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1. INTRODUCTION

WHEN the performance of a set of genotypes is compared over a number of
environments it is frequently found that genotypic effects are not fixed, but
that they vary between environments. In biometrical investigations the
problem then arises of how to characterise genotypic effects. A number of
authors (e.g. Yates and Cochran, 1938; Finlay and Wilkinson, 1963;
Eberhart and Russell, 1966; Perkins and Jinks, 1968a, b) have shown that
in many such cases the performance of an individual genotype can be ex-
pressed as a linear function of the environmental index (the additive en-
vironmental effect). The slope of this regression, a dimensionless quantity,
is a measure of the sensitivity of the genotype to the totality of environmental
factors. Where the regressions are found to account for a substantial part
of the genotype environment interaction variance, this empirical approach
to the problem of interactions has proved to have considerable value. An
identical technique has been used by Mandel (1959) and Mandel and Lashof
(1959) to compare the result of tests at several laboratories on a number of
materials, and the theoretical aspects of the statistical analysis have been
discussed in a series of papers by Mandel (1961, 1969, 1970, 1971) and
Mandel and McCrackin (1963). There has not, to our knowledge, been
any reference to this work by biologists, nor as Mather (1971) has pointed
out, any discussion of the underlying reasons why the regression technique
works for plant material, although various authors have either denied that
any such a priori reason exists (Wright, 1971), or have attributed the success
of the method to the linearising nature of the transformation (Knight, 1970).

In contrast to the empirical methods mentioned above, the classical
approach of plant physiologists to the problem of genotypic performance has
been by multifactorial experiments and growth analysis. This approach
has led to the formulation of various regression models which relate plant
performance to environmental variables, and more recently to computer
simulation models of the same relationship (e.g. de Wit and Brouwer, 1968).
Freeman and Perkins (1971) have suggested on statistical grounds that it
may be better to use this approach to analyse genotype-environment inter-
actions, by regression on environmental variables, rather than to use re-
gression on the environmental mean. This paper considers the two regression
methods and their interrelationship from a different point of view.

First we show that there is a bias in the estimates of the coefficients of
regression on the environmental mean when they are derived by the usual
method. After considering the relations of this approach to various other
techniques, we turn to the interpretation of the values of the coefficients of
regression and of the deviations from the regressions on the environmental
mean. It will be shown that it is possible to account for their values in
terms of the coefficients of an "underlying" regression model. Finally a
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method of analysis which is intermediate between regression on environmental
variables and regression on the environmental mean is suggested.

2. THE EMPIRICAL APPROACH

Suppose the performance of m genotypes is measured in n environments,
and yj is the performance of the ith genotype in the jth environment, and
suppose

(1)
where = 0, yj = 0, gq = 0, = 0,

i I j
and ejj is a normally distributed random variable with mean zero and vari-
ance a2. Themore important symbols are summarised in the accompanying
table. It is assumed that all effects are fixed. The model considered by

TABLE OF THE MORE IMPORTANT SYMBOLS

See

Symbol Interpretation equation
aj Vector whose elements are aik (6)
aih Partial regression coefficient ofyjj on xjh, j varying (6)
d Perpendicular vector from a on to a. (8)
ej; Normal random variable, mean 0, variance a2 (I)
gj Interaction between genotype and environment (1)
m Number of genotypes, indexed by i = 1, m
n Number of environments, indexed by j = 1, n

p Number of environmental variables, indexed by h = 1, p
xjh Orthonormalised measure of the hth environmental variable

in thejth environment (6)
yjj Observation of the ith genotype in the jth environment (1)
/3 Coefficient of regression of gj on (2)

fl i+p (4)
yj Effect ofjth environment (1)
8j Deviation from regression of gj on (8)

Overall mean (1)
p Effect of ith genotype (1)
a Standard deviation of e5 (1)

Perkins and Jinks (1 968a) assumes that the genotype-environment inter-
action, gj, is linearly related to the environmental effect, y, i.e.

—
(2)

where = 0.

Mandel and Lashof (1959) consider the identical model formulated in terms
of laboratories and materials under test at the laboratories.

Estimates of j, p, and gjj are:

/1 =.y..
' =yi.—y..j =y.I—y..
g5
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A dot replacing a subscript indicates that an arithmetic mean has been taken
over the entire range of the subscript.

