
Regression Models on Riemannian Symmetric Spaces

Emil Cornea*, Hongtu Zhu*,†, Peter Kim**, and Joseph G. Ibrahim* for the Alzheimers 

Disease Neuroimaging Initiative

*Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North 

Carolina, USA

**Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, Canada

Summary

The aim of this paper is to develop a general regression framework for the analysis of manifold-

valued response in a Riemannian symmetric space (RSS) and its association with multiple 

covariates of interest, such as age or gender, in Euclidean space. Such RSS-valued data arises 

frequently in medical imaging, surface modeling, and computer vision, among many others. We 

develop an intrinsic regression model solely based on an intrinsic conditional moment assumption, 

avoiding specifying any parametric distribution in RSS. We propose various link functions to map 

from the Euclidean space of multiple covariates to the RSS of responses. We develop a two-stage 

procedure to calculate the parameter estimates and determine their asymptotic distributions. We 

construct the Wald and geodesic test statistics to test hypotheses of unknown parameters. We 

systematically investigate the geometric invariant property of these estimates and test statistics. 

Simulation studies and a real data analysis are used to evaluate the finite sample properties of our 

methods.
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1. Introduction

Manifold-valued responses in curved spaces frequently arise in many disciplines including 

medical imaging, computational biology, and computer vision, among many others. For 

instance, in medical and molecular imaging, it is interesting to delineate the changes in the 

shape and anatomy of a molecule. See Figure 1 for four different examples of manifold-

valued data. Regression analysis is a fundamental statistical tool for relating a response 

variable to covariate, such as age. In particular, when both the response and the covariate(s) 
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are in Euclidean space, the classical linear regression model and its variants have been 

widely used in various fields (McCullagh and A. Nelder, 1989). However, when the response 

is in a Riemannian symmetric space (RSS) and the covariates are in Euclidean space, 

developing regression models for this type of data raises both computational and theoretical 

challenges. The aim of this paper is to develop a general regression framework to address 

these challenges.

Little has been done on the regression analyses of manifold-valued response data. The 

existing statistical methods for general manifold-valued data are primarily developed to 

characterize the population ‘mean’ and ‘variation’ across groups (Bhattacharya and 

Patrangenaru, 2003, 2005; Fletcher et al., 2004; Dryden and Mardia, 1998; Huckemann et 

al., 2010). In contrast, even for the ‘simplest’ directional data, there is a sparse literature on 

regression modeling of a single directional response and multiple covariates (Mardia and 

Jupp, 2000). In addition, these regression models of directional data are primarily based on a 

specific parametric distribution, such as the von Mises-Fisher distribution (Mardia and Jupp, 

2000; Kent, 1982). However, it can be very challenging to assume useful parametric 

distributions for general manifold-valued data, and thus it is difficult to generalize these 

regression models of directional data to general manifold-valued data except for some 

specific manifolds (Shi et al., 2012; Fletcher, 2013; Kim et al., 2014; Shi et al., 2009; Zhu et 

al., 2009). There is also a great interest in developing nonparametric regression models for 

manifold-valued response data and multiple covariates (Bhattacharya and Dunson, 2010, 

2012; Samir et al., 2012; Su et al., 2012; Muralidharan and Fletcher, 2012; Machado and 

Leite, 2006; Machado et al., 2010; Yuan et al., 2012).

An intriguing question is whether there is a general regression framework for manifold-

valued response in a RSS and covariates in a multidimensional Euclidean space. The aim of 

this paper is to give an affirmative answer to such a question. The theoretical development is 

challenging but of great interest for carrying out statistical inferences on regression 

coefficients. We make five major contributions in this paper as follows: (i) We propose an 

intrinsic regression model solely based on an intrinsic conditional moment for the response 

in a RSS, thus avoiding specifying any parametric distributions in a general RSS - the model 

can handle multiple covariates in Euclidean space. (ii) We develop several ‘efficient’ 

estimation methods for estimating the regression coefficients in this intrinsic model. (iii) We 

develop several test statistics for testing linear hypotheses of the regression coefficients. (iv) 

We develop a general asymptotic framework for the estimates of the regression coefficients 

and test statistics. (v) We systematically investigate the geometrical properties (e.g., chart 

invariance) of these parameter estimates and test statistics.

