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Abstract

ERP averaging is an extraordinarily successful method, but can only be applied to a limited range of experimental

designs. We introduce the regression-based rERP framework, which extends ERP averaging to handle arbitrary

combinations of categorical and continuous covariates, partial confounding, nonlinear effects, and overlapping

responses to distinct events, all within a single unified system. rERPs enable a richer variety of paradigms (including

high-N naturalistic designs) while preserving the advantages of traditional ERPs. This article provides an accessible

introduction to what rERPs are, why they are useful, how they are computed, and when we should expect them to be

effective, particularly in cases of partial confounding. A companion article discusses how nonlinear effects and

overlap correction can be handled within this framework, as well as practical considerations around baselining,

filtering, statistical testing, and artifact rejection. Free software implementing these techniques is available.

Descriptors: Other, Language/Speech, Normal volunteers, EEG/ERP

Electroencephalogram (EEG) recorded at the scalp measures activ-

ity from many different parts of the brain, as well as various non-

brain artifacts. Only a small portion of this summed activity

reflects processing related to any particular task, and so analyzing

and interpreting these data requires a mechanism to isolate the

task-related “signal” from the unrelated “noise.” One strategy is to

estimate the event-related potential (ERP), that is, the portion of

the EEG signal that is consistently present across trials and time-

locked to some event of interest; the usual method for performing

this estimation is to extract time-locked epochs from the continuous

EEG signal, align them, and compute their point-by-point average.

This technique has compelling advantages. It produces detailed

waveforms that give a millisecond by millisecond trace of how

processing evolves at each electrode across each condition, and has

a long track record of effectively producing insight into the dynam-

ics of neural processing. The resulting body of literature provides a

critical source of comparisons for interpreting new results, and has

produced a large stock of carefully characterized components such

as the P300, N400, etc., which can be used as dependent measures

in further experiments. This success also has led to a family of

analogous techniques for analyzing related signals: the event-

related magnetic field (ERF), event-related spectral perturbation

(ERSP; Makeig, 1993), event-related optical signal (EROS; Grat-

ton & Fabiani, 1998), etc., with similar advantages.

However, these techniques also share the primary disadvantage

of traditional ERP estimation, which is that the averaging technique

places limitations on experimental design: for optimal results, stim-

uli must be chosen to fall into a small set of discrete categories,

and these categories must be carefully controlled to ensure that all

other stimulus properties that might affect neural processing are

held constant. Furthermore, if multiple events occur in close tem-

poral proximity, the ERPs time-locked to each will generally over-

lap in both the EEG signal and the resulting ERP estimates,

making it difficult to determine which portions of the final wave-

form are attributable to which event.

These are not merely theoretical problems. For example, in our

subfield of language comprehension, the stimuli—words—neces-

sarily vary along a large number of continuous and confounded

dimensions (Cutler, 1981). In this domain, stimuli can never be

chosen to fully avoid confounding, and attempting to do so leads to

the use of nonrepresentative materials. Handling continuous dimen-

sions requires dichotimization, which wastes data and prevents the

use of potentially more powerful continuous parametric designs

(Baayen, 2004, 2010; Cohen, 1983). In reading paradigms using

rapid serial visual presentation (RSVP), the problem of overlap

may motivate the use of presentation rates that are well below natu-

ral reading speeds (Dambacher et al., 2012); in auditory speech
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comprehension, the confounding and overlap problems are even

worse, and these difficulties may contribute to a relative paucity of

auditory language ERP studies, even though EEG is one of the

only available dependent measures for probing the time course of

auditory comprehension. In the behavioral literature, recent years

have seen an increasing number of studies based on behavioral cor-

pora, which provide a valuable complement to factorial designs by

trading off a priori control of confounds to achieve much larger

sample sizes and increased naturalism (e.g., Boston, Hale, Kliegl,

Patil, & Vasishth, 2008; Demberg & Keller, 2008; Kliegl, Nuth-

mann, & Engbert, 2006). Such studies can potentially allow for the

measurement of detailed quantitative effects that are beyond the

reach of smaller, designed studies (New, Ferrand, Pallier, & Brys-

baert, 2006; Smith & Levy, 2013), but these analyses rely crucially

on statistical methods for post hoc control of confounding, which

traditional ERP averaging cannot provide.

The challenge, then, is to preserve the advantages of ERP-like

methods while relaxing their limitations. A number of alternatives

to ERP averaging have been proposed to solve one or another of

these problems, but taking advantage of these newer techniques

requires the potential user to understand and navigate a complex

set of tradeoffs. “ERP images,” for example, allow one to visualize

the effect of a continuous covariate such as reaction time on the

ERP, but can handle only one such covariate at a time, and have no

way to control for confounding (Jung et al., 2001; Lorig & Urbach,

1995). A number of studies have used multiple regression to ana-

lyze the average amplitude of the EEG extracted from a window

from either single trials (Amsel, 2011; Dambacher, Kliegl, Hof-

mann, & Jacobs, 2006; Frank, Otten, Galli, & Vigliocco, 2013;

Groppe et al., 2010) or single-item ERPs (Laszlo & Federmeier,

2011, 2014); this technique naturally allows post hoc control of

multiple simultaneous discrete and continuous covariates, but the

need for prespecified analysis windows means that it cannot pro-

duce the temporally detailed waveforms that are one of the primary

attractions of ERP analysis. A more promising approach is to cal-

culate a separate regression model at each possible latency, similar

to the mass univariate techniques used in PET/fMRI analysis, var-

iations of which have been proposed by multiple groups under dif-

ferent names: the event-related regression coefficient (ERRC;

Hauk, Davis, Ford, Pulverm€uller, & Marslen-Wilson, 2006; Hauk,

Pulverm€uller, Ford, Marslen-Wilson, & Davis, 2009; Miozzo, Pul-

verm€uller, & Hauk, 2014), general linear model (GLM) analysis

(Rousselet, Pernet, Bennett, & Sekuler, 2008; Rousselet et al.,

2009, 2010; Pernet, Chauveau, Gaspar, & Rousselet, 2011), corre-

lational analysis (Ettinger, Linzen, & Marantz, 2014; Solomyak &

Marantz, 2009, 2010), or no name at all (Amsel, 2011); a closely

related proposal is to analyze EEG via nonparametric regression

based on generalized additive models (Hendrix, 2009; Hendrix,

Bolger, & Baayen, 2014; Kryuchkova, Tucker, Wurm, & Baayen,

2012; Tremblay, 2009; Tremblay & Baayen, 2010). These

approaches can naturally handle multiple covariates while still pro-

viding information on the time course of effects, but have no provi-

sion for handling overlap correction. Meanwhile, the ADJAR

technique (Woldorff, 1993) does allow for a limited form of over-

lap correction, but it requires the user to make complex heuristic

judgments, and applies only to classic categorical ERPs. And all of

these approaches face the hurdle of convincing potential users to

either give up or somehow adapt the large existing comparative lit-

erature, “componentology,” and store of experience and lore that

practitioners have accumulated around ERPs.

