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ABSTRACT

We develop regression-based tests of hypotheses about out of sample
prediction errors. Representative tests include ones for zero mean and zero
correlation between a prediction error and a vector of predictors. The
relevant environments are ones in which predictions depend on estimated
parameters. We show that standard regression statistics generally fail to
account for error introduced by estimation of these parameters. We propose
computationally convenient test statistics that properly account for such
error. Simulations indicate that the procedures can work well in samples of
size typically available, although there sometimes are substantial size

distortions.
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1. Introduction

In this paper, we develop and simulate regression tests for properties of
out of sample prediction errors. Examples of such properties are: zero mean,
zero serial correlation (if the prediction is one-step ahead), 2zero correlation
with the prediction, and zero correlation with the prediction from another,
non-nested model. Empirical papers that examine these or related properties

include Mincer and Zarnowitz (1569}, Nelson (1972), Howrey et al. (1974),
Berger and Krane (1985), Meese and Rogoff (1983, 1988), Akgiray (1989), Diebold
and Nason (1990), Fair and Shiller (1990), Pagan and Schwert (1990), West and
Cho (1995) and some of the participants in the Makridakis (1982) competition.

If the predictions do not depend on estimated parameters, it follows from
Diebold and Mariano (1996) that under mild conditions standard regression
statistics may be used. For zero serial correlation in one step ahead
prediction errors, for example, one can simply regress the period t+1
prediction error on the period t prediction error, and use a standard t-test to
test the null that the coefficient is zero.

But if the predictions do depend on estimated parameters, the results of
Diebold and Mariano (1996) need not apply. The usual tests do account for
uncertainty that would be present if (counterfactually) the underlying
parameter vector were known rather than estimated, but ignore uncertainty
resulting from error in estimation of that parameter vector. Using a
conventional set of assumptions, we establish conditions under which this
second type of uncertainty is asymptotically negligible, thereby wvalidating the
Diebold and Mariano (1996) procedure. More importantly, we show that such
uncertainty sometimes is asymptotically non—-negligible, and then suggest
computationally convenient ways to obtain test statistics that account for both
types of uncertainty. Simulations indicate that failure to account for the
second type of uncertainty sometimes results in poorly sized hypothesis tests,
while our own adjusted tests usually but not always yield more accurately sized
tests.

A vast literature has considered predictive accuracy. A distinguishing
element of our work is explicit consideration of the role of estimation of

parameters needed for prediction. We focus on test statistics produced by
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regression packages. These have appeared in a number of applied papers (e.g.,
Fair and Shiller {(1990)), Pagan and Schwert (1990})), and, we hope, may appear
in still more papers upon development of techniques such as those proposed
here.! We build on earlier work (especially West (1996)) not only by
developing computationally convenient procedures, but also by allowing
additional sampling schemes (additional ways of dividing available data into
estimation and prediction components), relaxing certain technical conditions
that implicitly ruled out certain important tests (including zero correlation

between a prediction error and a prediction), and supplying new simulation

evidence.
Section 2 of the paper describes the environment. Sections 3 and 4
present technical assumptions and basic asymptotic results. Section 5 presents

our computationally convenient adjustments to standard regression statistics.
Sections 6 and 7 specialize sections 3-5 to consider some common tests, when
the wunderlying models are linear and exactly identified. Section 8 presents
simulation evidence. Section 9 concludes. The Appendix presents proofs. An
additional appendix available on request from the authors presents details of

proofs and simulation results omitted from the paper to save space.

2. Description of Environment

Let 721be the prediction horizon of interest. There are P Predictions
in all, which rely on estimates of a (kxl) unknown parameter vector fB°. To
avoid certain singularities we assume k>0 and merely note that our results
specialize in the obvious way when regression estimates are not required to
make predictions.

The first prediction uses data from period R or earlier to predict a

period R+7 event, the second from period R+l or earlier to predict a period

R+1+7 event, . . . . the last from period R+P-1=T or earlier to predict a period
T+7 event. The total sample size is R+P-1+7 = T+7:
|
I -1 R |

Observation: 1 R R+71 R+P-1=T T+7T
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In estimating B*, three different schemes to use available data are
prominent in the forecasting literature. We consider the three explicitly
because results vary for the three. The first scheme, which we call recursive,
was used by, for example, Fair and Shiller (1990). This scheme uses all
available data, estimating 8 first with data from 1 to R, next with data from
l1toR+1, . . ., and finally with data from 1 to T. The second scheme, which we
call rolling, was used by, for example, Akgiray (1989). This scheme fixes the
sample size, say at R, and drops distant observations as recent ones are added.
Thus, ' is estimated first with data from 1 to R, next with data from 2 to
R+1,. . ., and finally with data from P to T. The third and final scheme,
which we call fixed, was used by, for example, Pagan and Schwert (1990). This
scheme estimates §° just once, say on data from 1 to R, and uses the estimate
in forming all P predictions; data realized subsequent to R are, however, used
in forming predictions, as described in the previous paragraph and below.

For t=R,... ,T, let ﬁt be the regression vector used for prediction when
data from period t and earlier are used. In the least squares model

A
y.=X.'B°+u,, for example, S, is estimated using

A
(2.1) data from 1 to t in the recursive scheme, f.= (Efixg. ) *ZL. X.Ys,
A
data from t-R+1 to t in the rolling scheme, B.=(Zf ., X.X.') 'Ei ro:1XeYs:

A
data from 1 to R in the fixed scheme, pB.=(Z} X.X.') T8 . X.V.-

Note that for the fixed scheme, }B\t is the same for all t, and depends only on R
and not t, while in the recursive and fixed scheme a different regression
estimate is used for each t. As well, for the rolling and fixed schemes, }ét
should properly be subscripted ﬁt'n; the dependence on R is suppressed for
notational simplicity. The asymptotic approximation assumes that both P and R
are large (formally, P,R - ), with 7 fixed.

One is interested in the relationship between a scalar prediction error
and a vector of variables--say, whether the prediction error is correlated with
the vector of variables. As illustrated in example 2 below, we can limit the

formal discussion to prediction errors and still yield results applicable to

inference about predictions as well; given the linearity of the procedures we



analyze, results for predictions ( = observed data point - prediction error)
follow immediately. We 1limit the formal analysis to a scalar dependent
variable to economize on notation; we comment occasionally on vector

generalizations of our results.

A
Let V., (8") =v.,, be the scalar prediction error of interest, with v, (8,)

A A A A
Vir (Ve = Vie,)the corresponding random variable evaluated at .. As the
dating suggests, V.,, typically relies on data realized in period t+7. One is

interested in the linear relationship between v,,, and a vector function of
period t data. Let g.,, (8')=g.., denote this (fx1) vector function, with gt,l(ﬁt)
= a:.l the sample counterpart evaluated at ﬁt. In most applications { is
small, say f=1 or f=2. Here, g.,,(B8") depends on data observed in period t and
earlier; the dating convention is used because g,,, often depends on the
predetermined variables available at time t+l1. See the examples below.

The aim is to use a least squares regression to test the null hypothesis

A A
that Ev.,,g..=0. The obvious regression is one of V.., on g.,, for
t=R, . . . .R+P-1, obtaining
A A A A A A A A A A A A A
— — T -1y T —
(2'2) Vieter = 9(’.«1, @+ N, & = (Er_'Rgtolgt#ll ) Et:ch»lvt,c+rl Neer = vt.tq»r_gr.vl, a.

One then uses the estimate of 3 and a suitable variance-covariance matrix to
test the null.

To illustrate, here are four examples, illustrated with the simple zero
mean AR(l) model y.=8"y.;+u., |B|<1.

1. Mean prediction error. Here, g.,,=1 is a scalar. I1f v.,, is a 7 step ahead

forecast error in the AR(1l) model, then ct‘t,,=yt,,—§gyt.

2. Efficiency. Here, one regresses Y., on the period t prediction (=AB{yt, in
the AR(l) model) and perhaps a constant and other possible predictors as well.
The null is that the coefficient on the prediction is unity, on any other
included variables is =zero. To analyze this regression using our framework,
which presumes that the dependent variable is a prediction error, note that if
one uses the prediction error (=yt‘,-§gyt in the AR(l) model) as the dependent

variable the regression results are algebraically identical to those with V..,

on the left hand side, except that the estimated coefficient on the prediction
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A
will be smaller by unity. Hence, for say 7=1, if g.,; is (2x1) and includes a
A A
constant term as well as f8.y., Hy is a=(0,0)". Note the dating convention: g

is dated t+1l, but depends on y., the regressor available for prediction at time
t+1.

3. Encomoassing. Here, V., is a one step ahead forecast error from a
putatively encompassing model. The right hand side variable a:.l is the scalar
prediction from a putatively encompassed model, and the null is «=0. More
generally, the right hand side might include a constant in which case ah, and
o are (2x1) and the null is «@=(0,0) .

4. Serial correlation. If v.,, is the 1 step ahead forecast error in a model

presumed to have serially uncorrelated errors (=u,; in the AR(1l) model), then
ge,1=V, is the previous period's forecast error. So o is a scalar, Aa an
estimate of the first order serial correlation coefficient, and H, is a=0.?

One of our major aims is to develop computationally convenient
procedures, which in our regression context means using standard errors
produced by standard computer programs, or perhaps simple adjustments to those
standard errors. As we shall see, conventional test statistics are not always
asymptotically valid, even when 7=1 and v,,;=v,,;(8’) is a zero mean iid variable
that is independent of g,,;=g..,(8") . The reason is that in some applications,
two sources of uncertainty affect asymptotic inference about «. The first is
uncertainty that would be present even if (counterfactually) f(* were known and
one could regress V.., on d.,,- The second results from use of ﬁt rather than
the unknown (‘. According to our asymptotic approximation, standard regression
statistics properly account for the first source of wuncertainty but not
necessarily the second. We show below that in some important examples,
properly accounting for both sorts of uncertainty requires merely rescaling the
least squares variance-covariance matrix by a certain function of P/R.

When such a simple adjustment does not suffice, one can sometimes obtain
asymptotically valid test statistics by augmenting the regression (2.2) with a
judiciously chosen set of variables QZM. In this case, one runs the

regression
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A A A 7S ~
(2.3) Viger = e’ @ + gy,y' @y + disturbance = g,.,;’a + disturbance,

A
where g ,.,; is a (rxl) set of extra variables included so that conventionally

computed hypothesis tests on o are correctly sized accordingly to our

. A A A . ~ .
asymptotic theory; g = (g.:’',9sa’)’ is (£+41)x1; Gy = G (B7)

(9eay (BY) " . 95001(B) ) = (Fesr’ 1G2es,’) ' and o are also (f+r) =x1.

3. Assumptions

This section presents assumptions relevant for the basic regression
(2.2); section 5 will present an extension for analysis of the augmented
regression (2.3). Our assumptions are "high level" ones. We use relatively
abstract assumptions for two reasons. First, they allow us or others to verify
that our results apply to tests and models other the ones we consider in detail
in sections 6 and 7 below. Second, they can be presented compactly. In the
interest of concision and clarity, we also do not attempt to state each theorem
using a minimal set of assumptions. For example, a weaker version of
assumption 3 applies in applications with parametric covariance matrix
estimators.

Some notation: for any differentiable function n,:R" - R® and for x in the

domain of n., g—?{t denotes the (sxm) matrix of partial derivatives of n,; for any
function n, whose domain is in R*, ng, = g—nﬁt(ﬁ'); for any matrix A = [a;;], let
Al = maxi'ji.raij?i; summations of variables indexed by t or t+7 run from t=R to

t=T=R+P-1: for any variable x, Ix(t) = I[_ x(t), Ex.,, = Il x summations of

t+7?

variables indexed by s run from (a)l to t, for the recursive scheme, (b)t-R+1l
to t, for the rolling scheme, (c)l1 to R, for the fixed scheme: for any variable
x, (a)Ix, = If_x, (recursive), (b)Ix, = L' ..x, (rolling), (c)I.x, = L§_pX,
(fixed) . Finally, let

o . 0 £ = aftor( .
(3-1) fcn(ﬁ ) = gul(B )Vcn(B ) ’ t+7,8 = aa B ) . F = Eft.r,a-
Here, f,,,:R* » R'; the (fxk) matrix F is not subscripted by t in accordance with

a stationarity assumption about to be made.

Assumption 1: (a)In some neighborhood N around $°, and with probability I, v, (8)
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and g.(B) are measurable and twice continuously differentiable; (b)Ev..g.,, = 0;
(c)Evvey = 0; (A)EV,,Gins = 0; (e)Eg,g.’ is of rank ¢.