The paper is organized as follows. In Section 2, we review the basic notion and concepts of 

Riemannian geometry. In Section 3, we propose the intrinsic regression models and propose 

various link functions for several specific RSS’s. In Section 4, we develop estimation and 

test procedures for the intrinsic regression models. In Section 5, we carry out a detailed data 

analysis on the shape of Corpus Callosum (CC) contours obtained from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) study. Finally, we conclude with some discussions 

in Section 6. Technical conditions, simulation studies, theoretical examples, and proofs are 
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deferred to the Supplementary document. Our code and data are available from http://

www.bios.unc.edu/research/bias.

2. Differential Geometry Preliminaries

We briefly review some basic facts about the theory of Riemannian geometry and present 

more technical details in the Supplementary Report. The reader can refer to (Helgason, 

1978; Spivak, 1979; Lang, 1999) for more details.

Let ℳ be a smooth manifold and dℳ be its dimension. A tangent vector of ℳ at p ∈ ℳ is 

defined as the derivative of a smooth curve γ(t) with respect to t evaluated at t = 0, denoted 

as γ(̇0), where γ(0) = p. The tangent space of ℳ at p is denoted as Tpℳ and is the set of all 

tangent vectors at p.

A Riemannian manifold (ℳ, m) is a smooth manifold together with a family of inner 

products, m = {mp}, on the tangent spaces Tpℳ’s that vary smoothly with p ∈ ℳ, and m is 

called a Riemannian metric. This metric induces a so-called geodesic distance distℳ on ℳ. 

The geodesics are, by definition, the locally distance-minimizing paths. If the metric space 

(ℳ, distℳ) is complete, the exponential map at p is defined on the tangent space Tpℳ by 

, where t → γ (t; p, V) is the geodesic with γ(0; p, V) = p and γ̇(0; p, 

V) = V.  is well-defined near 0 and is a diffeomorphism on an open neighborhood 

of the origin in Tpℳ onto  with  such that tV ∈  for 0 ≤ t ≤ 1 and V ∈ . The inverse 

map is the logarithmic map at p, denoted by . Then, for q ∈ , 

. The radius of injectivity of ℳ at p, denoted by ρ*(ℳ, p), is the 

largest r > 0 such that  is a diffeomorphism on the open ball Bmp(0, r) ⊂ Tpℳ onto an 

open set in ℳ near p. Any basis in the tangent space Tpℳ induces an isomorphism from 

Tpℳ to Rdℳ, and then the logarithmic map Logp provides a local chart near p. If Tpℳ is 

endowed with an orthonormal basis, such a chart is called a normal chart and the coordinates 

are called normal coordinates.

A Lie group G is a group together with a smooth manifold structure such that the operations 

of multiplication and inversion are smooth maps. Many common geometric transformations 

of Euclidean spaces that form Lie groups include rotations, translations, dilations, and affine 

transformations on Rd. In general, Lie groups can be used to describe transformations of 

smooth manifolds.

An RSS is a connected Riemannian manifold ℳ with the property that at each point, the 

mapping that reverses geodesics through that point is an isometry. Examples of RSS’s 

include Euclidean spaces, Rk, spheres, Sk, projective spaces, PRk, and hyperbolic spaces, 

Hk, each with their standard Riemannian metrics. Symmetric spaces arise naturally from Lie 

group actions on manifolds, see Helgason (1978). Given a smooth manifold ℳ and a Lie 

group G, a smooth group action of G on ℳ is a smooth mapping G × ℳ → ℳ, (a, p) ↦ a · 

p such that e · p = p and (aa′) · p = a · (a′ · p) for all a, a′ ∈ G and all p ∈ ℳ. The group 

action should be interpreted as a group of transformations of the manifold ℳ, namely, 