In practice the 's are estimated by

=
j 2

This can be rewritten as

= (iyj+ ejj — e.j) (yj+e.j)/(yj + e.j)2,

and it can be shown that to a first approximation

E(A) = Th{l_(n_l)a2J(myj2)}. (3)

Thus there is a tendency to underestimate the absolute value of j. The
bias arises (Sprent, 1969, p. 33) because the assumption has to be made in
regression analysis that the independent variable, in this case the environ-
mental mean, is measured without error. The bias depends on m and the
ratio of the between environments variation to the error mean square. In
most well designed experiments this ratio will be large, and the bias will be
small, but not necessarily negligible. The bias will also tend to be small for
large m. This is illustrated in fig. 1 for m = 2, 5, 12, fi = 05 and 1. In
the case where m = 2, = — P2 and it is usual to estimate fi = — P2
(Bucio Alanis, 1966), but the biases remain.

Equations (1) and (2) can also be written as

yij = i+ pi + Piyi + ejj (4)

where /3 = 1 +. This is the form used by Mandel and Lashof (1959) and
Finlay and Wilkinson (1963). The use of this approach as a basis for an
analysis of variance and associated tests of hypothesis has been discussed by
Freeman and Perkins (1971), and also by Mandel (1961), who shows it to
be an extension of Tukey's "One degree of freedom for non-additivity"
(Tukey, 1949; Scheffé, 1959, pp. 129-34).

An equivalent model has been considered by Williams (1952), who shows,
in effect, that least squares estimation of the 's is equivalent to extracting
the first principal component of the genotypic performances. The validity
of the model can then be studied by extracting further components, or, more
informally, by inspection of the residual correlation matrix after extracting
the first component. A procedure similar to the latter approach has been
suggested by Perkins and Jinks (1 968b).

Gollob (1968) and Mandel (1969) consider the principal components
approach further using the model

=
?t.uj1vJ1 + A2u2vj2 + . . .ejj (5)

where = = 0, =
I I

and successive terms of (5) are chosen to maximise the sum of squares re-
moved from gj2 at each stage. If G is the matrix (gj), u and Vp are
elements of the eigenvectors of G. and OG, and the Ak's are the square
roots of the associated eigenvalues. Mandel (1969) discusses the application
of analysis of variance to this model.

For the Perkins and Jinks model, since the main interest lies in genotypic
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Fin. 1.—Bias in Perkins and Jinks' (1968a) estimate of i, versus a2(n— l)/Eyj' for m

(number of genotypes) = 2, 5 and 12, = 05 and 1.

performance, a more logical extension of this approach is to assume, by
analogy with equation (4), that

= jL +p + 1'.1uj1v51 + A2u2vj2 + ..

without the restriction = 0, but the basic idea, of chosing successive

terms to maximise the sums of squares which each removes, remains the
same.

3. USE OF MULTIPLE REGRESSION

We now consider the situation when both phenotypic performance and
also a number of relevant environmental variables have been measured. It
is convenient to assume that the response to these variables is linear or can
at least be represented by a polynomial of low degree. The model is then

= p. +p + aj1xj1 + aj2x2 + ... +ajxj + eq (6)

where the x's are measures of the environments, the a's are regression co-
efficients and eq is a random normal deviate with mean zero and variance a2.
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The x's may measure completely different aspects of the environment or they
may be terms of a polynomial. The x variates can always be transformed so
that they are orthogonal, each with mean zero and sum of squares equal to
one, and, because it makes the interpretation of variance components easier,
in the following it is assumed that this orthonormalisation has been done.

All the parameters in equation (6) can be estimated without difficulty
using least squares. After removing genotypic effects the sum of squares can
be partitioned into four terms; the between environments sum of squares
can be partitioned into a regression component and a residual component,
and a similar partitioning can be applied to the sum of squares for genotypes
x environments. This is shown in table 1. These partitioned terms will be
referred to as the overall regression and deviations, and the heterogeneity
of regressions and of deviations. Since the partitioning is orthogonal the
two terms for deviations from regression can be combined to provide a single
estimate of variation about the regression lines. This combined component
which is part of the sum of squares for variation within genotypes, has
m(n—p— 1) degrees of freedom, and may be expressed as (ejj_e..)2. It
has been partitioned by making the customary assumption that all errors are
independent. Thus

=
$3 $3 3

The first component has (m —1) (n —p —1) degrees of freedom and the second
has (n—p — 1) degrees of freedom. These terms, called here" heterogeneity
of deviations" and" overall deviation" are identical with those for "inter-
action residual" and" environments residual "in tables 2 and 3 of Freeman
and Perkins (1971). The derivation given here emphasises the nature of
these residuals (see test 2 below).