A A
Assumption 2: The estimate [, satisfies (3,-8" = B(t)H(t), where B(t) is (kxq)

and H(t) is (gxl), with (a)B(t) L B, B a matrix of rank k; (b)H(t)=t'Lh. (8")
(recursive) or H(t)=R'Z,h (B") (rolling or fixed) for a (gxl) orthogonality
condition h. (8"} ; (c)Eh,(B")=0; (d)in the neighborhood N of assumption 1, h, is
measurable and continuously differentiable.

Assumption 3: In the neighborhood N of Assumption 1, there is a constant D«
such that for all t, sup .o |0v.(B) /3808’ | < m, for a measurable m, for which

Em{<D. The same holds when Vv, is replaced by an arbitrary element of g..

Assumption 4: Let w, = (v’ ,vec(gy) ', v, 9’ /b)) ' . (a) For some d>1,
sup . E||wt||8d<oo, where | . | denotes Euclidean norm. (b)w, is strong mixing, with
mixing coefficients of size -3d/(d-1). (c)w, is fourth order stationary.

(d)Let Dee(J)=Ef £, ', See=IL5. [e:(j) - Then S, is p.d..

Assumption 5: R,P » o as T-»», and lim . g =7, (a)0swso for recursive (7T=w

<==> lim . = 0), (b)0sm<x for rolling and fixed.

oD

Note that from assumptions 1(b) and 1(d),

Ef,=0, F=Egt,1(‘;‘ét”).

In allowing not only for recursive but also rolling and fixed sampling
schemes, assumptions 2-5 generalize similar assumptions in West (1996), where
some discussion of the assumptions may be found. To illustrate briefly here:
The moment conditions in assumptions 3 and 4 rule out unit autoregressive
roots, but otherwise do not seem restrictive. Assumption 2 allows standard
estimation techniques, including GMM and maximum likelihood. In the AR(1)
model of section 2, for example, B=(Ey;,) !, h,=y,,u,. Assumption 5 says that
both P and R are large; in particular, they are large relative to the forecast

horizon 1.

Throughout, we maintain assumptions 1-5.

4. Basic Asymptotic Results

Let
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(4.1) Ten(3) = Efthc-j': th‘:}:;.-.rsh(j): r, (j) = Ehtht-jll Shh=}:;-—-rhh(j) + Vg = BS,B'.

A
V., is the asymptotic variance-covariance matrix of TY?(B.-8°).

Define Ay, Ay, and A = 1-2A,+XA,, all of which are scalar functions of 7

lim g, as follows:
(4.2) Sampling scheme Aen A A
recursive 1-7'1n{(1+7) 2{1-1 ' 1n(1+m 1 1
2
rolling, ws1 I _x? 1-I
g 2 73 3
rolling, w>1 21 1- 1 2
g 1 2T 3T 3
fixed 0 K 1+

A A
M(a) P—IIZZgCQIVt t+1= P.l/zzgt*lvtﬁr + FB [P-llzzH(t)] + O, (l)
(b) P2Eg, Ve, ~a N(O, S¢) .

(C)E[PTH(L)ZH(L) '] » AwSn, E[PEg,. V., SH(t) ‘1 - AgSp-

The results for the recursive scheme follow from West (1996), and are repeated

here for completeness. The results for the rolling and fixed schemes are new.
A A

Lemma 4.2: P'?rg,.,,v, .,, ~a N(0,Q), where Q is the (£x{) matrix

(4.3) Q = S¢p + A {FBS;,' + SpB'F') + ApFVRF/

A A
Lemma 4.3: P'Zg,,d..,;" - Eg.g.' -

A A
Theorem 4.1: Let ¢« be the least squares estimator of o (=0) . Then PY?q
N(0,V), V = (Eg.g.’) 'Q(Eg.g.’) *
For inference, an estimate of V is required. To discuss this, we
. . A A A A
introduce some more notation. Let 7., = Vv ,.,- 9.’ @ be the least squares

A
regression residual, o0 the usual scalar estimate of the standard error of the

A
regression disturbance, and T, (j) the (f{xf) j'th sample autocovariance of

A A

91 Mesrt
A A A A A

(4.4) Uz = (P-f)‘lz'ni” = (P_e)vlz(vt,t+r—gt¢1'a)zl
A ; “1yT AA ~ A .
rff (J ) =P Et-]uj[ (gtc'lnto'r) (gt01-jnt¢r-j) ‘1 fOr JZO'
A . A \ X
Fff(j) = Fff(‘]), for J<0.
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. Az 2 2 AZ ~1 A A ry -1 2 ' -1
Theorem 4.2: (a) 0 », 6> = Ev], 0*(P'Cg.,;9..,') " = 0°(Eg.g.')*,

] 3 - -1 A A 7 -1A -1 A A ’ -1
(b} T (3) - r,,(3), (P'ZgenTean ) T e (0 (P2 G Gear’ ) 7 %
(E9eg:’ ) "Tee (0) (Egege’) * .
(c)Let K(x) be a kernel such that for all x, |K(x) | s 1, K(x)=K(-x), K(0)=1,
K(x) is continuous for all x, and f‘fle(x) ldx<w. For some bandwidth M and some
constant a, 0O<a<l/2, suppose I,\—/IP?O and, if 7=o, %a-’O. Then S, =
- ) ~ . aoA A A G A
ij-lNlK(J/M)rff(J) -, S¢e, and (P'2geaTea’ ) 'See (PEG1Gen’ ) -

P

(E9e9:’) 'S¢ (Egeg.’ )t

Note that Theorem 4.2 assumes that the least squares residual ;7\:” is used in
estimating Gz and i?,, (j). Since «a=0 the asymptotic results are unchanged if one
replaces ’T;t” with the left hand side variable Gt't”; our formal analysis and
our simulation results below both use %t” because that is what will be used by
standard computer programs.

Part (a) of Theorem 4.2 considers the textbook estimator of the least
squares covariance matrix, part (b) a heteroskedasticity consistent estimator
that is sometimes referred to as the White (1980) covariance matrix estimator.
In part (c), a nonparametric estimator is described, under conditions similar
to those in Andrews (1991) or Newey and West (1994). So one can use kernels

A A 2 A A
such as the Bartlett, in which S, = I‘EE(O)+E'J.‘=1[(1~-;L'T) [T (3)+T;(3)’] with M > o
at a suitable rate, or the Quadratic Spectral. From part (b), if I'(;(j)}=0 for
jz7, as will typically be the case, another estimator that is consistent for S,
is the truncated estimator; here, gff = ?55(0)+E§;%[?ff(j)+?gf(j)'] .

Theorem 4.2 says that some sample moments are consistent for the
analogous population moments. But inspection of Theorem 4.1 indicates that use
of these estimators may not produce a consistent estimate of V. To illustrate,

consider a simple setup in which 7=land v, is i.i.d. and independent of

current and past g,,,. ThenE(v,,|9..:,v., 9, Vi1, . . .)=0,E(v: . 9.,,9..,") =

Ev:, EQ(.19;..’ = S¢. The least squares estimator of the regression covariance
A A A

matrix is ¢’(P'Cg,.,;d,,,’ ) !. From Theorem 4.2, this estimator converges in

probability to ¢?’(Eg.g.’) ! = Ev2(Eg,g,’) '!. From Lemma 4.1(b) and the proof of

Lemma 4.3, this is the covariance matrix that is applicable in the
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counterfactual case in which 8" is known, and one regresses Vv,,{8') on g, (8%).
But since ' is not known, we see from Theorem 4.2 that the asymptotic variance
of P2Q is not Ev? (Eg,g.’) ! but (Eg,g.’) 'Q(Eg.g.’' ) ' =
Evi(Eg.g.') ' + { (Eg.g.’) 1 {A; (FBSy, +S4B F') + AnFV,F' 1 (Eg,g.’) *} . The additional
terms in braces are ones that result from uncertainty about S°. In this
example and more generally, use of the usual regression formulas may result in
asymptotically invalid tests.

If these formulas are instead to result in asymptotically valid tests, we
must have S, = 2. This condition implies that the asymptotic distribution of
2@ does not depend on uncertainty about f£°: the distribution of P2y is

identical to that of the estimator obtained by regressing v.,,(8") on g.,;(8’) in

the hypothetical case in which ' is known. Two simple conditions are
sufficient to imply S;=Q. One is F = Eg—gt(ﬁ') = E[gt,l(ﬁ')g};‘”(ﬁ')] = 0. This

is essentially a condition that there is block diagonality in the asymptotic
variance-covariance matrix for the estimators of §° and Ef,,,=Eg,,,V.,,- This
conditions occasionally applies in practice, for example in testing for first
order serial correlation with strictly exogenous predictors. But since such
examples are uncommon, we do not further discuss this condition.'

A second condition sufficient for Q=S is 7w=lim . g = 0, because this
implies Ap=A,,=0. When 7=0, the limiting ratio of the size of the prediction
sample to that of the regression sample is zero. As noted informally by Chong
and Hendry (1986) in the context of encompassing tests, one can then act as if
8" is known. The practical implication is that if P/R is small, it may be safe
to use the usual regression statistics. How small P/R must be depends on the
data and the tests; in our simple Monte Carlo experiment, the lowest value of
P/R was .25, and that was not sufficiently small to always make it harmless to
ignore error in estimation of f§°.

The next section discusses ways to obtain asymptotically valid test

statistics, even when S;=Q.

5. Obtaining Asymptotically Valid Test Statistics

Throughout this section, we assume that we have an estimator of S, that
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A
satisfies S -, S, . Theorem 4.2 describes how to obtain such an estimator.

In addition, for A=A (7) defined in (4.2), define
A A A
A = A(7w), w=P/R

A A
For the recursive scheme, A=1 for all 7, for the fixed scheme >\=l+-§, and so

A
on. Clearly, XA - A.

Corollary 5.1: Suppose that

(5.1) Sg = ——%—(Fasﬂ,' + SgB'F’) = FV,F

A LA A LA QoA A a o " 12 A
Then A (P'ZgeuTen’) ' See(PZGeaTea’) 7' » V = AMEgGg.’) 'S¢ (Eg.g.’ ), where P a

NAN(OIV) .

Condition (5.1) implies that Q (defined in (4.3)) is equal to AS,,, and
Corollary 5.1 then follows directly from Theorem 4.1. Condition (5.1) might
seem unlikely. But in fact, as detailed below, in certain 1linear models it
holds for tests for: (l1)mean prediction error and for efficiency, under general
conditions, and (2)tests for encompassing and zero first order serial
correlation when the sampling scheme is recursive and the forecast error is
conditionally homoskedastic.

Upon comparing Corollary 5.1 and Lemma 4.1 (b), we see that when the
conditions of Corollary 5.1 hold, wuncertainty about B’ simply introduces a
factor of A into the asymptotic variance of P23 . For the recursive sampling
scheme, A = 1, so error in estimation of §' is asymptotically irrelevant: the
variance of such estimation error (=A,FV;F’) is exactly offset by
-Aen (FBS;, " 454,B’F’), which is the covariance between (1)such error, and (2)error
that would be present even if (counterfactually) fS° were known. For the fixed
scheme, A>1, so failure to adjust will result asymptotically in t- and
chi-squared statistics that are too small and thus in too many rejections at
any specified significance level. For the rolling scheme, A<1l, so failure to
adjust will result asymptotically in too few rejections at any specified
significance level. Further, in any finite sample, the adjustment by ;\\ by

construction increases t- and chi-squared statistics for the fixed scheme,
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decreases them for the rolling scheme.
When condition (5.1) does not hold, uncertainty about B usually results

in greater complications. To handle these, we propose the augmented regression

(2.3), which we repeat here for convenience:

A A A A
{(2.3) Vier = G’ ® + gy, '@, + disturbance g.'a, + disturbance,

Theorem 5.1: Let §t,1(6') = (Qee1' 1Yo’ ) * for a (rxl) vector g,.,, defined as

either (a)g,.,; = g‘ét"(ﬁ') (==>r=k) or (b)g,.,=Z,,, for a vector of variables Z,,,

that satisfies g\é“(ﬁ') = G,(8")1Z2..,, G,(B8") a (kxr) nonstochastic matrix. Define
Eu,s at,lvc,, . Suppose that for one of the definitions of g,.,, assumptions 1,

2 and 4 are satisfied when f,,, and §c,1 replace f,,, and g,,;- Continue to
maintain assumptions 3 and 5 as well. Let S;; and S; be defined as in

equation (4.1), F as in equation (3.2), with f,,, replacing £ Let Q@ = S +

t+7

= ’ I ’ - Al' A & 4 ry-1 ad -
Aen (FBS; ' + S;B'F’) + A FV,F' . Let « (£9¢.19¢tu1’ ) *(£E9¢,1 Vi t.,) be the result

of a regression of V.., on g, with o the first { elements of ¢&. Then PY’¢
~x» N{0,V), V the ({xf) matrix in the upper left hand corner of

(Eg.g.’) EISE’E(Eat’étI )t

For in-sample tests, similar augmentation is proposed by Pagan and Hall (1983),
Davidson and MacKinnon (1984, 1989), and Wooldridge (1990, 1991).