In this article and its companion, we introduce a regression-

based framework for estimating ERPs—the rERP framework for

short. However, our goal is not to give experimenters yet another

ERP alternative to choose from. Nor is our goal to get rid of

ERPs—quite the opposite. Instead, we start from the well-known

observation that averaging is a special case of least squares linear

regression, and use this to extend traditional ERP estimation to

handle a much broader range of analysis problems in a unified

way. The rERP framework provides a single method for estimating

ERP waveforms that works whether the design is factorial or con-

tinuous or both, whether it is orthogonal or partially confounded,

whether the continuous covariates have linear or nonlinear effects,

and whether the events of interest produce overlapping ERPs or

not. In the simplest case—a categorical design with no overlap cor-

rection—then the rERP estimates we obtain will be mathematically

identical to those produced by traditional averaging. This makes it

trivial to carry over previous ERP results to rERP: all ERPs

are rERPs.

But rERPs are also flexible enough to handle complex cases

where traditional ERP averaging does not apply. In fact, it turns

out that every ERP alternative mentioned above, or a close ana-

logue, also falls out naturally as a special case of the rERP

approach. Thus, one of our key contributions is to demonstrate that

the apparent complexity in this literature is largely illusory: there’s

no need to separately learn five or more distinct methods, because

the rERP framework encompasses and unifies them all. rERPs

aren’t magic: disentangling confounded covariates, for example,

may require more data than would be required if they were orthog-

onal. But if there is a mild violation of the ERP assumptions—for

example, a poorly controlled nuisance variable that is correlated

with our variable of interest—then we can statistically control for

that nuisance variable while calculating what is otherwise a tradi-

tional ERP waveform. And the use of a unified framework allows

us to straightforwardly handle even the most complex situations.

For example, previously, if one wished to use an ERP image to

obtain a detailed picture of a continuous covariate’s effect, one

could not also correct for overlap, or use multiple regression to dis-

entangle the simultaneous effects of multiple covariates. But in the

rERP framework, we can mix and match all the different aspects as

appropriate to the situation, and import new ideas from the regres-

sion literature as needed. And, because these different options fit

together into a single system, it becomes easier to articulate and

reason about the trade-offs and relationships between different ana-

lytic approaches. Finally, we note that, while we will focus our pre-

sentation here exclusively on EEG/ERP analysis, the approach

generalizes directly to related modalities, producing rERFs, rERSP,

rEROS, etc.

The remainder of this article is structured as follows. We first

review the theoretical motivation underlying the traditional averag-

ing approach, and show that the same motivations lead naturally to

a specific way of applying least squares regression. Since regres-

sion is so well studied, this unlocks a vast literature of tricks and

techniques that can then be applied directly to ERP estimation. To

aid in making this mapping, we next work through several exam-

ples with a simple experimental design, both to illustrate the princi-

ples of rERP analysis and to show how the ideas and terminology

of ERPs correspond to those used in the regression literature.

Finally, we provide a detailed discussion of how regression can

(sometimes) disentangle the effects of partially confounded factors,

and the trade-offs involved in choosing between the complex

designs that our technique makes available. A companion article

builds on this foundation to discuss two more sophisticated applica-

tions of the framework—the use of spline regression (a generaliza-

tion of both dichotimization and ERP images) to measure nonlinear
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effects of continuous predictors, and a technique for correctly esti-

mating ERPs in the presence of overlap—as well as ancillary practi-

cal considerations such as baselining, filtering, significance testing,

and artifact rejection. A list of free software packages implementing

these methods is available at http://vorpus.org/rERP.

ERP Averaging Is Least Squares Regression

ERP analysis starts from the assumption that whenever a particular

type of event occurs (e.g., a stimulus appears on a display), then the

brain produces a fixed pattern of neural activity—the ERP itself—

that is time-locked to that event.1 Here, we consider how to derive a

method for estimating such an ERP from data, starting from first

principles, and then show how the same principles lead to rERP

analysis. To reduce confusion, in this section we’ll be careful to say

ERP estimate when referring to any estimate based on data, and say

ERP alone only when referring to the postulated underlying brain

activity that we hope our estimates will approximate.

In an ideal world, we could just present our stimulus once,

record the resulting brain activity, and be done. But reality, of

course, is never that simple. There is always a great deal of other

ongoing neural activity that doesn’t care about our experimental

manipulation at all (or if it does care, then not in a way that

matches the assumptions of ERP analysis), which means that what

we actually measure on any single trial will be the sum of the ERP

activity and this background activity. So, given that we can’t mea-

sure the ERP directly, how can we estimate it from the data that we

can measure?

Instead of trying to estimate the whole waveform at once, we

start by working out how to estimate the value of the ERP at one

single electrode and latency—for example, 136 ms postevent at

electrode Cz. (If we can do this, then we can estimate the rest of

the ERP by just repeating our technique at every electrode and

latency.) This means the value we’re trying to estimate is just a sin-

gle number, which we call b (pronounced beta). To estimate b, we

use the measurements we’ve made of the scalp potential at 136 ms

postevent, at Cz, on many trials—this is a list of numbers, which

we call y1, y2, y3, . . . , yn. And our assumption is that the physical

process that produced these numbers was the summation of the true

ERP plus each trial’s background “noise.” So, we can write the

relationships between the different numbers involved here as:

y15b1noise1

y25b1noise2

�

yn5b1noisen

Or, for short, we write

yi5b1noisei

Notice that on every trial, the value of the noise (at this latency

and electrode) is different, but the value of the ERP (at this latency

and electrode) is always the same.

At this point, most ERP texts would suggest that we just esti-

mate b by taking the average of the yi values. But why, mathemati-

cally, is that a good idea?

We know the values of yi, but not b or noisei. If we knew what

noisei was on each trial, we could solve for b using algebra. Con-

trariwise, given any estimate of b, we could solve for the estimated

pertrial noise: yi 2 b 5 noisei. Because we know neither, we need

some other strategy, and the oldest, simplest, and most widely stud-

ied strategy for solving such problems is the principle of least

squares. This principle says that we should choose our estimate of

b to be the number that makes our estimate for the total squared

noise,

squared noise5
Xn

i51
ðnoiseiÞ25

Xn

i51
ðyi2bÞ2

as small as possible. To minimize this formula, we first take the

derivative:

d

db
squared noise5

d

db

Xn

i51
ðyi2bÞ25

Xn

i51
22ðyi2bÞ:

Then, we set it equal to zero:

Xn

i51
22ðyi2bÞ50

And finally we solve for b:

22
Xn

i51

yi2
Xn

i51

b

 !
50

Xn

i51

yi5
Xn

i51

b

Xn

i51

yi5nb

1

n

Xn

i51

yi5b

Notice that this final formula turns out to be the standard for-

mula for calculating the mean. This means that, according to the

least squares principle, the best way to estimate b is to take the

average of our measured values, y1, . . . , yn. This is the reason

why using averaging to estimate ERPs makes sense in the first

place.