TABLE 1

Regression on environmental variables

Item d.f. Expectation of mean square

Genotypes rn—i

Environments n—i ma./(n_1)--a2

Regression P ma.fp+ c2

Deviations from

regression n—p— 1 (7

Genotypesx (rn—1)(n— i)
environments i,le

Regression (m— 1)p (ajk—a.k)2((m— 1)p) + a
i,k

Deviations from

regression (m—l)(n—p—i)

Total mn— I

The following tests can be made in table 1.
(1) If either the overall regression mean square or the heterogeneity of
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regression mean square is significantly greater than the total deviations from
regression mean square, then this is evidence that the model identifies some
of the environmental variables associated with variation in performance.

(2) If there is replication the mean square for the overall deviations can
be compared with the residual mean square, testing for the existence in the
deviations eti of a systematic element (e.5— e..) which is common to the devia-
tions of all genotypes about their respective regressions. Such deviations
may arise in two ways; either because a variable to which all genotypes
respond similarly has been neglected, or because the underlying relationships
with the included variables are not (as assumed) linear.

(3) If the latter is the case then similar patterns of deviations will be
expected to occur every time the experiment is repeated. If on the other
hand the deviations arise through the action of a neglected variable, then
similar values of this variable, and hence similar patterns of deviations, are
unlikely to recur. Hence by repeating the experiment in a different site
or season it is possible tentatively to distinguish between the alternative
origins of (e.j —

(4) The heterogeneity of deviations term may be tested against the
residual mean square. A significant heterogeneity of deviations term indi-
cates failure of the model for individual genotypes and as before, this may be
due either to inadequacies in the chosen regression function, or to the
operation of an undetected variable. Again, the two alternatives can tenta-

tively be distinguished by repeating the experiment.

4. REGRESSION ON THE ENVIRONMENTAL MEAN

Where regression is performed not on independent measures of the
environment, but on the environmental mean, the analysis of variance shown
in table 2 can be constructed (Mandel and Lashof, 1959). In this case, the
overall deviation from regression is zero, because the overall regression has
been constrained to be a perfect fit to the mean environmental yields.

As already shown, equation (3), estimation of by unweighted least

TABLE 2

Joint regression on the environmental mean

Item d.f. Expectation of mean square

Genotypes rn—i np/(m_1)+a2

Environments n—i ma /(n— 1) +a°
k

Heterogeneity of
regressions rn—i a /(m— 1)+u'(l+A)

k

Residual (rn—I) (n—2) {(ak_a.p
} 1) (n—2)}

+a2(ii)/(n_2)
Total mn—i

(a2k -a)
= /m.
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squares leads to a bias. The unbiased estimate is given by Williams' (1952)

method (see Appendix).
Some authors (for example Mandel, 1969; Wright, 1971) have used

regression on they.'s as well as on they.j's. The condition for these regres-
sions to be appropriate is that the regressions on yj should be concurrent

(Mandel, 1961).
The empirical coefficient flj can be expressed in terms of the coefficients

of the underlying model introduced in the previous section. By equating
the two models (2) and (6) we find, using the orthonormality of the x
variates, that

= (7)
h h

Equation (7) and results which follow from it, can be written in a more
convenient form by using vector notation. If a is the vector (afl, a2. ..ap)
and a'. the vector (a.1, a•2 . . . ai,) then

= (a,a./aa.)—l

and thus (I + is proportional to the projection of the vector a on to a
(see, for example, Lanczos, 1957, p. 360). If aj is a multiple of a• for all i
the data will conform to the simple model of equation (2);

=

Deviations from this model will occur if a is not a multiple of a for all i; i.e.
if there is variation between genotypes in more than one dimension. These
deviations from the linear model are given by

gj—yj
= dxj (8)

when = (xj1,xj2..
and d is given by

d a—fla.
Since d and the projection represent an orthogonal partitioning of the
vector a it follows that the deviations 8j, the sum of squares of which have
been proposed by Eberhart and Russell (1966) as a second parameter of
"stability ", are not independent of the regression on the environmental
mean but are rather a necessary adjunct of the line fitting procedure. The
deviations sum of squares will vanish only for the case p = 1. Equation (8)
can be written in terms of the coefficients of the model (6) as