Theorem 5.1 states that conventional regression output can be used. From
Theorem 4.2, conventional regression programs consistently estimate Sz . So,
for example, if 7=land v,,, is a textbook error--conditionally homoskedastic
and serially uncorrelated--for inference one can use the fx{ matrix in the
upper left hand corner of 32(9-128“1&.;)4, % the usual least squares estimate
of the standard error of the regression disturbance that is defined in Theorem
4.2(a). More generally, if 7>1 or there is conditional heteroskedasticity,
heteroskedasticity and autocorrelation consistent covariance matrix estimators
may be used.

It should be noted that one of the assumptions of the theorem, that
E§[§t' is of full rank (this is assumption 1l(e)) is not always innocuous. With

tests of mean prediction error or of efficiency in linear models, for example,
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the rank condition will fail for either definition of éc, For these tests, the
computationally convenient test that we propose is the one described in
Corollary 5.1.

On the other hand, the condition typically is satisfied in tests for zero
serial correlation of one step ahead prediction errors and for encompassing
tests. For univariate ARMA models, one will augment with dv.,,/38 evaluated at
ﬁt, for linear simultaneous equations models with the vector of predetermined
variables.

To prevent confusion, we emphasize that Theorem 5.1 does not say that one
can use the usual regression output for inference about «,, the coefficients on

A
gy.;- It is true that o, converges in probability to zero. But in general the
usual regression output will not consistently estimate the asymptotic

variance—-covariance matrix, as discussed in section 4.

6. Four common tests

In this section and the next, we consider the four common tests listed in
section 2: mean prediction error, efficiency, first order serial correlation,
and encompassing. For conciseness and clarity, we limit our formal statements
to one step ahead prediction errors (7=1)in a model estimated by least
squares. We comment in section 7 on generalizations to predictions from the
reduced form of linear simultaneous equations models or from univariate ARMA
models, and to multiperiod predictions. This section lays out the setup. The
next section presents results.

The model is
(6.1) y. = xtlﬁ' + Vi,

where y, and v, are scalars, X, and 8 are (kx1). The sample counterpart of V.,

is computed as
A A
(6.2) Vi = Yee “Xear' Be.

For the encompassing test, we need to describe as well the encompassed

model. This will require redefining f3'. Model "1" is the encompassing model,



14
"2" the encompassed model. TLet 8'=(B;‘,B;')', where B is (k;x1), k=k,+k,;, with
the model i prediction dependent only on B;. Let X, be the vector of
predetermined variables in model 2, y.=X, 'fB:;+V,.. The null is that v.,; is
uncorrelated with x,,,’8;, the forecast from model 2.

Along with Assumption 5 (i.e., P-no, R-x), we assume

Assumption (*): (a)x, includes a constant.
(D)E(vo X,/ Xeys o+ ¢ Vi1 Vigs - ..)=0 (for the encompassing test,
E(VeiXe, Xaes Xeo1r Kaeors o 2o s Veors Vaers Veeas Vaeoz- -2 ) =0) |

(c)For g, and g, defined in Table 1, Eg’>0 and Eg,g,’ is of full rank.
(d)Let h_ (B8") = x,v, (for the encompassing test, h, =(X,'Vg, X;;'Vy) ') . The

A A
estimate [, satisfies f§.-8° = B(t)H(t), where B(t) is (kxk) and H(t) is (kx1),

with B(t) and H(t) defined as follows. (1)B(t) = (£ x.x,’) ! (recursive) ,
B(t)=(R'Cxx.,") ! (rolling or fixed) . For the encompassing test, B(t) is block
diagonal with analogously defined B;(t) on the diagonals. (1i)H(t) =t h (8")
(recursive) or H(t)=R7'L h (B8") (rolling or fixed). (1ii)Evl>0, and EX.X.’ and

Extxt’vi are positive definite (for the encompassing test, the same holds for

model 2).
(e) (i)Let w, = (x.',v,)’. For some dsl, sup . E[|w/[*<w. (ii)w, is strong mixing,
with mixing coefficients of size -3d/(d-1). (iii)w, is fourth order

stationary. For the encompassing test, the same holds for w.=(X.',V,, X' ,Va) ' -

The "low level"” assumption (*) may be shown to imply the "high level"
assumptions 1-4, as well as the validity of the null hypotheses of zero mean
prediction error, =zero serial correlation, etc. As well, part (c) of
assumption (*) follows from the other parts for mean prediction error and
serial correlation; as long as ('#0 part (c) follows as well for efficiency.
For encompassing tests, part (c) follows from the mild additional condition
that the prediction from the encompassed model not 1lie in the linear span of

the regressors from the encompassing model.*

7. Obtaining Regression-Based Test Statistics for the Four Common Tests

Column (2) of Table 1 1lists the scalar right hand side variable in the
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simplest version of these tests.

A
Theorem 7.1: (a)For g, defined as in one of the rows of Table 1, let & =

A LA A
(Zgi,) (ZgeaVea).

(i) For mean prediction error or efficiency, Py ~» N(0,V), V=X (Eg}) *Evigi.
(ii)Let the sampling scheme be recursive, and suppose that the underlying
disturbance vV, is conditionally homoskedastic, E(vi|x.,) = Evl (for encompassing,
assume E(v?|x.,X,)=Evl and E(v} |X.,%,.)=Ev}) . Then for any one of the four tests

A
in the table, PY?@ ~, N(0,V), V = ¢?(Eg?)™', ¢’=Evi.

(b) For encompassing or first order serial correlation, augment the regression

A A A A
as indicated in Table 1, and regress V., On g, and g,,,. Let o be the first
A
element of the resulting coefficient vector. Then PY?a ~, N(0,V), V the (1,1)

element in (Eg.g.’') ‘Evig.g.’ (Egig.’ ) .

Table 2 summarizes when and how to adjust.

Comments:
1. In part a(i), asymptotically valid test statistics require scaling the usual
covariance matrix by ’>: (which means no adjustment for the recursive scheme,
for which ?El) . In parts a(ii) and b, no special adjustment is needed.
2. For the recursive scheme, the difference between the assumptions in a(i) and
a(ii) is that a(i) allows conditional heteroskedasticity of the prediction
error, a(ii) does not. The covariance matrix in part (i) reduces to that in
part (ii) if there is no conditional heteroskedasticity. If there is
conditional heteroskedasticity, tests for encompassing and first order serial
correlation will be mis-sized if the inference is based on the covariance
matrix given in part a(i).
3. While not stated formally, the results in part (a) continue to apply when a
constant is included in the regression. Valid t- and chi-squared tests require
merely rescaling the usual covariance matrix.
4. For mean prediction error, the formula for V in part (a) (i) simplifies to
AEvi. For encompassing and serial correlation, under conditional
homoskedasticity the formula for V in part(b) reduces to EVZ(EECEE’)‘I-

5. Zero mean prediction error seems to be the only one of these tests that is
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often done for multistep horizons (e.g., Meese and Rogoff (1983)). For a
reduced form which is a first order VAR, we have established that the results
in part (a) still apply, with AL}l  Ev,v. ; replacing AEv: as the asymptotic
variance covariance matrix.

6. A vector of sample mean prediction errors is also asymptotically normal with
the variance-covariance matrix being the usual one, multiplied by A.

7. Suppose that B' is estimated from the structural equations of a linear
simultaneous equations model, with the reduced form used for predictions and
prediction errors. Under some additional conditions, the results in Theorem
7.1 still obtain.

8. Suppose predictions are made from a univariate ARMA model that is estimated
by non-linear 1least squares or an asymptotically equivalent technique. Then
condition (5.1) (which underlies Theorem 7.1(a)) continues to hold for mean
prediction error. So under suitable conditions the result in Theorem 7.1 {a)

will continue to hold as well.®

8. Monte Carlo Evidence

Here we present a simple Monte Carlo experiment. Our aim is to get a feel
for whether our proposed adjustments to the usual least squares statistics are
likely to be useful in practice, and, more generally, whether our asymptotic
approximation might yield well-sized test statistics. It turns out that while
our approximation does usually work well, the rolling sampling scheme does
sometimes require unusually large samples sizes to generate accurate test
statistics.

The experiment we present involved 5000 repetitions. Each repetition
required generating 201 data points (200 excluding an initial condition).
(Some additional experiments reported briefly in Table 6 and in detail in the
additional appendix involved 1000 repetitions of samples of size 1601.) Each
of these 5000 artificial samples of size 200 and were split into 15 different
regression (R) and prediction (P) samples. The values of P and R were: R=25,
P=25,50,100,150,175; R=50,P=25,50,100,150; R=100,P=25,50,100; R=150, P=25,50;

R=175, P=25--15 combinations in all. This range for P/R (from 1/7 to 7), as
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well as the values of T=P+R-1, seem broad enough to include most relevant
empirical work. For a given (P,R) pair, the (Pxl) vector of prediction errors
used on the left hand side of the regression tests was {'Vrtﬁ}, t=R, . . ..R+P-1.

For each pair of R and P, the first R+P observations of each sample of
size 200 were used. So R=50/P=100 and R=100/P=50, for example, used the same
150 observations, but began the out of sample exercise at different points.
This means, for example, that for the recursive scheme the 50 prediction errors
used in R=100/P=50 sample were identical to the last 50 in the R=50/P=100
sample.

A recent literature has emphasized the inaccuracy of conventional
asymptotic approximations in some time series environments. Examples from our
own work include Newey and West (1994) and West and Wilcox (1996) . We suspect
that our out of sample procedures will also work poorly in such environments.
To give as clear as possible a sense for whether our procedures might work
well, we consider a data generating process and regression that to our
knowledge has in sample behavior that is reasonably well approximated by
conventional asymptotic theory. This process is a zero-mean AR(1l) with i.i.d.
normal disturbances and an autoregressive parameter that is not close to the

unit circle,
(8.1) y. = B'Yea + v, 7=0.5, v, ~ N(0,1)

In each of the 5000 samples, Yy, was drawn from its unconditional N(0, (1-8"%) )
distribution, and vy;,...,Y; were generated recursively using (8.1) and
pseudo-random draws of v,.

In each sample, and for each P and R, four hypothesis tests 'were
conducted for one step ahead (7=1) predictions: mean prediction error,
efficiency, zero serial correlation, and encompassing. For the last test the
alternative model was Y. = BYez + V. This was estimated by least squares, so
B=(Ey: ,) 'EY..Y.- The introduction of the second lag meant that some regression
samples were 1 observation smaller than the "R" reported in the table.

We report tests of nominal size .05. Tests of nominal size .0l and .10

worked equally well, and tests with larger sample sizes worked better; see the



18

additional appendix. All regression tests included a constant term, since
these typically would be included in practice. Apart from adjustment by a
factor of }): in regressions in which our theory calls for such an adjustment,
the usual least squares covariance matrix was used--that is, we did not use a
heteroskedasticity consistent covariance matrix estimator.

Table 3A presents results for mean prediction error. Tests for the
recursive scheme work quite well, with nominal . 05 tests having actual sizes
between .046 and .057. Our approximation does not work as well for the rolling
and fixed schemes, although performance is perhaps tolerable for P/Rs<l, and is
quite good for P/Rs.5.

Table 3B presents results when the least squares t-statistic is wused,
without dividing as we suggest by \/3:. Recall that by construction: (1) the
rolling scheme must have lower actual size and the fixed scheme higher actual
size when our adjustment for error in estimation of 38 is ignored; (2)the
adjustment is smaller the smaller is P/R. Panels A3 and B2 indicate that for
the fixed scheme, our adjustment improves the size for all P/R. The difference
is perhaps not large for small P/R (e.g., for P=25, R=100, our test statistic
yields a size of . 058, the unadjusted a size of .081), but it is dramatic for
large P/R (for P=175, R=25, our test statistic has a size of .099 vs. .523 for
the unadjusted test statistic).