From Averaging to Regression

So, the traditional averaging method for estimating ERPs can be

justified as being the least squares solution to the equation

yi5b1noisei

1. This assumption may or may not be an accurate description of the
underlying neural processes in any particular case, and a number of
alternative mechanisms have been proposed (Burgess, 2012; Nikulin
et al., 2007; Sauseng et al., 2007). For our current purposes, this doesn’t
really matter; our goal here is to use this assumption to derive a useful
method, and the empirical success of the ERP averaging technique dem-
onstrates that this assumption can lead to useful analyses regardless of
its objective truth. rERP analysis, being an extension of ERP analysis,
starts from the same assumption, and will turn out to have similar prop-
erties (i.e., any pattern of neural activity that can be picked up by aver-
aging can also be picked up by rERP, whether or not it arises from a
“true” evoked potential).
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Now, notice that the above equation is just a simple example of the

general least squares linear regression formula:

yi5b1x1i1b2x2i1 � � � 1noisei

What happens if we estimate ERPs using full-fledged linear regres-

sion, instead of the simplified version?

Just as before, the yi values are set to the measured scalp poten-

tial at a single electrode, at a single latency, across different time-

locked trials. The xji values (the predictors) are set to indicate vari-

ous properties of the stimulus presented on trial i, coded numeri-

cally. (The original ERP equation that we derived above effectively

has a single predictor, x1i, whose value is always 1. We can think of

this as a particularly vague property that simply indicates that there

was an event.) And, once we’ve measured the yi values and specified

the xji values, we again use the principle of least squares to find

those values for b1, b2, . . . that together minimize the total squared

noise. Each b value then gives an estimate of some portion of the

ERP at this electrode and latency. Alternatively, given the properties

of any particular stimulus i, we can compute the sum

b1x1i1b2x2i1 � � �, which we call the model’s prediction of the ERP

to a stimulus with these properties at this latency.

Actually finding the b values that satisfy the least squares

principle is somewhat more complicated than just taking the

average, but not by much, and there are standard techniques that

allow computers to accomplish this quickly and reliably. We

then repeat these calculations many times, once for each elec-

trode and latency—the whole process takes a few tens of milli-

seconds on a modern computer. As we do, we keep the same

xs—since these represent properties of the event that each trial

is time-locked to, which do not vary across electrodes or laten-

cies—but swap out the y values to represent the measurements

made at each electrode and latency across our different trials.

Finally, we gather up all the computed b1 values to make one

waveform, all the b2 values to make a second waveform, and so

on for all of the bs. The resulting waveforms can then be plot-

ted, smoothed, entered into statistical analysis, have amplitude

and latency measures extracted, and generally be treated exactly

as if they were ERP waveform estimates obtained via averaging.

Likewise, we can combine bs together to compute the predicted

waveforms for particular stimuli, and these predictions can also

be analyzed like ERP estimates obtained from averaging. To

remind ourselves that our waveforms were estimated using

regression instead of averaging, we call them rERPs.2

Defining Predictors for rERP Analysis

While rERPs can be treated much like traditional ERP estimates,

they do require an important shift in our perspective. Many of us

are used to solving data analysis problems by reasoning out which

sequence of operations we should apply to our data to achieve our

desired result: first dividing into bins, then averaging, then subtract-

ing to create difference waves, etc. When we are then confronted

with a new problem (e.g., correcting for a partially confounded

variable), it’s natural to try to find a solution along similar lines

(e.g., estimating some sort of correction factor and then subtracting

it out). But in the regression framework, this is not the most pro-

ductive approach. Instead, we focus on deciding which set of pre-

dictors can be used to best characterize our events; the least

squares program will then take care of automatically deriving the

optimal data processing method from this description. Going from

averaging to regression is like going through the looking glass: our

standard ERP techniques turn out to have perfect analogues in

standard regression techniques, but the terminology and framing

are quite different.

This section acts as an introduction to the looking glass world

and its correspondences to the familiar ERP world, giving a step-

by-step examination of standard ways of setting up rERP predictors

to handle factorial, continuous, and combined designs.

We use examples and data drawn from a published experiment

by DeLong, Urbach, and Kutas (2005). This is a language compre-

hension experiment that created contexts in which participants had

a graded expectation for either the word a or the word an, such as

The day was breezy so the boy went outside to fly (a kite/an air-

plane). Thus, our example design has one categorical covariate—

word identity, a versus an—and one continuous covariate—word

expectancy, which falls between 0 and 1.

The Traditional ERP as an Intercept Term

The simplest example is the one we have already seen. Suppose we

define just a single predictor as

x1i51

In linear regression terminology, this predictor is known as an

intercept term. Then, our regression equation is

yi5b1x1i1noisei5b11noisei

and, as we saw above, when we find the least squares solution, b1

will end up equal to the mean of the yi values (Figure 1a).

Therefore, this is not only a legitimate method for estimating

the activity time-locked to some event, but it produces results that

are identical to the conventional averaging technique. However, it

is somewhat cumbersome to use, because if we have categorical

factors with multiple levels, then it requires us to fit two different

models: one on the a trials, and another on the an trials.

Multiple ERPs Via Dummy Coding

Instead of fitting multiple models, we can estimate both ERPs at

once within a single regression model by using a trick known as

dummy coding, which is one of the standard ways to handle

2. Previous authors have argued for an analogy between regression
coefficients and classic ERP averages on the grounds that both can be
computed by taking certain weighted sums of the input data (Hauk et al.,
2006, 2009; Miozzo et al., 2014). This is true, but it leaves important
questions unanswered. There are many ways of weighting the input data
so that their sum does not produce any useful value, which means there
must be something special about the particular weights that are used in
regression and in averaging. What’s so special about these weights, and
how do regression weights relate to the more familiar averaging weights?
If we focus on weighted sums, these questions are difficult to answer
because, for regression, the weights have no intuitive relationship to the
original experimental design: they are the output of a rather opaque calcu-
lation (and in efficient implementations may not be explicitly computed
at all). But if we stop worrying about weighted sums and instead observe
that at a high level these techniques both select their weights so as to find
the unique, best-possible estimate (in the least squares sense) of an under-
lying ERP signal buried in noise, then the connection between averaging
and regression immediately becomes clear, along with the implication
that in the cases where both techniques are applicable they will end up
using identical weights to produce identical results.
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categorical variables within regression models.3 If we define two

different predictors, like so:

x1i5
1; if stimulus i is a

0; if stimulus i is an

(

x2i5
0; if stimulus i is a

1; if stimulus i is an

(

and then plug them into the standard regression equation:

yi5b1x1i1b2x2i1noisei

then least squares fitting will set b1 to the average of the a trials,

and b2 to the average of the an trials (Figure 1b).