(p 8-1
= (a.xj8—

a.8xjr) (a.8air —a.rai8) a.2i. (9)s2 r=i j h.1

The derivation of equations (7), (8) and (9) has been based on expecta-
tions; in practice the deviations sum of squares will also contain a random
error component. If in addition there are significant deviations from the
assumed underlying model, then and jwill not be accurately predicted
by these equations.

This analysis can be extended to the tests of significance in the analysis
of variance of regression on the environmental mean (table 2). If a2 is small,
the test of heterogeneity of regression against residual will give a "signifi-
cant " result if



216 R. C. HARDWICK AND J. T. WOOD

I 2 ' ' ' 2jF =

= (n—2) (aa.aa. — a'a.a'a.)/(a'a.ddj) (10)

is sufficiently large, that is if d d is small. If this term is not small the

residual will be large compared with the error mean square, and then the
model (equation (4)) is an inadequate description of the data and a more
elaborate model, for example equations (5) or (6) is called for. Perkins
and Jinks (1968b) have shown that in such cases the correlation between
deviations for pairs of varieties can sometimes be used to identify groupings
of similar genotypes. The correlation between the deviations of the ith and

jth genotype is

(ddj)/(ddtd;dj)
and this will be close to 1 or — 1 as the varieties show similar or discrepant
patterns of departure from their regressions on the overall mean. As men-
tioned previously, this form of analysis is an informal alternative to the
extraction of further components, in the principal components approach.

It will now be shown that equations (7) and (8) can be used to account
for the coefficients of joint regression analysis in a published experiment;
that of Richards (1965) on the performance of three species of tropical
grass in 48 nominated environments. Because the levels of the environmental
variables in this experiment—a 3 x 4 x 4 combination of cutting heights,
cutting frequencies and fertiliser level—are known, the data are suitable
for analysis by regression on the environmental mean and by regression on
external variables. Following a preliminary analysis the data were trans-
formed to logarithms. Regression on the environmental mean accounted
for a significant part of the genotype-environment interaction, but the devia-
tions from regression were large (table 3). The bias in the estimates of fi
was small because the estimated ratio of between plot variation to within
plot variation was large.

TABLE 3

Joint regression on the environmental mean of Richards (1965) data

Item d.f. Mean square

Species 2 1 787 7
Environments 47 0-359 3

Species x
environment 94 0032 0

Regression 2 0246 5
Residual 92 0-027 4

Total 143

An estimate of the experimental error is provided by the
mean square for the highest order interaction—O 004 with 36
degrees of freedom.

Linear models were fitted to the transformed data, by regression of yield
on the levels of the three experimental variables. 54-78 per cent. of the
within species variance was accounted for by first degree equations, and
55-88 per cent. by including quadratic terms for fertiliser and cutting fre-
quency. The coefficients of these regressions were substituted in equations
(7) and (8) to predict the values of the two stability parameters of Eberhart



GENOTYPE-ENVIRONMENT INTERACTIONS 217

and Russell (1 966), and the entries in the correlation matrix of Perkins and
Jinks (1 968b). Observed and predicted values were in reasonable agreement

(table 4).

TABLE 4

Prediction of coefficients ofjoint regression, and correlations between deviations

from regression on the environmental variables, Richards (1965) data

Observed Predicted

Cynodon

dactylon 01563 01532
Digilaria

decumbens 0081 4 01354
Panicum

maximum —0237 7 —0-288 6

Correlation between deviations

Observed Predicted

C. dact. 1.0 10
D. dec. —0033 10 0074 1.0
P. max. —0-66 —0-73 1-0 —0-89 —0-52 1•0

C.d. D.d. P.m. C.d. D.d. P.m.
Bias in estimates of /3 = 000371 /3 (from equation (3)).