For the rolling scheme, the comparison is not as clear-cut, since our
test statistic typically rejects too infrequently (actual size > .05) while the
unadjusted typically rejects too often (actual size < .05). While we do not
have a precise loss function for wunder- versus over-rejection, our own gut
feeling is that we would rather have a nominal . 05 test have a probability of
rejecting of say 7.4 percent (P=50, R=25, our test statistic) than of .3
percent (unadjusted test statistic), all other things equal. In this sense,
our test statistics perform better for the rolling scheme as well. But we
recognize that other researchers may have different loss functions, at 1least in
some applications.

Table 4 has the results for the efficiency test. For the recursive and

fixed schemes, our procedure seems to be a little more accurately sized than it
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was for mean prediction error. But for these two schemes the remarks made in
connection with Table 3 generally apply here as well.

The rolling scheme, however, performs quite poorly for P/R>1. 1In fact,
for P/R>1, the over-rejection is so extreme that failure to adjust generally
improves the test statistic. For example, for P=50, R=25, panel A2 indicates
that our procedure had an actual size of 43%, while panel Bl indicates that use
of the usual least squares test statistic yielded a size of 7.2%.

Tables 5 and 6 indicate that for the encompassing test and the test for
zero first order serial correlation, the Table 4 results apply qualitatitively:
For the recursive and the fixed schemes, our test statistics work adequately,
and dominate the unadjusted test statistic. But for the rolling scheme our
test statistic works poorly.

In Tables 4-6, the rolling scheme worked quite poorly for P/R>1. To see
how large a sample is required for tolerable accuracy of the asymptotic
approximation, we generated 1000 samples of size 1601; we report here certain
results with samples of size up to 1201 (full details are in the additional
appendix) . We controlled the seed to the random number generator so that the
first 201 observations in each sample were the same as in Tables 3-6. We then
conducted the efficiency test for some larger sample sizes, holding P/R fixed
at 2 and at 4. The results are in Table 7. As may be seen, by the time the
sample size hits 1200, the result for P/R=2 is reasonably accurate (actual size
of .069), at least by the standards of Tables 3-6 and much other work on
hypothesis testing in time series models. For P/R = 4, however, substantial
mis-sizing still remains.

We conclude that our asymptotic approximation usually works reasonably
well, but that for the rolling sampling scheme relatively large sample size

sometimes are required.
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Footnotes
1. We hope our work will be useful even for the interpretation of completed
papers. With the exception of one paper that came to our attention after this
paper was written (Hoffman and Pagan (1989) ), to our knowledge all such papers
have used standard regression statistics, without adjusting for dependence of
predictions on estimated parameters. We establish conditions for the
asymptotic validity of such statistics, and in some cases we are able to
propose adjustments for such dependence that can be made even without access to
the data. See sections 4, 5 and 7.

A A
2. This test is most naturally run by regressing Y.,- B.Ye O Vi~ B ¢.1¥e.1 -

Strictly speaking, our notation implies that yt,l—ﬁt_lyt rather than ytd—’étyt is
on the left: we assume that both left-— and right-hand side variables are
constructed from the same estimate of 8°, and a rank condition presented below
rules out simply defining parameters so that the population parameter of
interest is 2x1 with a 2x1 period t estimate of (}B\t,ﬁbl) ‘. But this rank
condition is easily relaxed, and results may be generalized to allow the
natural version of this test. To economize on notation, we do not explicitly
do so in this paper.

3. See West (1996) and McCracken (1997) for further discussion of the
conditions under which F=0.

4. Note that this last condition rules out tests of nested (rather than
non-nested) models. Such tests are in Ashley et al. (1980) and Clark (1997).
An insightful referee has pointed out that some of our results do extend to
non-nested models; to conserve space, we do not consider such models here.

5. It is, however, possible to construct examples in which the results of

Theorem 7.1 fail. Let ¢, and u, be independent standard normals, v.=¢lu,
%x.=(Ex.) +€, with Ex#0, where all variables are scalars. Let a regression model
be y.=x.8'+Vv,, with estimation by OLS. Then S;=Ev? (=E¢{Eu?) , S;=Ex.vi=Ex.Ev},

S,,=Ex}vl, F=Ex,. This violates Theorem 7.1’s assumption that there is a
constant term in the equation. Consider mean prediction error. Theorem 4.1
indicates that PY?Q = P YL (y,.,-X..,B,) is asymptotically normal with asymptotic
variance [Ev? - 2XAuEx, (Ex?) 'Ex.Ev? + A, (Ex.)?{Ex?v}) (Ex?) ?] . This does not reduce

to AEvI=AS;, since Ex.#0 and Ex?v? # ExJEvi.
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Appendix
Notation: "sup," means "sSupg.."; "var", "cov" denote variance and
covariance; all limits are taken as the sample size T goes to infinity; the
summation "L" means "I "; For notational simplicity, we consider throughout
the case in which k=1 and f=1, so that B*, g, and f,,, are scalars, and we let

~ 2 ~
"fr.,. 88 (B)" mean "gﬁgt”(ﬁt) ". To save space, proofs of Lemmas Al to A4 and

parts of other proofs are put in an Additional Appendix available on request

from the authors.

A
Lemma Al: Suppose 7<wo. For Osac.5: (a)sup.|PH(t) | », 0; (b)sup. |P*(8.-8*)| >, 0.

Lemma A2:(a) P'L{f., |? = O,(1), (b) PEif,,, 1% = O,(1), (c)For B. satisfying

~ N ~
1B.-B*1 s | B.-B*}| for t=R,...,T, PICif,,, 5 (BI)? = 0, (1).
o i - A A A A
Lemma A3: Let I (J) = P 'L gy [ (FenaVeeer) (e Vigears) 1=
A A ° . .
Prlzzﬂlvjftor( B Eer5(Be5). Then Iee (3) =, T (3) -

Lemma A4: Under the assumptions of Theorem 4.2, and with I, (j) defined as in
o ©
Lemma A3, S = E?ipuK(j/M) Tee (3) ~p See-

Proof of lLemma 4.1: (a)For the recursive scheme, this follows from Lemma 4.1 of

West (1996). The relatively simple argument for the fixed scheme is in the
A
Additional Appendix. For the rolling scheme, expand f,,,(f,} around £, (8') for

t=R, . . ..R+P-1. and sum the results, yielding
A
(Az) PAl/szt*r(Bt) = P-l/zzft+r + P-l/zzft4T,BB (t)H(t) + Pil/zzwtwrl

for w,,, defined as in (Al). We have | P'rw,.,,| =
.S(P”"supt{/B\t—ﬁ*})2(P’1Z|ft,,,55(5t) {) >, 0 by Lemmas Al and A2. The second term in
(A2) can be written

P Y2FBZH(t) + P Y?r{F[B(t)-BlH(t)} + PY2E[(£f.,,~-F)BH(t)] +

P 2L {(f,., ,-F)[B(t) -Bl1H (t)}

and hence we need show that the last three terms in the above expression are
0,(1) . We will show the result for P/t [ (f,,, ;-F)BH(t)]; the others follow from
arguments similar to those for the recursive scheme (West (1996)).

For notational simplicity, let x, = (f,,, ;-F), redefine Bh, as h,, and let

¥; = Exh, ;. For P s R (the P > R case is similar) we have lEp Y2 Lx H(t) | =
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(PY2/R) | Yo+ . -+Ygyls (B/R) Y?RM’L5 |y,| > o since 7<w and Ij,|Y;/<». Then since
it can be shown that assumption 4 bounds the fourth moments of (X, h.)’ in such
a way that lim var[PY?LxH(t)] = 0, the result follows from Chebyshev's
inequality.

(b) Follows from Theorem 3.1 of Wooldridge and White (1989).

{c)For the recursive scheme the results are in West (1996). For the fixed
scheme, EP'EH(R)TH(R) = (P/R}E[(RY?2® h )} (R"¥?Lf h)‘] » 7S,,. To show that A, =
0, let y; = Ef,,;h. ;. Then |ER'Zf, (2} h,) | =

PRPD (Yt o o +Ye) oo o+ (Yoot - < +Ye) 1l < RES 31 ]v;] » O since assumption 4

implies £3, .13 | |v; | <@ (Andrews (1991)).

For the rolling scheme, we will sketch the result that E[P'ZH(t)IH(t) ‘1-
AnhSpn = (7r—§2)shh for m<l. The proofs for 7m=1l, and for E [P!Ig.,v..,ZH(t) ']
AenSen, are conceptually similar.

With P<R, IH(t) may be written as the sum of three terms,
TH(t) = A, + A, + A,, A, = R [h+2h,+...+(P-1)h,,], A, = PR [hy+...+h.],
A, =R*[ (P-1) hp,+...+2hg, ,+hy,,,] . It is easy to see that lim var(P?A,) = 1lim
P(R-P+1)RL)j, z p..Ehh, ;* + 0(1) » (7-7%)S,,. We will sketch the argument that
shows 1lim var(pP/?p)) = 3£2Shh. That lim var(pP'?a,) = gzshh follows from a nearly
identical argument. Since, finally, it can be shown that lim cov(P™V/?A;,P'/?A))
= 0 for i#j, the result will follow.

For simplicity, assume g=1. Redefine vy; as v;=Eh/h, _;, and for 19 1spP-2
define d, = r1-1i! [ (i+!5!)] . Then

var (A)) = R7?L2,,d;v; = R?dEZy; - RPC(d,-4;) 7y,
We have P'R’d, ~ [P’/ (3PR*)] - 3f, and the result will follow if P 'RZZ(d,-d;)v; -
0. This result may be established using d, s JZx%dx, d; = f;’;%(x—j)xdx ==>
ide-djt s Ifgxzdx—fﬁ;} (x-j ) xdx |, solving the integrals and manipulating the result
to obtain P'RZ|E(dy,-4;) ;] s (1/3P)E{J| |v;] + o(1) » O.

A A
Proof of Lemma 4.2: Let X(T) = rlg.,V..,+FBH(t)]. From Lemma 4.1, P’Lg.,v, ..,

= PY2X(T) + o, (1), with 1lim var[PV?X(T)] = Q. Asymptotic normality then
follows from Theorem 3.1 of Wooldridge and White (1989). Details are in the

Additional Appendix.

A
Proof of Lemma 4.3: Follows from a mean value expansion of g.,,{f,) around
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gy, (B'). Details are in the Additional Appendix.

Proof of Theorem 4.1: Follows immediately from Lemmas 4.1, 4.2 and 4.3.

A
Proof of Theorem 4.2: (a)That P'lz‘gﬁ,l - Eg"t’,1 follows from Lemma 4.3. Hence we

A A A
need only show that (P-1) E(v, ,.,-G¢,)? =, Evl,, . We have

A A A 2 1 Az 1 A2 AZ A Y A A
(P=1) E (Vi -Gen@)? = (P-1) Evi,, + [(P-1) "'Egg,la®-2al(P-1)"291Ve el

A
Ev:,, follows from Lemma A3. By Theorem 4.1, & = o, (l); by

te7

A
That (P-1) IV} .., =

A A A
Lemmas 4.2 and 4.3, (P-1)7Zgl, = 0,(1), (P-1)7Lg., V.., = O,(1) . The desired
result now follows.

A
(b) That P'rg},, -, Egi,, follows from Lemma 4.3. Hence we need only show that

A s T A A A A . .
T (3) = P EiRej 9eo1Te1-§ Tear Mewr-i 25 EGeaTeer-iVearVearj = Tee () for all j. For
o A ° .
T (j) defined in Lemma A3, we have T (j) = T (j) +
A A A A A A
PUEl fi5Tei1Teer-5 (Mear Mear-3- Ve,eer Vejeer3) .  Lemma A3 shows that the first term

converges in probability to I, (j); the Additional Appendix shows that the
second term converges in probability to zero.

A
(c) That P’l):g;l > Egiq1 follows from Lemma 4.3. Hence we need only show that

© o

gff = i1, K(3/M) ?ff(j) -+, S¢e- For S;; defined in Lemma A4, we have gff = S¢ +
%L, K (3 /M) [?ff(j)-f‘ff(j)] . Lemma A4 shows that the first term converges in
probability to S;¢;; the Additional Appendix shows that the second term converges
in probability to =zero.

Proof of Corollary 5.1: Follows immediately from Theorem 4.1.