It’s easy to see why this happens. If on trial i, we displayed the

word a, then x1i is 1 and x2i is 0, so we have

yi5b1311b2301noisei5b11noisei

Or, if on trial i, we displayed an, then x1i is 0 and x2i is 1, so we

have

yi5b1301b2311noisei5b21noisei

So effectively we end up fitting two copies of our previous

intercept-only model on two different subsets of the data. The only

difference from the previous example is that, before, we did this by

explicitly dividing our data into subsets; now, we just define our xs

and the appropriate data splitting happens automatically as a result

of the least squares fitting process. A generalized version of this

“zero trick” can be used to combine arbitrary regression models

into a single fit, and we’ll see later that this is useful for several dif-

ferent purposes.

Difference ERPs Via Treatment Coding

However, a more common method for handling categorical varia-

bles in regression is by treatment coding.4 This consists of dummy-

coding all but one of the levels of our factor (we refer to the level

that’s left out as the reference level), and then adding an intercept

term. For example, taking the a stimuli as our reference level, we

have:

x1i51; x2i5
0; if stimulus i is a

1; if stimulus i is an

(

With this coding scheme, least squares fitting will set b1 to the

average of the a trials, and b2 to the difference between the an tri-

als and the a trials, that is, b2 will be a conventional difference

ERP (Figure 1c). This is why the regression literature calls this

treatment coding: if you choose a control condition for your refer-

ence level, and then apply various “treatments” on top of it, then

the resulting bs show you how these treatments change the ERP

response versus the control.

This also illustrates a very important aspect of interpreting

regression formulas, which is that the fitted value of each bj

depends not just on how we defined the jth predictor, but on all the

predictors, x1i, . . . , xni. This example and the previous one used the

same definition for x2i, and only changed x1i; but the result was that

b1 stayed the same, while b2 changed completely.5 Likewise, we

saw above that, if all we have is an intercept, then the correspond-

ing b will give the grand mean of all our data, but here it gives the

mean of the a stimuli only. This behavior can be quite confusing

when first encountered.

The key to interpreting the b values produced by these mod-

els—and thus to interpreting rERP waveforms in general—is to

remember that the least squares fitting process does not care about

the b values directly. It only cares about the predicted values (the

rightmost column in Figure 1). It will pick whichever b values

make these predictions match the data as closely as possible. Since

the predictions are created by combining multiple b values

together, this means that the chosen b values are not the ones that

individually match the data best, but the ones that are most effec-

tive at working together. In the treatment coding case, b1 must

work alone to match the a stimuli, while for the an stimuli, b1 and

b2 work together; so the most effective teamwork is achieved

Figure 1. The relationship between xs (predictors), b coefficients

(rERPs), and predicted ERPs, for various stimuli and models. Wave-

forms shown are unsmoothed grand-average rERPs fit to data from

DeLong et al. (2005). a: Intercept-only models fitted to subsets of the

data. b: Dummy coding. c: Treatment coding.

3. This is the default method of coding categorical variables used by
SAS, and is also used by default by R for models that do not contain an
intercept term.

4. This is the default method of coding categorical variables in R and
SPSS.

5. This is also why we prefer the name treatment coding for this par-
ticular coding scheme, even though SPSS and many references refer to
it as, simply, dummy coding. Using 0/1 dummy coding for some levels
of a factor can produce very different results depending on how other
levels are coded, making the name ambiguous; treatment coding refers
specifically to this scheme combining an intercept term with dummy
coding for all but one level.
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when b1 focuses on matching the a stimuli while b2 focuses on

correcting b1 so that their combination will match the an stimuli.

And this teamwork will turn out to be the essential feature that

allows regression to handle confounding, nonlinear effects, and

overlap correction.

But it also creates a potential problem for some coding

schemes that might otherwise seem reasonable: those in which sev-

eral predictors are perfectly collinear, that is, redundant.

Examples of this would be if we accidentally entered the same

predictor twice, if we left some cell out of our design, or, less obvi-

ously, if we used our original simple dummy coding scheme, but

for two different factors at once. For instance, pretend that some-

times in this experiment the critical items were displayed in

UPPERCASE. Then, we could define four dummy-coded

predictors:

x1i5
1; if stimulus i is a

0; if stimulus i is an

(

x2i5
0; if stimulus i is a

1; if stimulus i is an

(

x3i5
1; if stimulus i is lowercase

0; if stimulus i is UPPERCASE

(

x4i5
0; if stimulus i is lowercase

1; if stimulus i is UPPERCASE

(

. . . but we probably don’t want to do this. Suppose that there is

some component, say the N1, which is identical between all four

conditions. Then, one way the bs could work together to capture

this effect would be to say that a and an are both associated with

an N1, and put the N1’s deflection into the b1 and b2 waveforms.

Another way to explain it would be to say that the N1 is triggered

by both uppercase and lowercase words, and let the b3 and b4

waveforms take care of it. Or maybe a and an both trigger a posi-

tivity during this window, but uppercaseness and lowercaseness

both generate an even greater negativity, which cancels it out—that

would also be consistent with the data. Because all these combina-

tions of b values ultimately lead to the same predictions, least

squares fitting has no way to choose among them.

Some regression software, when confronted with this situa-

tion, will respond by silently and semiarbitrarily picking one of

the equivalent and equally-best combinations of b values. This

can produce valid results, but only if we are careful to remember

not to try to interpret the b values directly, and look only at the

predicted values and their so-called valid contrasts. This

approach is ubiquitous in the fMRI literature using GLM analy-

sis, but for ERP analysis—where the b values are so directly

linked to the actual target of the analysis, and where understand-

ing the bs is the simplest method to understand exactly what

assumptions the model makes about how the ERP waveform can

vary across conditions—we recommend the use of nonredundant

models with interpretable bs.