5. Wiu.is' METHOD

Williams (1952) considers the model

= + p + Ocjwj (11)

subject to the constraints = = 1. This is equivalent to repara-
meterising the model of equation (2). In terms of equation (2) w5, ct and 0

in equation (11) are given by

VI
WI =

1+fl
C

and 92 =

Williamsproposes estimating the parameters of the model (11) by minimising

— — — 0cwj)2+ 2v10wj + 2v2p + V3C

where the Owj's are here treated as one set of constants and v, v2 and v3 are

Lagrange multipliers.
He shows that, if Y is the matrix with elements (yj —.y.), then 02 is the

largest eigenvalue of YY' and Y'Y and {c} and {wj} are the corresponding
eigenvectors. Essentially the same derivation was used by Mandel (1969)
in the formulation of equation (5).

A similar approach may be used to reduce the large number of parameters

in equation (6). Analogy with equations (1) and (11) suggests putting

atJ5 = Oc6iah (12)
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where = 1

= (13)
h

E1 =0

and = 1.

E5 provides a single measure of thejth environment. The parameters of
this model are estimated by minimising

S =

subject to the constraints. This minimisation is considered in the Appendix.
There it is shown that, if X is the matrix whose elenents are {xaj} then

(XlY'YX_O2X'X)a = 0 (14)

where 0 takes the largest value possible in equation (14), and a is the vector
whose elements are the estimates of the a,'s. Since the x variates are ortho-
gonal X'X is the p xp identity matrix 1, and

(X'Y'YX —02!) a = 0.

Thus this procedure is equivalent to projecting the yields for each variety
on to the space spanned by the x variates, and then extracting the first
principal component of the projections, so it is a natural extension of
Williams' method. The application of significance tests when this method
is used, and the possibility of extracting more than one component, requires
further investigation.

6. DiscussioN

Until it was discovered that a significant part of the interaction may
often be accounted for by regression on the additive environmental com-
ponent (Yates and Cochran, 1938; Finlay and Wilkinson, 1963), interaction
between genotype and environment presented an intractable problem to
plant breeders (see, for example, the discussions at some symposia before
1963; Warren, 1955; Hanson and Robinson, 1963). With the regression
method it became possible for the previously unaccountable part of a
variety's performance to be expressed by two empirical parameters—the
slope of the regression line, and the sum of squares of deviations from regres-
sion (Eberhart and Russell, 1966). These parameters have proved to have
considerable utility in genetics and plant breeding. Evidence has been
presented by Jinks and Perkins (1970) that predictions of the slope para-
meter can be made both across environments and across generations.
Perkins and Jinks (1 968b) have shown that the deviations from regression
can be used to identify groupings of related genotypes. Many breeders have
successfully applied regression to their material as an empirical measure of
genotypic sensitivity. But as Mather (1971) has pointed out, this work lacks
a theoretical foundation.

In this paper we have tried to show how joint regression analysis is
related to various other statistical techniques and why it should have been
successful in so many instances. If the variation in genotypic performance
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between environments can be described by a linear function of environmental
variables, and if the coefficients of this relationship obey the condition
expressed in equation (10), then it has been shown that significant linear
relationships between individual and mean performance will be found. From
the frequency with which such relationships have been observed it appears
that this requirement is usually satisfied; i.e. in most experiments variation
in the response coefficients abetween genotypes is not very great.

The important assumption is made here that the" underlying" response
to environmental variables is linear. Many relationships between perform-
ance and environmental variables have been postulated, some linear (e.g.
Putter, Yaron and Bielorai, 1966), some non-linear (e.g. Richards, 1959;
Nelder, Austin, Bleasdale and Salter, 1960), and recently some have been
advanced which are only expressible by computer simulation (e.g. Paltridge,
1970; de Wit and Brouwer, 1968). We assume that these relationships are
in accord with reality, and that they can be approximated for practical
purposes by a polynomial, that is by a linear function of environmental
variables. It is recognised that the resulting coefficients will not necessarily
be easy to interpret in physiological terms, but as a working hypothesis the
assumption of linearity seems reasonable. It will be seriously wrong only
in cases (as perhaps susceptibility to pest or disease) where performance is a
discontinuous function of some environmental variable. The errors which
arise from inadequate specification of either the response variables, or of
the response function, can be distinguished from one another by repeating
the experiment.