Proof of Theorem 5.1: By definition, the (f+r)xk matrix F = Ehg‘tdvt,,,,g; if

Gate1 = Vi.s,g. then, E = (EQstaTer’ rEGzta192esr’ ), while if Jzea = Zeers E =
(EQ3c019:01’ +BE93ea1T2c01 ') 'G,’ . From Lemmas 4.1 and 4.3 and Theorem 4.1,
P2y = (PG G’ ) -I(P_I/ZZStolct,t+7)
= (EGiGen’ ) HPMZG LV ) + 0p(1)

= (ESuGen’ ) (PY25G,veuy) + (EGeiTens’ ) FB (PYIEH(E) ) + o (1)
Upon partitioning E'c:;'t,lat,l' conformably with 4., and g, .., and using the formula
for the inverse of a partitioned matrix, we find that the first { rows of the
(f+r)xk matrix (E§t,1§m')-lf‘ are identically zero. Since @ consists of the
first ¢ components of 3, P2y equals the first { rows of
(Eat,l‘\g'“l’ ) 'I(P'”z):atdvt”) +0,(1) , and the proof is complete.

Proof of Theorem 7.1: (a) (i)From Corollary 5.1, condition (5.1) is sufficient
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to guarantee the result. From assumption (*), we have B=(ExxXx,’') ' and
Spn=Evix.x.’. For mean prediction error, recall that X, contains a constant.
Without loss of generality define x, = (1,;')’ where ;t is a vector of
nonconstant regressors. Then F=-(1, E;, '), which implies FB=-(1 0 . . . 0); the

result follows since the (1,1) elements of both S;, and S,, are S:;=Evl. For
efficiency, note that F=-8"'B! and hence FB=-8"‘. The result then follows
since S;=f"'S,,8" and Sg=8"'Sp-

(a) {(ii) For mean prediction error or efficiency, the conditional
homoskedasticity assumption implies Evig! = EVIEg’ and the result follows from
part (i) . For the other two tests, recall that for the recursive scheme
An=2XAq, and thus Q = S;; + A, (FBS;," + SuB'F’') + 2A4FV,F'. Hence it suffices to
show -FBS;,' = FVF’' . For serial correlation, this follows since F=-Ev,,X.’,
B=(Ex,X,’ ) %, Sun=Ev?B?, and S;=-EV!F. For encompassing this follows since

F= (-85 Ex,%x.',0°), B=diag [ (Exyx." )}, (EXy X, ') '], the (k,;xk,) block in the upper
left hand corner of S,;, is EVIEx.X.‘, and S.4=0," (EVIEX, X, Ev, v, EX; X, * )

(b) Follows from Theorem 5.1.
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Additional Appendix

This not-for-publication additional appendix contains material omitted
from the body of the paper to save space:

I. Additional simulation results:

A. Plots of Actual versus Nominal Sizes of Hypothesis Tests:
Mean Prediction Error

Recursive Figure AAl

Rolling Figure AA2

Fixed Figure AA3
Efficiency

Recursive Figure AA4

Rolling Figure AAS

Fixed Figure AA6
Encompassing

Recursive Figure AA7

Rolling Figure AAS8

Fixed Figure AA9
First Order Serial Correlation

Recursive Figure AR1Q

Rolling Figure AAll

Fixed Figure AAl2

B. Efficiency Test with large sample sizes
Rolling: P/R = 2 Figure AAl3-a
Rolling: P/R = 4 Figure AAl3-b
C. Tables for large sample sizes

Mean Prediction Error

R+P<800 Table AAl-A

R+P=<1600 Table AAl-B
Efficiency

R+P<8B00 Table AA2-A

R+P<1600 Table AA2-B
Encompassing

R+P<800 Table AA3-A

R+P<1600 Table AA3-B
First Order Serial Correlation

R+P<800 Table AA4-A

R+P<1600 Table AR4-B

II. Proofs:

Lemmas Al-A4

Lemma 4.1 (for fixed scheme)

Lemma 4.2 (additional detail)

Lemma 4.3

Theorem 4.2(b), (c) (additional detail)
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Actual versus Nominal Sizes of Tests for Mean Prediction

Fixed, R+P s 200
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Actual versus Nominal Sizes of Tests for Efficiency

Rolling scheme,
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Actual versus Nominal Sizes of Tests for Encompassing
Rolling scheme, R+P s 200

AA-'9



R=25,P=25
[ % 1 T
020
o 013
010
Nomiral  Actm!
o8 0010 0008
0 008C 0044
0.100  0.005
0.00
0.00 0.05 010 0.15 020 0.25
Nominal Size
R=50, P=25
0.2¢
020
[ AL
0.10
Nominel  Ackel
0010 0.008
008 0050 004
0100 0.097
000:! - ¢ m - - - - - -~
0.00 0.08 0.10 0.15 020 028
Nominal Sirs
R=100, Pa25
028
020
© 018
i)
N
0.10
Nomirsl  Achal
0010 0.008
0.08 0080  0.040
0100  0.100
0.00
0.00 008 0.10 0.18 020 0.25
Nominal Site

R=25, P=50

028
020
g 013
17}
3 010
3 Nommal  Actusl
0010 DOR
0.08 1 000 0050
8.100 0.0a7
0.00 -
000 005 010 015 020 02%
Nominal Size
R=50, P=50
0.25
0.20
A
g o
7]
0.10
Actet
0.010 0010
0.08 0060  0.049
0100 0100
0.00
000 005 010 015 020 025
Nominal Size
R=100, P=50
0.2%
0.20
© 015
o
»
0.10
Nominel  Actual
oot 0010
00 Ooso 004
am 0100 0.000

0.00

005 010 015 020 025
Nominal Site

R=25, P=100

028
0.20

@ 015

o

»

S o.10

2 Nominal  Achual
PR 0010  aooe

00100 0.100

0.00 p—uny 0. ey 00~

000 008 040 045 020 025

Nominal Site
R=50, Px100
0.2%
0.20
lg 0.15
[z
T o010
3 Nominel  Actal
oMo 000
0.8 000 0083
o0 0.4
0.00
0.0 0.05 0.10 015 0.20 0.25
Nominal Size
R=100, P=100
023
0.20
.g 0.1%
7]
0.10
Nomirml  Actal
0010 0.010
0.08 0050 0048
0100 0098
0.00

000 005 010 o015 020 025
Nominal Size

Figure AA9

R=25, P=150

R=25,P2175

025 —— 028 | e
0.20 0.20
® 0.15 ® 015
ry N
7} 7
% 040 S 010
3 —— 3 o
008 0010 0007 008 0010 0010
' 000 0048 : 00%0 0080
0100 0103 0100 0101
0.00 0.00
0.00 0038 0.10 0.15 020 0.25 000 0os 0.10 018 020 025
Nominal Sire Nominal Sire
R-S0. P=150
025
0.20
o045
v
S ot0
2 heaal
aocto 0010
0.08 0o 004
010 0400
0.00
¢ 0.0% 0.10 A} 020 [

Nominal Size

Actual versus Nominal Sizes of Tests for Encompassing

Fixed, R+P s 200

AA-10



9215 [BUIWON
20 OT0 $10 010 500 000

U RS S R VSP
oL 0010

1900 0500 .

yi0e 000 o0

raoy

010

540

0z0

$z0

Sit=d 52

5215 (enpy

00Z 5 d+d

1T-YV¢

'dWaYDE 9ATSINDSY

UOTIBT2II0s> TBII=S JI9pI0 3SITJ I03F S3S9L JO S92TS TBRUTWON SNSISA TENIOV

02!G {BUILION
L0 0o 40 00 s00 000
000
o110 0010
€900 0500 00
€100 000
1oneoy  twanoN
oLo
sio
(244
T N sTo
0Gl=d '05=Y
0215 [BUILION
$20 (24 ° 1o 00 000
o b bt —— 4 000
wio
1900 500
rio0
1oR2y  eunoN
.| 01’0
si'0
(14
- —— §Z0
051=d '5T=d

eng (enpy

ang fenpy

0TYY =2anbta

92|G |BUILON 921§ |BUIWON oIS |BUIWON
$Z0 0Z0 $10  O0L0 00 000 szo o0Z0 §l0  0L0  S00 000 §20 0Z0 si0 Qi  s00 000
wo 000 00
800 0040 w00 0010
100 0500 ) . w00 000 .
zioo 0100 oo soe 100 0100 500
oo 5 0o § oo
g g
sio @ $10 o sio
(24 oo (1
L - ¢zo - $20 " 341
00}sd "00=Y 0S=d ‘001 =4 GZ=d '00}=Y
0215 |euiwoN 921§ [BUIWION 921§ [BUIWON
SZTo 020 §i'0 oo $00 000 sT0  0Z0 s¥0 00 §00 000 STO 0r0 10 010 $00 000
o't 00'0 000
sOI0 0040 0010 00L0 $00 0010
{00 060D . 00 0500 . 00 000
€00 0i00 soo ¢00 o000 00 100 0100 s00
WY eURLON oy [SURLON W Y WRION
(1% 040 § oL'0
g g
§1o @ sio @ si0
.14 00 020
- --l ¢z e e sz0 . e 20
001=d "05=Y 05=d '05=d §Z=d '0§=Y
62! |BUIWON 0215 |BUILION 921 |BUIWON
szo 0ZO SI0 040 00 000 §T0 0Z0 §10 010 SO0 000 sTo o0zo  sKo O 00 000
e —— ] 000 R R S A 000 Lo w0
«®io oo %180 Lo tito 0oL 0
1500 000 . 0000 0500 . ®00 0500 .
0
00 0100 so ¥iQo oioo 0o oo 0100 soe
1y jeusloy W Y W 1SNy JPURION
0o g oo § 010
@ ¢
s10 @ si0 ® $10
- 0z'0 ozo o0z
f §T0 T §to T e 11]
00l=d 'GZ=Y 0§=d '§Z=4 §Z3d 'al=y

ozig ey

g 1enpdy

eng enpdy



R-25. P=25 R=25, P=50 R=25,P=100 R=25, P=150 R=25, P.175

025 el 028 0.2% 028 0.25
020 0.20 0.20 0.20 020
o 015 B o B o1 G 013 g 0as
g w vy v w
010 3 010 3 o.10 S o0 o
Hominel  Ackist 2 Nominel  Actus! § Nominel  Actst g Nominal  Actus! P4 Nominal  Achal
o010 00N 0010 a o8l 080 a1s7 0010 o208 0010 0.5
003 00%0 one 008 0050 0208 0.05 0080 0408 0.05 0050 0584 005 0.050 0083
0100 ane 0100 0331 010 0.550 0.100 0727 — ©.100 orer
000 "0 ' . 0.00 P uee qmmeem ey e e 0.00 0.00 ¥— - . B000 Loopoen e
¢ ) 005 0t6 045 020 028 000 o005 ote ois 070 025 goo cos 010 o015 o020 025 ovo o005 010 015 020 o2s 000 001 0 1o 015 020 o2s
Nominal Stze Neminal Size Nominal Size Nominal Size Nominal Size
R=50. P=25 R=50, P=50 R=50, P=100 R=50, Pr150
028 | e meenn camm e+ 028 0.25 0.25
0.20 0.20 0.20 0.20
X 15 o o. 0.
l§0|5 BOU 8 0.15] lg 15
(7] v w w
3 o0 0.9 S 010 € 010
§ Acval Nominal  Actusl § Nominsl  Actusl 5 Nomirel  Actusl
ooy 0.010 0025 0.010 0.045 0010 oosa
003 0.000 ] 0.08 0.050 0.004 0.04 0.05% 014 0.05 0.050 [ R1.- N
0.4 g am o172 010 02M 0100 0%
0.00 0.00 0.00 0.00
[} 005 010 015 020 o 000 005 010 015 020 025 000 ocos (10 o015 o020 ¢ 000 005 010 015 020 02§
Nominal Sirs Nominal Size Nominal Size Nominal Size
R=2100, P=25 R=100, P=50 R=100, Px100
025 0.28 028
020 020 0.20
e 0. 0.15 ® 0
g 0.0 5 gon
7] w w
0.10 0.10 010
Norriesl  Actust Nominsl  Actusl Nominel  Actuel
0.010 0012 0010 0.014 0.010 0.018
008 00%0 008 o.08 00% 0008 0.05 0050 oon
0100 onl 0100 0120 0100 013
000 Mo s o . 000 o 0.00
000 005 ot0 o35 020 ooo 005 010 o018 o020 025 o600 005 o100 015 o020 ¢35
Nominal Size Nominal Size Nominal Size