Fortunately, treatment coding always allows categorical vari-

ables and their interactions to be straightforwardly coded in a

nonredundant way. (In fact, the regression literature usually

presents this as a primary motivation for using treatment coding

or related schemes.) For example, applying treatment coding to

our uppercase/lowercase analysis gives a nonredundant set of

predictors:

x1i51

x2i5
0; if stimulus i is a

1; if stimulus i is an

(

x3i5
0; if stimulus i is lowercase

1; if stimulus i is UPPERCASE

(

x4i5
0; if stimulus i is either lowercase; or a

1; if stimulus i is an UPPERCASE AN

(

Here x1i is the intercept, x2i is the treatment coded a/an factor,

x3i is the treatment coded lowercase/UPPERCASE factor, and x4i,

if included, represents the word form/letter case interaction. (Notice

that x4i 5 x2i 3 x3i, which is the general rule for defining interaction

predictors.) Here b1 will estimate the ERP for lowercase a, b2 the

difference between lowercase a and lowercase an, b3 the difference

between lowercase a and uppercase A, and b4 will be a difference-

of-differences ERP: if we first calculated the difference ERP

between uppercase AN and uppercase A, and then calculated the

difference ERP between lowercase an and lowercase a, then b4

will be the difference between these two difference ERPs. Notice

that this means b4 will be significantly different from zero exactly

when there is a nonadditive interaction between our two factors.

More sophisticated coding schemes are also possible, and well

documented by standard references (e.g., Cohen, Cohen, West, &

Aiken, 2003). The use of nonredundant coding doesn’t in any way

alter or limit the set of models we can fit. In general, there are

many different but equivalent ways to represent any given linear

model; a simple example is shown in Figure 1b versus Figure 1c.

Nonredundant codings give us the power to choose the representa-

tion we find most interpretable.

Slope rERPs from Numeric Predictors

So far, we’ve focused on showing the mapping between ERP ter-

minology and regression terminology, but every analysis in Fig-

ure 1 could have been done just as well with some combination of

averaging and creating difference ERPs. Now, we’ll see how the

regression approach also allows us to directly analyze a continuous

covariate like word expectancy.

The core idea is simple. We define a predictor that indicates the

expectancy of each word on some scale: here, this was measured

using an offline cloze norming task, and we represent it as a num-

ber between 0 and 1, where 0 indicates a word that no norming

task participants guessed, and 1 indicates a word that 100% of

them guessed. In practice, we’ll always include an intercept term as

well; otherwise, we’re assuming that whenever our predictor is

zero, the ERP will be perfectly zero as well. (There may be some

cases where this makes sense—perhaps if the predictor indicated

visual contrast, then we’d expect no response at all to a zero-

contrast display. But such cases are unlikely to occur often in prac-

tice.) To look at the expectancy effect, we can define predictors:

x1i51; x2i5word expectancy on trial i:
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Now b1 will give a kind of baseline ERP—the ERP we expect

to see for items with x2i 5 0 (i.e., items that were never guessed in

the norming task). b2 estimates how much this ERP changes with

each unit change in expectancy; so going from expectancy 0 to

expectancy 0.5 will produce a change of 0.5 3 b2 in the predicted

ERP (Figure 2). b2 is the slope of the regression line that relates x2i

and yi, so we refer to this as a slope rERP.6

In Figure 2, notice the positive hump in the b2 waveform peak-

ing at 300 ms. This indicates an increased positivity for high-

expectancy words, which is the same as a negativity to low-

expectancy words; we can also see this effect reflected in the pre-

dicted ERPs. This is the N400 effect that DeLong et al. (2005) orig-

inally reported for these data.

Notice also the similarity between these predictors and the

predictors we used for treatment coding above. In both cases, we

have an intercept term x1i whose corresponding parameter b1

gives us a kind of baseline ERP, and then there is an additional

term x2i which codes for deviations from this baseline. With treat-

ment coding, this second parameter b2 measures the difference in

scalp voltage between a and an stimuli, and has units of lV.

Here, b2 measures the difference in scalp voltage corresponding

to any one unit change in expectancy, and has units of lV per

unit change in expectancy. Our slope rERP b2 can be viewed as

a variant of the familiar difference ERP; what’s new is that we

allow for stimuli that fall between the two extremes, and which

we assume create waveforms that likewise fall between the two

extremes.

Putting It All Together

Now that we’ve seen how to handle both categorical and con-

tinuous covariates, we can also combine both in the same

model. 7 For a complete analysis of the DeLong et al. (2005)

design, we combine the factorial and continuous predictors into

a single model:

x1i51

x2i5

0; if stimulus i is a

1; if stimulus i is an

8<
:

x3i5word expectancy on trial i:

(See Figure 3). The resulting bs have the same interpretation as

they did in the previous examples in which these same predictors

occurred—b1 gives the predicted ERP for a trials with zero meas-

ured expectancy, b2 gives the difference between an trials and a tri-

als (this model assumes that this is the same for all expectancies),

and b3 gives the change in the predicted ERP for each unit change

in expectancy.

The b waveforms together provide a form of linear decompo-

sition of the underlying ERPs, but should not be confused with

techniques like temporal principal component analysis (tPCA;

Donchin & Heffley, 1978) or independent component analysis

(ICA; Makeig, Bell, Jung, & Sejnowski, 1996) that also produce

linear waveform decompositions; these other techniques use

very different mechanisms to accomplish a very different pur-

pose. Their goal is to identify and disentangle the underlying

functional components or neural source generators that contrib-

ute to the scalp EEG. The goal of rERP analysis, by contrast, is

to characterize the systematic relationships between event-

related brain activity and the properties of time-locking events,

and it represents this relationship using decompositions like

those shown in Figures 1–3. In the tPCA/ICA literatures, the

physical reality of the estimated components is a major concern;

in rERP, we choose freely between coding schemes that produce

different but equivalent decompositions in order to maximize

interpretability. tPCA or ICA alone do not allow us to analyze

differences between conditions or different kinds of time-

locking events, and thus are commonly used together with

ERP averaging; they can just as well be used with rERP instead.

These techniques and rERP are thus complementary and

compatible.

Now that we’ve seen how to use both categorical and continu-

ous predictors together within a single model, it should be clear

that we can extend our example as far as we like, and combine as

many predictors as are appropriate to our experimental design. For

example, in our example analysis we might want to also add a term

to represent the interaction between the a/an manipulation and the

expectancy manipulation. Such a term would be defined as

x4i 5 x2i 3 x3i, and if it were included, then b3 would denote the

expectancy effect for a stimuli, while b4 would denote the differ-
ence between the expectancy effect for a stimuli and the expect-

ancy effect for an stimuli. Note how similar this is to our earlier

discussion of categorical interactions.

