boosting algorithm. In Machine Learning: Proceedings,
1996.

[6] J. Friedman, T. Hastie, and R. Tibshirani. Additive lo-
gistic regression: a statistical view of boosting. Annals
of Statistics, 28(2):337–407, 2000.

[7] Y. Ma, X. Ding, Z. Wang, and N. Wang. Robust precise
eye location under probabilistic framework. In Proc.
FGR2004, pages 339–344, 2004.

[8] B. Moghaddam and A. Pentland. Probabilistic learning
for object representation. In Early Visual Learning.
Oxford University Press, 1996.

[9] P. Philips, H. Moon, S. Rizvi, and P. Rauss. The
FERET evaluation methodology for face-recognition
algorithms. IEEE PAMI, 22(10):1090–1104, 2000.

[10] J. Robinson. Covariance matrix estimation for
appearance-based face image processing. In Proc.
BMVC05, pages 389–398, 2005.

[11] J. Rurainsky and P. Eisert. Eye center localization
using adaptive templates. In Proc. CVPR Workshop
on Face Processing in Video, 2004.

[12] R. Schapire and Y. Singer. Improved boosting algo-
rithms using confidence-rated predictions. Machine
Learning, 37(3):297–336, 1999.

[13] J. Shawe-Taylor and N. Cristianini. Kernel Meth-
ods for Pattern Analysis. Cambridge University Press,
2004.

[14] P. Viola and M. Jones. Robust real-time face detection.
IJCV, 57(2):137–154, 2004.

[15] P. Wang, M. Green, Q. Ji, and J. Wayman. Auto-
matic eye detection and its validation. In Proc. IEEE
Workshop on Face Recognition Grand Challenge Ex-
periments, 2005.

[16] P. Wang and Q. Ji. Learning discriminant features
for multi-view face and eye detection. In Proc. CVPR,
2005.

6