Figure AAll

Actual versus Nominal Sizes of Tests for First Order Serial Correlation
Rolling scheme, R+P s 200

AA-12



R=25, P-25
025
020
©
8048
%]
g 010
g Actat
0010 0008
008 0050 0044
0100  0.085
000
0 005 0.10 013 0 2 002%
Nominal Size
R=50, P=25
028 fm e
0.20
o
NO'IS
]
o010
2 Nominal  Actuel
08 0010 0008
0 0050  0.040
0100 0007
0.00 M e
0.00 005 o0.10 0.1% 0.20 025
Nominal Sire
R=2100, P=225
025
010
o
8 015
7]
go.m
)i} -
2 -
0010 oo
008 0os0 004
0100 0100
0.00
0 0.05 0.10 015 020
Nominal Size

R=25, P=50
028
020
© 013
N
v
3 010
g Acturl
0010 0008
005 0.0% 0.050
0100 0007
0.00 Pmt cy e et e ey
).00 0.05 0.10 0.0 020 025
Nominal Size
R=50, P=50
028
0.20
o 0.
LRAE
7]
9 o010
3 N
0010 oolo
003 0050 0048
0100 0.100
0.00
0.000 005 a.10 0.145 020 0.25
Nominal Sue
R=100, P=50
0.25
0.20
e 0.
80.0
7]
90.10
3 Nominal  Actual
0.010 o010
o 0.050 0048
0100 0009
0.00
0.00 005 0.10 015 0 20 0.25
Nominal Size

R=25, P=100

0.00 005 0.10 0.15 020 ¢

Nominal Size
R=50, P=100
023
020
L]
g 013
»
3 0.10
3 Nominel  Actel
[ X:10) 0.000
0.0% 0050 008
c100 0103
0.00
0.00 0.05 0.10 0.15 0.20 0.25
Nominal Size
R=100, P=100
025
020

o
-
@

Actml

Actual Size
(-3
a

0010 0010
0.05 om0 00w
0100 0098
0.00
000 o005 0.10 0.4% 020 £
Nominal Size

Figure AAl2

Fixed, R+P =< 200

AA-13

Actual Size

Actual Sze

R=25, P=150

0.25

0.20

0.15

0.10
Horrinal  Actal
0.010  0.007

005 6050  0.048
0100 0103

0.00 | +

2000 . 05 0.10 0.15 0.20 0.2%
Nominal Size
R=50, P=150

025

020

015

010

005 0010 0010
0050 0.04¢
0100 0.0

0.00,

0.00 005 6.t0 0.5 020 0.25

Nominal Size

R=25, P=175

Nominal  Actl
0010 ooto
0050  0.0%
0.100 0.101

Actual versus Nominal Sizes of Tests for First Order Serial Correlation

0.05 010 015 020 028
Nominal Size



Actual Size

Rolling, P/IR = 2 Rc.D‘lvlni.ng, PIR=4

1.0

0.9

0.8

0.7

0.6

0.5

0.4

Actual Size

0.3

0.2

0.1

00 =1 1 1 T T
0.0 0.2 0.4 0.6 0.8 1.0

00 1 T ] T
0.0 0.2 0.4 0.6 0.8 1.0 : '
Nominal Size Nominal Size

Figure AAl3-b

Actual versus Nominal Sizes of Tests of Efficiency
Rolling Scheme
P/R = 100/25, 400/100, 800/200

Figure AAll-a

Actual versus Nominal Sizes of Tests of Efficiency
Rolling scheme

P/R = S0/25, 100/50, 200/100, 400/200, 800/400

AA-14



AA-15
Table AAl

Size of Nominal .05 Tests, Mean Prediction Error

A. Accounting for Error in Estimation of B*, R+P<800

Sampling R = mmcmmmmmmmmmmm o m e m e Pr-mmmmm e e e -
Scheme 100 200 400 600 700
1.Recursive 100 .054 .055 .059 .050 .051
200 .055 .050 .048 . 055
400 .053 .053 .048
2.Rolling 100 . 055 .071 .079 .070 .072
200 .050 .050 .054 . 055
400 .052 .041 .046
3.Fixed 100 .067 .072 .068 .070 .070
200 .062 .057 .060 .054
400 .054 .051 . 048

B. Accounting for Error in Estimation of f*, R+P<1600

Sampling 2 S Pommmmm e
Scheme 200 400 800 1200 1400
1.Recursive 200 .050 . 048 .050 .049 .046
400 .053 .048 .057 .053
800 .047 .055 .054
2.Rolling 200 .050 .054 .054 .056 .053
400 .041 .046 .055 .049
800 . 049 . 056 .042
3.Fixed 200 .072 .068 .062 . 056 .060
400 .057 .060 . 066 .062
800 .055 .058 .053
Notes: The DGP is a, univariate AR(1l); see text for details. For the indicated

values of P and R, V., (the one step ahead prediction error) was regressed on
a constant for t=R,...,R+P-1. Panels Al-A3 report the fraction of 1000
simulations in which the conventionally computed t-statistic, divided by the
square root of A, was greater than 1.96 in absolute value. Panels Bl-B3
report the same, but for larger values of P and R.
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Table AA2
Size of Nominal .05 Tests, Efficiency Test

A. Accounting for Error in Estimation of B*, R+P<800

Sampling R Pevemer e e e
Scheme 100 200 400 600 700
1.Recursive 100 .039 .035 .040 .049 .046
200 . 050 . 042 . 040 . 045
400 .040 .049 . 044
2.Rolling 100 .049 .108 .409 .705 .869
200 .042 .051 .091 .145
400 .051 .046 . 046
3.Fixed 100 .032 .042 .031 .038 .037
200 . 045 .044 . 043 . 041
400 .042 .050 .047

B. Accounting for Error in Estimation of B*, R+Ps1600

Sampling R = mrmmmm oo |
Scheme 200 400 800 1200 1400
1.Recursive 200 .042 .040 . 045 .047 .051
400 .049 .044 .061 .061
800 .048 .038 .047
2.Rolling 200 .051 -091 .229 .424 .566
400 .046 .046 .069 .111
800 .048 .038 .053
3.Fixed 200 .044 .043 .037 .041 .038
400 .050 .047 .058 . 079
800 .063 .041 . 046
Notes: The DGP is a, univariate AR(1l); see text for details. For the indicated
values of P and,R, v.,, (the one step ahead prediction) was regressed on a
constant and y.f. (the one step ahead prediction) for t=R,...,R+P-1l. Panels

Al-A3 report the fraction of 1000 simulations,in which the conventionally
computed t-statistic on the coefficient on y.,f., divided by the square root of
A, was greater than 1.96 in absolute value. Panels Bl-B3 report the same,

but for larger values of P and R.
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Table AA3

Size of Nominal .05 Tests, Encompassing Test

A. Accounting for Error in Estimation of f*, R+Ps800

Sampling R =mmmmmmmmmo-o—omm-mmeo- =-=P-----mmmommemmmommmmm e mm T
Scheme 100 200 400 600 700
1.Recursive 100 .070 .088 .090 .088 .078
200 .052 . 060 .072 .073
400 .040 .059 .052
2.Rolling 100 .185 .271 .398 .538 .618
200 .083 .115 .167 .206
400 .060 .074 .078
3.Fixed 100 . 050 .054 .050 .048 .042
200 .054 . 044 .060 . 055
400 .047 .061 .052

B. Accounting for Error in Estimation of f*, R+P<1600

Sampling - S S Po-ccmmmmmmmmmm e mm e m e —————
Scheme 200 400 800 1200 1400
1.Recursive 200 .060 .072 .068 .073 .072

400 .059 .052 067 064

800 .052 .039 .063
2.Rolling 200 .115 167 .257 .359 .395

400 .074 .078 .113 .142

800 .061 .054 .082
3.Fixed 200 .044 .060 . 043 . 049 .042

400 .061 .052 .065 .052

800 .052 .050 .049

A

Notes: The DGP is a univariate AR(l); see text for details. Let f,. denote
the least squares estimgte of a regression of y, on Y, , using the game sample
as that used to obtain f,. For the indicated values of P and R,, V... (the one
step ahead prediction error) was regressed on a constant and Ye-2 82 for
t=R,...,R+P-1. Panel Al reports the fraction of 1000 simulatjons in which the
conventionally computed t-statistic on the coefficient on Y,..,8,. that was
greater than 1.96 in absolute value. Panels A2 and A3 report the same, when
Y. was included as a third regressor. Panels Bl-B3 report the same, but for

larger values of P and R.
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Table AA4
Size of Nominal .05 Tests, Test for Zero First Order Serial Correlation

A. Accounting for Error in Estimation of B*, R+Px800

Sampling R = mmmmmmmmmmmmmm e - Pocmmmmmmmmmm e mmmmmmmm—mmm o — =
Scheme 100 200 400 600 700
1.Recursive 100 .049 .053 .047 .052 .049
200 .050Q .038 .056 .051
400 .055 .054 . 044
2.Rolling 100 .071 .0%6 .137 .178 .209
200 .059 .051 .075 .082
400 .048 .063 .052
3.Fixed 100 . 050 .054 .050 .048 .042
200 .054 .044 .047 .055
400 .047 .061 .052

B. Accounting for Error in Estimation of f*, R+Ps1600

Sampling R = mmmmmmemmmm oo m o - - P-------mrmmmmmmm s m e
Scheme 200 400 800 1200 1400
1.Recursive 200 .038 .056 .056 .051 .048

400 .054 .044 .059 .058

800 - 050 .049 .052
2.Rolling 200 .051 .075 .096 .122 .136

400 .063 .052 . 069 .069

800 .054 .048 .059
3.Fixed 200 ,044 . 047 .043 .049 .042

400 .061 .052 . 065 .052

800 .052 . 050 .049

A

Notes: The DGP is a univariate AR(1l); see text for details. In panel A, V.,
was regressed on a constant and v, for t=R,...,R+P-1, for the indicated
values of P and R,. Panel Al reports the fraction of 1000 simulations in
which the conventionally computed t-statistic on the coefficient on V. was
greater than 1.96 in absolute value. Panels A2 and A3 report the same, when
Y. was included as a third regressor. Panels Bl-B3 report the same, but for

larger values of P and R.



II. Proofs

'Proof of Lemma Al: The results for the recursive and fixed schemes follow

from Lemma A3 of West (1996). For the rolling scheme, we show (a) (given (a),

the proof of (b) is similar to that of Lemma A3 (b) of West (1996)) : we have

P*H(t) = P*R!(hy g, +...+h) = P/R(P/t)*[t**(h+...+h)] - P/RIP**(hi+...+hg)]

sup, | P*H(t) | = sup.| (P/R) (P/t)*'[t**(h,+...+h)] | +

1}
1l
\Y

(P/R) sup,!|P* (h;+...+h. ) |

s (P/R) *sup,|t*!(h,+...+h) | + (BP/R) sup.|P*?(h;+...+h. ;)|.

Since T < ®, it suffices to show sup.|t*'(h;+...+h) | », 0,
SUP;,eco-1 | PP P (3. . .+hg) | >, 0. The first follows from Lemma A3(a) in West
(1996) . The second: Let g=1 for notational simplicity. From Hall and Heyde

(1980, p20) and the proof of Lemma A3 (a) in West (1996), h, is a mixingale

satisfying E[sup,.p..{h;+...+h,}?] s cP for a certain constant c. So
E[sup; .1 P2 (hy+. . .+h)%l] s cP®™! 5 0 and the result follows from Markov's
inequality.

Proof of Lemma A2: For (a) , we have P'Lf2 = Plrv? g?, s (P'CLvi,,)Y? (PEgi)'/?

= O,(1l) by assumption 4 and Markov's inequality.
(b) By definition, £,,,3 = Vi,;9ca.s * GraVesr,s- Hence by assumption 4 and

Markov's inequality,

P-lzfg+r,ﬂ = P-lzvi+rgi+1,ﬁ + P—lzgiﬂ.vz‘r,ﬂ + Zp-lzivtﬁfgttl,ﬂ I ggt0lvt+1.5 I
s (PTEVL,)VI(PIEGL, o) VP 4 (PUEVE, ) VA (PEgl) VP 4

2 (PPZVE,) V4 (BIEgL,, ,) V4 (BB, ) V4 (P 2GR,) V4 = 0, (1)

(c) In this proof and this proof only, for any function n, let n{(f,) = n.