It has been shown that there is a bias in the usual estimate of , though
in the example chosen to illustrate this paper this bias was negligible. It
has also been shown that the values of fl and the correlations between
deviations which were observed in the example can be accounted for by the
relations with known environmental variables and equations (7) and (8).
The deviations from regression are not functionally independent of the slope
of the line in either an algebraic or a biological sense. They are rather an
inescapable result of fitting lines to data which can only be properly repre-
sented in several dimensions. In the quoted experiment the deviations were
relatively large, and this was because there were substantial response differ-
ences between genotypes for more than one environmental factor. In such
situations a more elaborate model is required to describe the data; for
example a multiple regression analysis with either linear or non-linear
models, provided that estimates of the levels of the operative environmental
variables are available. The advantages of multiple regression are that the
regression coefficients for each genotype are independent of the number of
genotypes in the experiment, and they may also be independently estimated.
Alternatively a more economic parameterisation of the data is offered by the
extension of Williams' principal component (1952) method, but the economies
only become valuable when there is a larger number of genotypes than in the
example considered here.

The value of Mandel's (1971) method (equation (5)) as compared with
the methods involving regression on environmental variables is that it
indicates the number of dimensions necessary to contain the genotypic
variation and gives estimates of the corresponding coefficients, without any
prior requirement of knowing what factors these dimensions represent. The
method may prove particularly valuable in analysing data which show

P
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substantial residuals from the unidimensional model but for which there are
no concomitant measurements available of environmental variables. As in

other applications of principal components analysis, it may subsequently be
found that the environmental parameters of Mandel's model can be equated
with particular environmental variables, but this question, together with
that of the biometrical interpretation of the genotypic parameters, is a
problem which requires further study.

7. APPENDIX

In section 5 we wish to find the values, i2, j, 0, , aa ofp, p, 0, , a1
which minimise

S =

subject to the constraints

Ep = 0, E = EE = 1, where E5 = ahxhJ, E5=0.
h j

Consider

S = —pi _0 Ej)2+2v1pj+v2(E, —1) (Al)
i a

where v1 and v2 are Lagrange multipliers. Taking partial derivatives

= 2(yv—p—p—0c6E;)

= 2yj—2mn. (A2)

= 2(yjpj) —2v1. (A3)

= 20E5(yj5—i—p—0E1)

= 20EjCyj— — p) —
2O2çt. (A4)

= 20jx1j (yla — — — O.1E) —2v2xj
= 28ixhJ(yj — — p) — 202x,E5. (A5)

, , 0, , are the values of , p, 0, , a for which these derivatives are
zero.

From equation (A2)
12 = yj/(mn). (A6)

Summing equations (A3) over i gives v1 = 0, so

= — fi)/n. (A7)

In section 5, Y and X were defined as the matrices whose elements are
{(yj —y.)} and {xaj} respectively. If E is the vector of estimates of the Ej's
and i and a the vectors with elements {q} and ih} equations (A4) and
(A5) can be written
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YE =. (A8)

4'YX = OE'X. (A9)

Hence E'Y'YX — = 0.

From equation (13)
E = Xa

or (X'Y'YX —O2XIX)a = 0.

Thus 2 is an eigenvalue of this equation, a is the corresponding eigen-
vector, and can be obtained from equation (A8). Then

S = trace (Y'Y)—2OYEj+EiEj.

From equation (A8)

YE5 = 0

or S = trace (Y'Y) —02

and the largest eigenvalue must be chosen to minimise S.

8. SUMMARY

1. The method of investigating interactions in two-way tables by regres-
sion of the entries on row or column means, which was introduced by Yates
and Cochran (1938) is discussed with reference to subsequent work by Tukey

(1949), Williams (1952), Mandel (1959, 1961, 1963, 1969, 1970, 1971) and
Gollob (1968).

2. It is shown that there is a bias in the estimate of the slope of the regres-
sion when this is derived by the usual means.

3. An alternative method of analysis, using multiple regression of per-
formance, on the levels of environmental variables is considered and methods
for investigating deviations from regression discussed.

4. It is shown, using data from an experiment due to Richards (1965),
that the slopes of regression on the environmental mean can be expressed
in terms of the coefficients of regression on environmental variables. The
deviations from regression are not independent of the slopes, but can be
expressed in terms of the same coefficients.

5. When the deviations from regression on the environmental mean are
substantial, a more elaborate model is required. Two alternatives are
briefly considered; Mandel's (1970, 1971) extension of the empirical
method, and a development of Williams' (1952) approach is proposed for
use when measurements of environmental variables are available.
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