In more complex cases, it might be the case that we have

some events that have more or different predictors associated

with them than others (e.g., in a go/no-go paradigm, go trials

will have an associated response time, while no-go trials will

not). This is also easily handled. There are two mostly equiva-

lent options. We can either divide these trials into two bins and

perform a separate rERP analysis on each bin, or we can reuse

the zero trick that we previously used to go from Figure 1a to

Figure 1b. In this second approach, the idea is to simply include

both sets of predictors into a single model, with the rule that,

whenever we have a trial where a predictor doesn’t apply, then

we set it to zero:

Figure 2. The relationship between xs (predictors), b coefficients

(rERPs), and predicted ERPs, for various stimuli in a model containing

a single continuous predictor. Waveforms shown are unsmoothed grand-

average rERPs fit to data from DeLong et al. (2005).

6. Slope rERPs correspond to the ERRCs described by Hauk et al.
(2006, 2009).

7. This combined approach has been used to study the EEG response
to face recognition (Rousselet et al., 2008, 2009, 2010).
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x1i5
1; on no-go trials

0; on go trials

(

x2i5
0; on no-go trials

1; on go trials

(

x3i5
0; on no-go trials

RTi; on go trials

(

This ensures that that this predictor’s b value will have no effect

on our model’s prediction for no-go trials. As Figure 1a and 1b

illustrate, these two approaches in general give the same result, so

one can use whichever seems more convenient. There are, how-

ever, some cases where the second approach allows for additional

flexibility. For example, if there is one covariate that is shared

between our different event types, and we wish to constrain the

estimated waveform for this covariate to have the same shape for

both types of event (i.e., we want this covariate to have only a

main effect, with no interaction with event type), then we can do

this by entering only a single predictor for this covariate to be

shared by both event types, while simultaneously applying the zero

trick to the other nonshared covariates. Another example where the

second approach is useful occurs when our different event types

occur in close temporal proximity, and we want to use the overlap

correction technique described in the companion article to disen-

tangle their effects; in this case, we will need to estimate all of our

waveforms simultaneously within a single model, so that each

waveform can be corrected for its overlap with the others, and the

zero trick makes this possible.

At this point, though, the prospect of models that bristle with

dozens of predictors might give us pause. First, as more terms and

interactions are added to a model, it may become a challenge to

interpret the various b coefficients. The key to achieving clarity in

such situations is always to consider how the coefficient under con-

sideration works together with the rest to affect the overall pre-

dicted ERP for different stimuli. We find that drawing pictures like

those shown in Figures 1–3 often helps.

Second, as our models become more flexible, we may worry

that we will be unable to effectively estimate our rERPs from a

limited set of data—and the time and cost of recording data are

already often a limiting factor on ERP experiments. We now have

the tools to run and analyze arbitrary designs, from the simplest to

the most complex. But should we? There are trade-offs required to

use these models effectively, and the next section gives us the tools

to navigate them.

Straight Talk on Collinearity

In technical terms, the fundamental challenge for analyzing data

with large numbers of predictors, and those with partially con-

founded covariates, is collinearity. It is important therefore to

understand what this is, and how, precisely, it affects our analyses;

but even many textbooks dedicated to regression are somewhat

vague on these points, or offer advice targeted at audiences with

very different goals than typical scientific research.8 So, here we

summarize the facts and how they apply to rERPs.

First, what is collinearity? The term is commonly used to refer

to two very distinct phenomena. Perfect collinearity is when we

have predictors that are perfectly redundant with each other—they

make exactly the same predictions in different ways—and was

Figure 3. The relationship between xs (predictors), b coefficients (rERPs), and predicted ERPs, for various stimuli in a model containing a combina-

tion of factorial and continuous predictors. Waveforms shown are unsmoothed grand-average rERPs fit to data from DeLong et al. (2005).

8. Fox (2008) is a refreshing exception, and one that this discussion
is heavily indebted to.
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discussed above as a motivation for treatment coding. This is an

important concept to understand, but its effects are straightforward

and avoiding it is also straightforward. So our discussion here will

instead focus on the more subtle problem of partial collinearity, also

known as partial confounding or nonorthogonality, which refers to

the situation where some of our predictors are correlated, but not

identical. Sometimes the word collinearity is reserved for “severe”

cases, where the degree of correlation among predictors exceeds

some threshold. However, such thresholds are essentially arbitrary;

our discussion here applies equally to both mild and severe cases.

The most important thing to know about partial collinearity is

that it does not violate any of the assumptions underlying least

squares regression. If we have a partially collinear design, then

regression is an appropriate method for analyzing our data, and the

effects of this collinearity can be precisely characterized by mathe-

matical theory. This theory tells us that, when partial collinearity is

involved, there are two things we need to watch out for: whether

we have enough predictors, and whether we have enough data.

It’s easy to understand the problem that arises from leaving out

relevant predictors. Figures 2 and 3 show two estimates of the slope

rERP b for expectancy: one from a model that includes the a/an
predictor (Figure 3), and one from a model that leaves it out (Fig-

ure 2). For the DeLong et al. (2005) data, the two slope estimates

are nearly (though not quite) identical. This is typical of (near-

)orthogonal experiments like this one, which was carefully

designed to ensure that the a stimuli and an stimuli were balanced

with respect to expectancy. In orthogonal designs, leaving out a

covariate doesn’t change our estimates for the remaining covari-

ates. But imagine instead a different, less careful version of this

experiment, where the an stimuli had, on average, lower expect-

ancy than the a stimuli. Then, the best way for the expectancy-only

model to capture the patterns in the data would be for it to attribute

some of the categorical an effect to expectancy. In statistical termi-

nology, our analysis would become inconsistent, meaning that no

matter how much data we had, we would be doomed to getting a

misleading result. But the combined model is different: here, any

patterns associated with the word an can be attributed to it directly.

The wonderful thing about regression is that the least squares fit-

ting process selects whichever b coefficients are best at working

together to explain the patterns in the data, and, ultimately, the

covariates that are actually responsible for a pattern are always the

best way to explain it. As long as we include those covariates in

our model, and have enough data, then regression will work out the

correct waveforms even if our predictors are confounded.

But do we have enough data? Collinearity also affects the noise

in our estimates and how much data we need, and the key to under-

standing this is to examine variance inflation factors, or VIFs. Each

VIF measures how the sampling variance of one estimated b coef-

ficient is affected by the presence of collinearity, and is equal to 1/

(1 2 R2). The R2 here is not taken from the model we actually want

to fit, but instead measures how much of the variance in this pre-

dictor can be explained by the other predictors in our model. So if

we have a model with just two predictors, and the correlation

between these two predictors is r 5 0.5, then the VIFs will be 1/

(1 2 0.52) 5 1.33. This has a very straightforward interpretation:

what it means is, if we know that normally we would need 60 trials

to get an acceptably accurate estimate of the rERP for a single pre-

dictor in an orthogonal design, then we need 60 3 1.33 5 80 trials

to get equally accurate estimates of the rERPs to these two predic-

tors (O’Brien, 2007). Put another way: each trial in this design is

worth three quarters of a trial in a fully orthogonal design, at least

with respect to these predictors.