~
~

By definition’ ftor,ﬂﬂ = Vcngul,ﬁﬂ + 2vt¢1,ﬂgt‘1,ﬂ + gtylvcor.ﬂﬂ .Now since vtwr and

~

9es1 are twice continuously differentiable, f,,; ;3 can be written as

~ ~ ~ ~ ~ ~
{Vtorgcq,ﬁﬁ + gtu,ﬂﬂvtn,a(ﬁt‘ﬁ*] + -59u1,3ﬂvt+r,ea(5c'ﬁ*)2} + {thn,ﬂgta,s +
o ~ 3 ~ ~ ~ o
2Vi,; 59ce1. 08 {Be=B*) + 2Gc. gVie, 55 (Be-B%) + 2(B.-B*) zgt'l,ﬁﬁvtor.ﬂﬂ} +

~ ~ ~ ~ 3 ~ 5
{gt.xvcn,ﬁﬂ + Vs 69ce1,8(Bc-B8B%) + .5Vi1 5sGeer.p8 (B~ B*) }



AA-20

= Wi o+ Wy t Wy,

~
where for notational simplicity we are assuming that we have the same B3, on
the line between f, and (* for each expansion. To show that P!TfZ, BB(EC) =
0, (1) it suffices to show that P7'twi, = O,(1) for each i. We will show this

for w,,, the others follow from similar arguments. Squaring out w,;, we have

Slggg? Clgn,2 2 Slye2 2 Py 2 Slyez ~ 2
P Ewlt s P EVto19t¢1,BB + P Egtol.ﬂﬂvt*r,ﬂ (Bt_ﬁ*) + P 129:.1,ﬂﬂvi+1,53(ﬂc_6*)4 +
-1 1 ~2 2 Slgr2 ~ =
2p Z]: vtfrllvt¢1,BIgt+1,ﬂﬁI Bt_ﬁ*{ + 2P Eglnl,BBIvtrrh'}vtor,ﬁﬂll (61:-3*) : +

1y | s (1R _gwt?d
2p Egc«l ﬁﬂlvtor,ﬂl |vt*1,ﬂﬂ| Iﬁt B*I

< (PUEVE,) M2 (PUEGL,, 4) V2 + (AA1)
(sup, | Bo-B* 1) 2 (BEVE,, ) ¥/ (PEGL,, o) V2 +

(Suptl B.-B* I )¢ (P’lﬁg‘é”,es) /2 (P_lzagtéu,sﬁ) 12 g

2(sup, | B.-B* | ) (PEvE,,) /s (PEGLy ge) V2 (PIEVE,, ,) V4 +

(sup, | Be-B* |12 (BEVE,, 45) Y4 (PIEGL, g5) /7 (PTEVE,) V4 4

~ -
2Asup, | B.-B* )2 (PZVE,, 40) Y (PIEGL,, 45) Y2 (PIEVE,, ) V2.

The first term on the rhs of (AAl) is Op(l) by assumptions 3 and 4, and
Markov's inequality; the remaining terms on the rhs of (AAl) are O,(1) by

Lemma Al, assumptions 3 and 4, and Markov's inequality.

° A
Proof of Lemma A3: Consider T';,(0) = P'Cf’ (f§,) ; other autocovariances may be

ter

- - A
handled similarly. A mean value expansion of f.  (f,) around £, (8*)=f .,
. A A
Ylelds ft»r (Bt) = fc¢f + rt+rl rtor = {ft+1,8( ﬁt_ﬁ*) 1 + wl’.+'rl
~ A ~ A
Weor, = 5., 55 (B.) (Bc-8*%)?, B, on the line between B, and 8. Hence

L

;e (0) = PIZfE2

(224

+ 2P'C [£,,,x.,,]1 + PZx?,, . (AR2)

E+7

The first term on the rhs of (AA2) converges in probability to I',, (O) by White
(1984, Corollary 3.48). For the second term, the triangle and Cauchy-Schwarz

inequalities yield

IPE (£ Te,) T = !PT (£, Fenn o (Bo-B*) 1 + PITE,. w,., |
+T +7 +T4E+7,8 t t+rWter |
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A
s (sup.| B.-B*|) (PCf} )V*(PILE},,,

ter

A ~
.5 (sup.} B.-B*}) *(p g2, )12 [P'lzfin,pg(ﬁc) ]1/2_)p0

ﬂ) 1/2 +

by Lemmas Al and A2. For the third term, it is straightforward to show that

PY2rr? | is less than or equal to

A ~
(supe] Bo-8*1 )2 (B7EEL,, ) + (sup.| Bo-B% | )2 (PEL, ) V2 (BOLEL, 4 (B) )V 4

A
(sup, | B.-B* () *(BITE2,, 4, ().
A
Since sup.| fB.-B*| = o, (1) by Lemma Al, the result follows from Lemma A2.

Proof of Lemma A4: Let K; = K(j/M), suppressing for simplicity the dependence

of X, on M and thus P. Furthermore, define r., and w., as in (AA2). An

expansion such as in the proof of Lemma A3 then yields

°
E:Li);}lNlK'jrff(J) - EP——P+1K3 (P IET-Ro]ftwrftH’ J) + Ep;—[nllg (P 123-R+3fc»rrt+r-j) +

15T 1
j=- P+1KJ (P Et:k«] cn-jrtvr) + J.}p,.lKJ (P Ec:R4]rt+1rt¢T ]) .

It follows from Andrews (1991) that Il \K; (P'Eig,;fc,frurg) = T5Tee () , so it
suffices to show that the other three double summations converge in
probability to =zero. We will show this for the second double summation; the

arguments for the third and fourth double summations are similar. Note that

!P-12€=R+jft¢1ft+r~j.ﬁlls (P E: quZor) /2 (P IEI R+)f€¢1 ﬁ) 12 N (P IEfz

C+T

) 1/2 (P»l}:fzn 5)1/2

|PLlsEeien, 5 s -5(sup.| Be-B*|) 2(PILEL,,) M2 (PIEEL,, L, (B,)) 2.
Let "a" be defined as in the statement of the theorem, O<a<.5. Then for 7T<w

I Ejl)');}Plej (P_lz.tl:.ﬂbjft*Trtc»rfj) I =
(M/P*) (MES3,., 1Ky 1) { (PPsup, | Bo-B*|) (PLE2,) V2 (BIEEL,, )7 +

1
1
.5 (P3sup, | B.-B* | )7 (BPLEL, ) V2 [PEEL, 4 (B) 1V2).

A
By Lemma Al, P®sup.|f.-B8*| -, 0 and by Lemma A2 each of the summations inside
the braces is O,(1). Since assumption (M/P*}) = 0(1) and M Z)__p‘“Kj} ->
f"fm'K(x) !{dx < » the desired result follows. For 7m=w, the logic is the same

except that R° replaces P*°
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Additional detail on proof of Lemma 4.1:

A A
For the fixed scheme, for which B, = Bz and H(t) = H(R), a simple mean

A A
value expansion of P2£g,,,(B8g) Ve..(8%)

A _
P 2cf,,, ("Bg) around P, (B*) yields

A
P'l/zzft¢f(6R) = P-l/zzftrr + Pl/z (P_lzft+f,ﬁ) B (R)H(R) + P-1/ZZWt¢1I

for w,,, defined in (AA2). From assumption 2, B(t) -, B; from assumption 4,
Pirf,,,,; », F (White (1984, Corollary 3.48)), and PY’H(R) = Oy(1) . so the
result follows if P*?Tw.,, -, 0. We have

N ~
P PYow, | s (P/R)YZ(RVA] Bo-B* )2 (P T Ee., s (Be) ) .
Since 7 = 1lim P/R < » and RY‘H(R) -, 0, the result follows from Lemma A2 (c)

Additional detail on proof of Lemma 4.2:

Note: We will show the result for the recursive scheme. The other sampling

schemes follow from a similar argument. In particular, the only change occurs

in the definition of bj ;.

Given Lemma 4.1 (a), it suffices to show that P 2T {(g..,V.., + FBH(t)) ~a

N(0,Q). Let by, = (1/R+ . ..+ 1/T). Then
FBZH{t) = by FBh, +...+ by FBh; + by, FBhg,, +...+ b; ;FBh;.

Now define Z;, = P'/?*(by FBh,) for 1 :t s R and Z; . = P*? (g.,,V..,, + b, ;FBh,) for
R+l s t s T. Using assumption 4 and Lemma 4.1 we know that Q@ is p.d.. Hence
for large enough T, Q, = Var (Il ,Z;.) is invertible. If we define X; ., =

Q;1/2Z;. ., then Theorem 3.1 of Wooldridge and White (1989) implies that
Q2P YL (g, Vy,, + FBH(t) ) = ZX; ~x N(0,I,)
Then since Q is p.d., we know that P?r(g.,,v.,, + FBH(t)) ~, N(0,Q).

Additional detail on proof of Lemma 4.3:

Since g.,,;(8) is twice continuously differentiable, it admits a mean value

expansion

A

gtol(ﬁt) - G * gt+1,ﬁ(ét_6*) + . 59t¢1,55 (Bt) (Bt_ﬁ*)

2
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and hence

P-lzgzol(ét) = P"lzgid + P'lz{gi,l'ﬁ(ét‘ﬁ*)z + 'ZSgtz:ol,Bd(Bt) (Bt—ﬁ*)d +
29:«19:.1,5(656*) + Gee19ee1,88 (Ec) (Bt_ﬁ*) 2 4 291, 6Tce1.08 (Be) (Be-B*) 3}

= Plrg?, + PlEw,.

Now since d.,, is fourth order stationary and has 8d moments, Chebyshev's
inequality implies that PIgi,, -, Egi,,.
To show that P'Lw,,, = o,(l) we use the triangle and Cauchy-Schwarz

inequalities to obtain

| PEwWea, | s (sup, | Be-B* 1 )2 (PIg, ,) .
(sup, | Be-B* 1) * (PBgh, 45 (B)) +

2 (sup, | Bo-B* ) (PEGE, ) M2 (PEgl, ,) M2,
(sup, | Bo-B* 1) 2 (PEgR,) M* (PTG, 5 (B)) V2,

2(sup, | Be-B* 1) P (PEG,, 5) Y2 (PEGE,) g (Be)) M2

Since supt{ét-ﬁ*} = o,(1) by Lemma Al, and P'EgQ,; 54 (B) = O,(1) by assumption
3, and the remaining terms are O,(l) by assumption 4 and Markov's inequality,

the result is established.

Additional detail on proof of Theorem 4.2 (b)

A
Expanding 7.,, we have

A A A A a
P—lzzzlujgtolgtolq‘ (‘77 ter Meer-5 ~ V:-j,tnvc,ur-j) = (AA3)
A AL A A AA, A A A, ALAL
Prlzlmj{'gcd-jgc.lvt—j,tn-ja = GeaYe1-i Ve s @ + Gra @ gt»l»j}

1l

“1geT
P e reiWee1 g

Via the triangle and Cauchy-Schwarz inequalities we have

A A AA
- T -1sT 2 1/2 -1yT 2 44 1/2
I P lzt-Rojwtol—jII s (P Zt.}uj gtol-j Vi-j ) (P Er_-]uj o gtq) +

A A A A A A
- -1 T 244 1/2 1T 4.4 1/2 -1y T 4 y1/2
(P IZI=R4jgiolvi,to1) 12 (P Zt:!uja t»l—j) + (P Er_xkoj a gt,]_) (P Er_:R‘jgt*l_])

A A A A
s (PGl vi L) V(PTG V2 +
A A A LA A oA oA ;
|G 1(PIEGL, VI L)Y (RTIGL) M + @t (PP Egl,) V (BPEG )
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A
The 1last inequality follows by adding non-negative terms, and pulling the «
A
terms out of the summations. By Theorem 4.1, a = o,(1l), hence we need to
A, A
show that the remaining terms are O, (l). That P'rgl,,vi., = 0,(1) follows

from Lemma A3.