{La}a∈G, La(p) = a · p for p ∈ ℳ. The La is a smooth transformation on ℳ and its inverse is 
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La−1. The orbit of a point p ∈ ℳ is defined as G(p) = {a · p | a ∈ G}. The orbits form a 

partition of ℳ. If ℳ consists of a single orbit, the group action is transitive or G acts 

transitively on ℳ, and we call ℳ a homogeneous space. The isotropy subgroup of a point p 

∈ ℳ is defined as Gp = {a ∈ G | a · p = p}. When G is a connected group of isometries of the 

RSS ℳ, ℳ can always be viewed as a homogeneous space, ℳ ≅ G/Gp, and the isotropy 

subgroup Gp is compact.

From now on, we will assume that the manifold ℳ is an RSS and ℳ = G/Gp with G being a 

Lie group of isometries acting transitively on ℳ. Geodesics on ℳ are computed through the 

action of G on ℳ. Due to the transitive action of the group G of isometries on ℳ, it suffices 

to consider only the geodesic starting at the base point p. Geodesics on ℳ starting from p are 

the images of the action of a 1-parameter subgroup of G acting on the base point p. That is, 

for any geodesic γ on ℳ, γ(·) : R → ℳ, starting from p, there exists a 1-parameter subgroup 

c(·) : R → G such that γ(t) = c(t) · p for all t ∈ R.

3. Intrinsic Regression Model

Let (ℳ, m) be a (C∞) RSS of dimension dℳ and geodesically complete with an inner 

product mp and let G be a Lie group of isometries acting smoothly and transitively on ℳ 
with the identity element e.

3.1. Formulation

Consider n independent observations (y1, x1), …, (yn, xn), where yi is the ℳ-valued response 

variable and xi = (xi1, ···, xidx)T is a dx × 1 vector of multiple covariates. Our objective is to 

introduce an intrinsic regression model for RSS responses and multiple covariates of interest 

from n subjects.

The specification of the intrinsic regression model involves three key steps including (i) a 

link function mapping from the space of covariates to ℳ, (ii) the definition of a residual, and 

(iii) the action of transporting all residuals to a common space. First, we explicitly formalize 

the link function. From now on, all covariates have been centered to have mean zero. We 

consider a single-center link function given by

(1)

where µ(x, q, β) is a known link function, q ∈ ℳ can be regarded as the intercept or center, 

and β = (β1, …, βdβ)T is a dβ ×1 vector of regression coefficients. Moreover, it is assumed 

that µ(x, q, β) satisfies a single-center property as follows:

(2)

When the regression coefficient vector β equals 0, the link function is independent of the 

covariates and thus, it reduces to the single center (or ‘mean’) q ∈ ℳ. When all the 

covariates are equal to zero, the link function is independent of the regression coefficients 
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and reduces to the center q ∈ ℳ. An example of the single-center link function is the 

geodesic link function in (Kim et al., 2014; Fletcher, 2013), which is given by

(3)

where Vk’s are tangent vectors in Tqℳ and β includes all unknown parameters associated 

with the tangent vectors.

More generally, we will consider a multicenter link function to account for the presence of 

multiple discrete covariates and even a general link function defined as µ(x, θ) : Rdx × Θ → 
M, where θ is a vector of unknown parameters in a parameter space Θ. For the multicenter 

link function, θ contains all unknown intercepts, denoted as q(xD), corresponding to each 

discrete covariate class and all regression parameters β corresponding to continuous 

covariates and their potential interactions with the discrete variables. However, the details on 

these link functions are presented in the Supplementary document, and here, for notational 

simplicity, we focus on (1) from now on.