Examining the formula for VIFs tells us several things, and the

first is quite surprising: if we add additional uncorrelated predictors

to our model, then this has absolutely no effect on the noisiness of

our estimates. Any predictor in an orthogonal design has a VIF of

1, which means that, so long as our covariates are uncorrelated, we

can estimate a dozen parameters just as well as we can estimate

one of them, from the same amount of data—though in practice we

may be hard pressed to find a dozen uncorrelated predictors. Notice

also that if we have two predictors that are correlated with each

other but both are uncorrelated with a third, then we will need

more data to estimate the effect of the first two predictors, but their

presence in the model will not affect estimates for the third predic-

tor. Collinearity is not contagious: it affects only the variables that

are collinear, and only to the extent of their individual collinearity.

The second thing the VIF formula tells us is that VIFs> 1 travel

in packs: correlation always goes (at least) two ways, and correla-

tion is what causes increased VIFs, so whenever one predictor has

a VIF> 1, others will as well. This is closely related to the underly-

ing cause of variance inflation. Recall how, when we had two iden-

tical predictors, the model might know that to match the data it

needed b1 1 b2 5 1, but could not distinguish between an option

like b1 5 0, b2 5 1 and one like b1 5 100, b2 5 299. When our

predictors are not identical, but merely similar, then our model can

distinguish these cases in principle—but given finite data, it may

struggle; these two options will make very similar predictions, and

depending on the noise, setting b1 5 100, b2 5 299 may seem

unreasonably attractive. Technically, this struggle manifests as an

increased sampling variance for all the involved bs. This is the

extra sampling variance measured by the VIFs, and it manifests in

a distinctive way. In orthogonal designs, the background noise cor-

rupts our estimates for each b independently: b1 might be errone-

ously high while b2 is erroneously low, or vice versa, or both

might be erroneously high or both might be erroneously low—

there’s no correlation between the noise in b1 and the noise in b2.

Designs containing collinearity are different: the same noise affects

multiple b values simultaneously, and can produce strange, struc-

tured behavior, where, for example, in the most common manifes-

tation, every time b1 is estimated erroneously high, b2 will be

estimated erroneously low, and vice versa. And, because collinear-

ity effectively increases the amount of noise in our estimates, if we

don’t have enough data then we should expect to sometimes see b1

estimated very high (b1 5 100), while b2 is estimated very low

(b2 5 299). This is fully expected within the theory of linear

regression, and accounted for in ordinary statistical tests. If one par-

ticipant’s estimates have b1 5 100, b2 5 299, then the next will

have b1 5 299, b2 5 100, and our statistics will correctly conclude

that these estimates are too noisy to indicate anything real. But it is

important to know about this behavior in order to understand

what’s happening when we see it.

The third thing the VIF formula tells us is that, while correla-

tions in our design do increase the amount of data we require, it

may be feasible to disentangle the effect of even highly correlated

predictors. If two covariates are correlated at the level of r 5 0.7,

then we need to collect double the usual amount of data to distin-

guish them—difficult, but perhaps doable. In worse cases, the use

of regression also gives the option of increasing N by using rela-

tively unstructured, corpus-style data sets. These will have higher

collinearity than designed experiments, but this can be more than

offset by the increased amount of data. In language comprehension

research, for example, modern behavioral corpus studies routinely

have Ns measured in the tens of thousands (e.g., Demberg & Kel-

ler, 2008; New et al., 2006; Smith & Levy, 2013). Collinearity can
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still become a problem as the number of predictors increases (each

one adding just a bit to the R2 for all the others), and it is generally

wise to compute the VIF while planning an experiment rather than

waiting until the analysis stage, but the use of regression substan-

tially increases the range of what is possible.

Even so, there will remain cases where the collinearity is too

high, and we cannot gather enough data to achieve tight estimates

of our b parameters. Would this, then, be a good time to toss out

some predictors and simplify our model?

This temptation should generally be resisted, and now that we

understand the theory of collinearity, we can see why. There are

two cases to consider. First, if the predictors with high VIFs are

included as controls in our model, but are not actually the target of

our scientific questions, then collinearity is not a problem. For

example, Hauk et al. (2009) wished to include bigram and trigram

letter frequencies as controls in their analysis. These covariates are

highly correlated with each other. To reduce this collinearity, they

used PCA to produce a single new predictor that was roughly the

average of the two original frequency predictors, and entered that

instead as their control. We have no reason to think that this choice

had any substantive effect on their results, but it was unnecessary

and potentially harmful; they would have done better to skip it and

include the original predictors directly. It’s true that rERPs for

highly collinear control factors will be very noisy and should not

be trusted, but if we aren’t going to interpret them anyway, then

this is not problematic. As we’ve seen above, this untrustworthiness

affects only the highly collinear predictors. If our controls are

strongly correlated with each other, but only weakly correlated

with the predictors that are the actual targets of our analysis, then

we can leave in all our control predictors without worrying that

their instability will infect our other bs. And while the bs estimated

for these predictors will be noisy and uninterpretable, their pres-

ence will provide a valuable control on the bs we do care about,

reducing the chance of finding inconsistent, spurious results due to

confounding.

The other problematic case is when one or more of the predic-

tors that are the target of our study themselves have VIFs that are

too high to achieve usable estimates. This is the case in which it

will be most tempting to remove some controls “to increase

power.”

But if the presence of those controls means that we don’t have

enough data to estimate our effect, then we don’t have enough data

to estimate our effect. Technically speaking, removing those con-

trols would give us more statistical power (i.e., our VIFs would go

down and our effective data set size would increase). But as we

saw above, if we remove the wrong predictors, then even an infi-

nite amount of power will only let us more precisely produce the

wrong answer. In this case, we specifically lose the ability to distin-

guish between those controls and the covariate we care about.

When we remove a control variable, what we’re assuming is that

we know a priori that it has no effect; but if we know that, then

why did we include it in the first place? And if it does have an

effect, then that power we are gaining may be the power to misat-

tribute this effect to the covariate that we do care about. Better to

compute our VIFs before we start gathering data, and if they show

that we will have a problem, figure out then how to add more trials,

improve our data collection, reduce the collinearity in our stimuli,

or reframe our theoretical question.

That said, it may still be possible to persuade a data set to

answer some particular questions, even if it cannot accurately esti-

mate the full effect of every covariate we care about. Suppose we

do want to analyze both letter bigram frequency and letter trigram

frequency and get something interpretable. We have a few options.