Since g.,;(B) is twice continuously differentiable, it admits a mean value

expansion such that, PZgi,,(B8.) = P'Igi,, + P'Ir.,,, where

e = [Gen +gu1,5(§c'6*) 1+ [ .59, 68 (Ec)(ét‘ﬁ*)zl‘ + (AR4)
alge, + gcq,g(éc‘ﬁ*) 1 3[-59t+1,55(Bt) (éc‘B*) ‘1
12(ger +Geun,p (Be-B*) 171-5Geu g (B (Be-B*)17 4

4lgp, + gt«»l,ﬂ(ét_ﬁ*) 1 [5G, 08 (Eg) (Ec‘ﬁ*)zl i

Now since g.,, has 8d moments, Markov's inequality implies that P!'ZIg;,, =

0,(1), It then suffices to show that P!ELr,,;, is o,(l1). To do so we will show

that the absolute value of the fifth term on the rhs of (AR4) is o,(1l), the
other terms follow from similar arguments. Using the triangle and Holder

inequalities it follows that

P4 [Ge,, +Ger, s (Be=B*) 1. 5Te.y 55 (B} (Be-B*)*17 1
A ~
(sup, | B.-B"]) S(PEGL,) V4 (PEGE,, 45 (Be)) /" +
A
(sup, | B.-6"1) " (PEg!,, 5) V* (PTEGL, 45 (Bc) )"
From Lemma Al, supt',fit—ﬁ*} = o0, (1) and by assumption 4 and Markov's

inequality, P'Zg{,; = O,(1) and P'Zg{,; , = O, (1) Since by assumption 3 and

Markov's inequality, P 'Igf,; 5(B8:.) = 0,(1), the result is established.

Additional detail on the proof of Theorem 4.2(c):

o

A A
Expanding 7., as in part (b) of this proof, we have S - Si; =

51, K(3/M) {PEl ;.;Weii.y) fOr W, ; defined in (AA3) . Since the kernel is

nonnegative, we can use the same inequalities as in part (b) to obtain

A A A A
281, K(5/M) {PET o ywen 5 s ZRL L IKRG/M)Y | (1o | (PEgd,, v )Y (Pgi) VP 4

t, t+7

A A A A A A A
L@ (PIEG2,VE ) M (PIEGL,) VP + % (PG M2 (PTG, )

The bracketed term on the RHS of the previous inequality does not depend upon
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j and so it is unaffected by the outer summand. The RHS of the inequality is

then less than or equal to

A A A A
(M/P*) (ME5:2,,, [K(3/M) |) { {P*a | (PPL g2, Vi) 2 (PEGLL) 2 +

A A A A A A LA
pra | (PIEg2, Vi, ) Y2 (PEgl ) Y2 + (PY2Q)?(PLgl,) V(P Egl,) )

where "a" is defined as in the statement of the theorem, 0<a<.S5. BY
assumption (M/P?) = 0(1) and (M'Ej%,,|K(3/M){) —» J= |K(x) |dx < ». Notice also

A
that by Theorem 4.1, PPa = o, (1). That the RHS is o, (1) then follows from the

same argument used in (b).

Additional References

Hall, Peter and Christopher C. Heyde (1980): Martingale Limit Theory and Its
Application, New York: Academic Press.

White, Halbert (1984): Asymptotic Theory for Econometricians, New York:
Academic Press.
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Table 1

Regressors for Four Common Tests, Linear Model

(1) £2) (3) @

Test gt+1 92t+1 gt+1

(1)Mean Prediction Error 1 n.a. n.a.
A
(2)Efficiency X' Be n.a. n.a.
. A A
(3) Encompassing Xoeer” Bae Xea (X301 Baes Xear')
(4)First Order Serial :rt Xer (‘:/t,xc,l’ )’
Correlation

The model is yt,1=xc,1'6'+vt,1, where Yy,.,, and Vv.,, are scalars, X.,; is a vector,
and f° is the unknown parameter vector. In the AR(1l) example of section 2,

this specializes to yt,1=ycﬁ'+vcd. The left hand side variable is a one step
A

A
ahead prediction error, V:uEY:u‘x:’(l’ B.- The simpler regression analyzed in
A
sections 6 and 7 is one in which g,,,=g9.,;(B,.) (column (2) ) is the sole
the more complicated regression is one in which g (column (4)) is

regressor;
See sections 6 and 7 of the paper for more detail.

the vector of regressors.



Table 2

Adjustments

for Four Common Tests, Linear Model

Correction
Needed?

Sampling
Scheme
A. Zero Mean Prediction Error

1.Recursive No n.a.
2.Rolling Yes Divide t-statistic by
3.Fixed Yes Divide t-statistic by
B. Efficiency
1.Recursive no n.a.
2.Rolling yes Divide t-statistic by
3.Fixed ves Divide t-statistic by
C. Encompassing
1.Recursive no: v.,; conditionally homoskedastic n.a.
yes : Vi,; conditionally heteroskedastic augmented regression
2.Rolling ves augmented regression
3.Fixed yes augmented regression
D. Zero First Order Serial Correlation
1.Recursive no: V.,; conditionally homoskedastic n.a.
yes : V,,; conditionally heteroskedastic augmented regression
2.Rolling yes augmented regression
3.Fixed yes augmented regression
Notes:
1. The model is y.,;=X.,,’' 8*+Vv,,;, with V.,; serially uncorrelated. The A

prediction horizon is one period (7=1). The regression run is one with V.,
on the left hand side, as described in Table 1.
when to adjust the usual least squares standard errors to account for
uncertainty about S*.

2. The table assumes 7>0.
number of predictions,
=0,

7 is the limiting value of P/R, where P is the
R the size of the smallest regression sample. When

no adjustment is needed, for any of the tests in the table.

3. In panels C and D, "V, conditionally homoskedastic" means EVé4xuﬂ&.f =
Ev:, EX¢,1Xe,," ; "V conditional heteroskedastic" allows the possibility that
Evg+1xt+1xt+1, # EVﬁ.lExmxm'

4. Panel D allows Ev.x.#0,
applications. If Ev,X.=0,
and whether or not v, is

as is typically the case in time series
no correction is needed, for any of the schemes,
conditionally heteroskedastic.

How to Correct the t-statistic

%

YL

N

N

This table describes how and



Table 3
Size of Nominal .05 Tests, Mean Prediction Error

A. Accounting for Error in Estimation of f*

Sampling 2 S P----mmmm e e s m s e e
Scheme 25 50 100 150 175
1.Recursive 25 .054 .052 . 053 .056 .056
50 .053 .057 .051 .057
100 .046 .049 .054
150 .056 .056
175 .052
2.Rolling 25 .063 .074 .105 .133 .145
50 . 053 .063 .063 .072
100 .048 .051 .058
150 .054 .055
175 .053
3.Fixed 25 .091 .090 .096 . 097 .099
50 .069 .074 .075 .077
100 .058 .060 .064
150 .062 .050
175 .058

B. Ignoring Error in Estimation of @*

Sampling R —mmmmmmmmmomm e e m e P------------ - o
Scheme 25 50 100 150 175
1.Rolling 25 . 025 .003 .000 000 .000
50 .043 .021 .002 1000
100 . 046 .044 .021
150 .054 .052
175 .052
2 .Fixed 25 .220 .297 .421 .498 .523
50 .129 .195 .293 .354
100 .081 .121 ,186
150 .078 .106
175 .073
Notes: The DGP is a univariate AR(1l); see text for details. For the indicated

values of P and R, V,.,; (the one step ahead prediction error) was regressed on
a constant for t=R,...,R+P-1. Panels Bl and B2 report the fraction of the
5000 simulations in which the conventionally computed t-statistic on the
coefficient on the constant term was greater than 1.96 in absolute value.
Panels AI-A3 report the same, when the conventionally computed t-statistic is
divided by the square root of A.



Table 4
Size of Nominal .05 Tests, Efficiency Test

A. Accounting for Error in Estimation of B*

Sampling R mmmmmmmm e m e m e m e o P---meee - e e e
Scheme 25 50 100 150 175
1.Recursive 25 .052 .051 .058% .055 .053
50 .038 .043 .043 .046
100 .038 .040 .045
150 .041 .047
175 .042
2.Rolling 25 .124 .430 .939 .997 .999
50 . 045 .070 .232 .468
100 .036 .043 .059
150 .042 .045
175 .041
3.Fixed 25 .058 .055 .056 .055 .053
50 .040 .038 .035 .031
100 .039 .041 .042
150 .041 .036
175 .042

B. Ignoring Error in Estimation of B*

Sampling R mmmmmmmmmmemmmm o m oo mmm oo P----mm o e e -
Scheme 25 50 100 150 175
1.Rolling 25 .059 .072 .152 .331 .450

50 .037 .030 .016 .013

100 .034 .034 .021

150 .042 .041

175 .040
2 .Fixed 25 .158 .234 .355 .434 .456

50 .087 .135 .220 .286

100 .063 . 097 .152

150 .060 .083

175 .057
Notes: The DGP is a, univariate AR(1l); see text for details. For the indicated
values of P and,R, v,,; (the one step ahead prediction) was regressed on a
constant and y.f, (the one step ahead prediction) for t=R, . . ..R+P-1. Panels

Bl and B2 report the fraction of the 5000 simulations in whigh the
conventionally computed t-statistic on the coefficient on Yy f. that was
greater than 1.96 in absolute value. Panels Al-A3 report the same, when the
conventionally computed t-statistic is divided by the square root of A.



Table 5
Size of Nominal .05 Tests, Encompassing Test

A. Accounting for Error in Estimation of g*

Sampling R = e e e e e e e mm o m P----m-mmm - - s m s m s s o
1.Recursive 25 .113 .148 .185 .201 .196
50 .077 .100 .125 .135

100 e .084
150 . 048 . 055
175 .046
2.Rolling 25 .244 .388 . 634 .796 .861
50 .151 .232 .346 .450
100 .080 .122 171
150 .075 .088
175 .071
3.Fixed 25 .044 .050 .049 .048 .050
50 .049 .049 . 053 .049
100 .049 . 098 .048
150
175 .054

B. Ignoring Error in Estimation of f(*

Sampling 2 S e P----mmmm s s s s e e e e
Scheme 25 50 100 150 175
1.Rolling 25 .130 .250 .508 .713 .790
50 .084 .122 211 .312
100 .059 .078 .108
150 .044 .057
175 . 047
2 .Fixed 25 -191 .270 .399 .486 .508
50 ——— o~ .240 .300
100 .068B .09 .133
150 .055 .068
175 .052
A
Notes: The DGP is a univariate AR(1l); see text for details. Let pB,. denote

the least squares estimate of a regression of y, on Yy, , using the g{ame sample
as that used to obtain f8,. For the indicated values of P and R,, V.., (the one
step ahead prediction error) was regressed on a constant and Y..8: for
t=R,...,R+P-1. Panels Al, Bl and B2 report the fraction of the 5000
simulations in whigh the conventionally computed t-statistic on the
coefficient on V. ,B, that was greater than 1.96 in absolute value. Panels A2
and A3 report the same, when Yy, was included as a third regressor.



Table 6
Size of Nominal .05 Tests, Test for Zero First Order Serial Correlation

A. Accounting for Error in Estimation of B*

Sampling R —emmmmmmmmmmmmmmm s m e P------mmmmm oo s e
Scheme 25 50 100 150 175
1.Recursive 25 .059 .060 .061 .061 .061
50 .043 .052 . 057 .053
100 .040 .048 .051
150 . 045 .054
175 .045
2.Rolling 25 .119 .209 .405 .584 .663
50 .069 .094 .143 .183
100 .058 .066 .071
150 .054 .058
175 .057
3.Fixed 25 .044 .050 .049 . 048 .050
50 .0459 . 049 .053 .049
100 .049 .048 .048
150 .049 .051
175 .053

B. Ignoring Error in Estimation of f*

1.Rolling 25 .034 .022 . 0217 .052 .067

50 . 040Q .029 .014 .013

100 .039 .044 .026

150 .045 .048

175 . 045
2 .Fixed 25 .214 .319 .447 .512 .546

50 111 177 .269 .335

100 .066 .105 .156

150 .062 .086

175 .058

A

Notes: The DGP is a univariate AR(1l); see text for details. In panel B, V.,
was regressed on a constant and v, for t=R,...,R+P-1, for the indicated

values of P and R,. Panels Al, Bl and B2 report the fraction of the 5000
simulations in which the conventionally computed t-statistic on the
coefficient on v, that were greater than 1.96 in absolute value. Panels A2
and A3 report the same, when y, was included as a third regressor.



Table 7
Size of Nominal .05 Tests, Efficiency Test, Larger Sample Sizes
A. (P/R)=2

P=50,R=25 P=100,R=50 P=200,R=100 P=400,R=200 P=800,R=400
.430 .232 .108 .091 .069

B. (P/R)=4
P=100,R=25 P=400,R=100 P=800,R=200
.939 .409 .229

Notes: See notes to Table 4. The tests account for error in estimation of f(*.
The figures for P+R<200 are repeated from Table 4.