If both come out significant when entered alone, but neither is sig-

nificant when entered together, then it means that at least one of

these predictors matters, but more data are needed to distinguish

their effects.9 This may be enough to answer our scientific ques-

tion, or at least lay the ground for further studies. Or, if we have

multiple measures that we believe provide redundant estimates of

the same underlying construct (e.g., if participants filled out two

different handedness surveys, or if we estimated word frequency

from two different corpora), and for purposes of our present analy-

sis we do not care about the differences between them, then it

might make sense to average them together, or use some more prin-

cipled dimensionality reduction technique to discard theoretically

uninteresting measurement noise.

Alternatively, while it’s difficult to legitimately reduce noise at

the analysis stage, it is possible to move the noise around by chang-

ing our coding scheme. For example, treatment coding bs give dif-

ference waves instead of simple ERPs, which may be less noisy—

subtracting two waves will tend to cancel out noise, just as averag-

ing does—but are useful for different purposes. Just as with

dummy/treatment coding, these kinds of coding changes will not

affect the overall model fit, or the model’s predicted ERPs. Indeed,

it is often simpler to compare predicted ERPs directly rather than

spend time constructing elaborate new coding schemes.

One kind of recoding that in particular is hard to justify is the

use of PCA for the sole purpose of orthogonalizing predictors

before entering them into regression (e.g., Hauk et al., 2006; Rous-

selet et al., 2009). Like other kinds of recoding, this has no effect

on model fit overall; the only motivation for doing it is if we want

to interpret our individual bs, but are prevented by collinearity.

Orthogonalization replaces our original bs with a new set that have

reduced VIFs and thus are less noisy; but in the process it always

makes individual bs less interpretable, by replacing them with

strange and arbitrary linear combinations of our original bs. The

procedure is therefore self-defeating.

The best rule of thumb seems to be, enter all the predictors that

may be relevant, report the full list of predictors that were entered

along with details of any transformations and coding schemes, and

then test and report whichever waveforms and contrasts are of sci-

entific interest.

b versus R2, t, and p

In addition to the b values we have focused on so far, there are a

number of other statistics that can be extracted from a regression

model; most notably the coefficient of determination R2 (and its

close cousin, the correlation coefficient r), and t and p values for

individual bs. Signal-to-noise ratio is another similar statistic.

Within EEG/MEG (magnetoencephalogram) analysis, differences

9. Stepwise regression and other variable selection techniques will
respond to an ambiguous situation like this by picking one of the predic-
tors at random, and give no indication that they have done so. Thus, if a
variable selection method picked bigram frequency over trigram fre-
quency, this would not provide any reliable evidence that bigrams were
more important than trigrams; it might have effectively been chosen by
the flip of a coin. Such techniques are useful, for example, for develop-
ing medical screening models where the goal is to achieve high predic-
tive accuracy while measuring an economical set of variables, and it
doesn’t matter whether the items that end up being measured are the
most direct reflections of the underlying process. But it makes them
inappropriate for scientific research where we are interested in whether
we can be certain that some factor has an effect above and beyond any
others with which it may be confounded.
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in these metrics have been used to infer differences in ERP/ERF

activity between scalp locations (DeLong et al., 2005; Rousselet

et al., 2008, 2010), between latencies (Amsel, 2011; Ettinger et al.,

2014; Hauk et al., 2006; Laszlo & Federmeier, 2014; Miozzo et al.,

2014; Rousselet et al., 2008, 2009, 2010; Solomyak & Marantz,

2009, 2010), and between different participant populations (Rous-

selet et al., 2009, 2010). In analyses of PET/fMRI data, t and p val-

ues are often plotted instead of b coefficients. Nonetheless, we

would argue that for ERP/ERF research, such comparisons should

generally use b values instead.

The fundamental difference between bs and these other statis-

tics is that the b values, which are the direct analogue to traditional

ERP/ERF estimates, are designed to estimate the event-related sig-

nal itself; the other statistics give some kind of estimate of the rela-

tive strength of the signal versus the noise. This makes them useful

as a measure of how confident we should be in the existence of an

effect, but less appropriate for comparisons. Usually our ultimate

question is not, How does our confidence in an effect’s existence

vary across latencies/locations/populations? but rather, How does

the effect itself vary between latencies/locations/populations? We

should expect these questions to have different answers, at least in

some circumstances; the EEG/MEG background noise may well

vary between scalp locations (e.g., due to topographic variation in

muscle artifact or alpha power), latencies (due to “induced” power

changes), and populations (perhaps recordings from our clinical

population will be noisier). A difference in (estimated) b values

reflects an (estimated) difference in the ERP/ERF itself; a differ-

ence in these other statistics might be caused by either a difference

in the ERP/ERF or by a difference in task-unrelated noise. There-

fore, b values seem like the best main statistic for most purposes;

the other statistics are primarily useful as supplementary guides to

interpreting the b values and their statistical significance.

This is particularly true when it comes to measuring the scalp

topography of an effect. The physics of volume conduction mean

that it is not interesting to ask which subset of electrodes some

activity projects to; if it exists at all, then it projects to all of them,

and the question is, How strongly? b values are linearly related to

scalp potential, and thus their variation across the scalp provides a

direct estimate of the forward projection constants which are the

basis of source localization (Hauk et al., 2006, 2009; Miozzo et al.,

2014). This means that, when using scalp maps to visualize compo-

nent topography, rERP/rERF bs (or linear combinations of bs rep-

resenting specific contrasts or predictions) are usually the most

appropriate values to plot. It also means that rERP/rERF bs can be

used directly with existing localization software; the same is not

true of the other statistics discussed in this section. Indeed, because

multiple-regression-based rERPs/rERFs allow for potentially finer-

grained decompositions of EEG/MEG data into functionally rele-

vant waveforms, they may provide a better basis for localization

than traditional ERPs/ERFs.

Conclusion

The rERP framework extends classic ERP averaging to handle a

much wider range of situations in a unified way. Compared to averag-

ing, it preserves both the results of previous studies—all ERPs (esti-

mated by averaging) are rERPs—and the fundamental theoretical

approach of using a least squares method to reconstruct a purported

waveform that varies by condition and is hidden in background

noise—all rERPs are (estimates of) ERPs. By rephrasing ERP estima-

tion as a regression problem, rERPs allow us to import a rich variety

of techniques from this well developed literature, together with the

mathematical tools to understand when and how they should be used.

This article has presented the core conceptual framework,

explaining what rERPs are, how they relate to traditional ERP aver-

aging, how they can be set up in practice, and how to navigate the

inherent trade-offs involved in choosing a regression design. A

companion article further shows how nonlinear regression and

overlap correction can be handled within this framework, and dis-

cusses practical aspects of integrating rERP estimation into an anal-

ysis pipeline including baselining, filtering, significance testing,

and artifact rejection.

A list of free software packages implementing these methods is

available at http://vorpus.org/rERP.
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