Second, we introduce a definition of “residual” to ensure that µ(xi, q, β) is the proper 

“conditional mean” of yi given xi, which is the key concept of many regression models 

(McCullagh and A. Nelder, 1989). For instance, in the classical linear regression model, the 

response can be written as the sum of the regression function and a residual term and the 

regression function is the conditional mean of the response only when the conditional mean 

of the residual is equal to zero. Given the points yi and µ(xi, q, β) on a RSS ℳ, we need to 

define the residual as “a difference” between yi and µ(xi, q, β). Assume that yi and µ(xi, q, 

β) are “close enough” to each other in the sense that there is an open ball B(0, ρ) ⊂ Tµ(xi,q,β) 

ℳ such that for all i = 1, …, n,

(4)

However, according to a result in Le and Barden (2014), Logµ(xi,q,β)(yi) is well defined 

under some very mild conditions, which require that ∫ℳ distℳ (p, yi)
2dp(yi) be finite and 

achieve a local minimum at µ(xi, q, β), where p(yi) is any finite measure of yi on ℳ. Thus, 

Logµ(xi,q,β)(yi) makes it a good candidate to play the role of a ‘residual’. These residuals, 

however, lie on different tangent spaces to ℳ, so it is difficult to carry out a multivariate 

analysis of these residuals.

Third, since ℳ is a RSS, this enables us to “transport” all the residuals, separately, to a 

common space, say Tpℳ, by exploiting the fact that the parallel transport along the 

geodesics can be expressed in terms of the action of G on ℳ. Indeed, since ℳ is a symmetric 

space, the base point p and the point µ(xi, q, β) can be joined in ℳ by a geodesic, which can 
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be seen as the action of a one-parameter subgroup c(t; xi, q, β) of G such that c(1; xi, q, β) · 

p = µ(xi, q, β).

We define the rotated residual ℰ (yi, xi; q, β) of yi ∈ ℳ with respect to µ(xi, q, β) as the 

parallel transport of the actual residual, Logµ(xi,q,β)(yi), along the geodesic from the 

conditional mean, µ(xi, q, β), to the base point p. That is,

(5)

for i = 1, …, n, where Tpℳ is identified with Rdℳ. The intrinsic regression model on ℳ is 

defined by

(6)

where (q*, β*) denotes the true value of (q, β) and the expectation is taken with respect to the 

conditional distribution of yi given xi. Model (6) is equivalent to E[Logµ(xi, q*, β*) (yi)|xi] = 0 

for i = 1, …, n, since the tangent map of the action of c(1;xi,q*,β*)−1 on ℳ is an 

isomorphism of linear spaces (invariant under the metric m) between the fibers of the 

tangent bundle T ℳ. This model does not assume any parametric distribution for yi given xi, 

and thus it allows for a large class of distributions. The model is essentially semi-parametric, 

since the joint distribution of (y, x) is not restricted except by the zero conditional moment 

requirement in (6).

3.2. A Theoretical Example: The Unit Sphere Sk

We investigate the intrinsic regression model for Sk-valued responses and include several 

other examples in the supplementary document. We review some basic facts about the 

geometric structure of ℳ = Sk = {x ∈ Rk+1 : ||x||2 = 1} (Shi et al., 2012; Mardia and Jupp, 

2000; Healy and Kim, 1996; Huckemann et al., 2010). For q ∈ Sk, TqSk is given by TqSk = 

{v ∈ Rk+1 : v⊤q = 0}. The canonical Riemannian metric on Sk is that induced by the 

canonical inner product on Rk+1. Under this metric, the geodesic distance between any two 

points q and q′ is equal to ψq,q′ = arccos(qTq′) If the points are not antipodal (i.e. q′ ≠ −q), 

then there is a unique geodesic path that joins them. Therefore, the radius of injectivity is 

ρ(Sk) = π. For v ∈ TqSk, the Riemannian Exponential map is given by Expq(v) = cos(||v||)q + 

sin(||v||)v/||v||. (Here, sin(0)/0 = 1.) If q and q′ are not antipodal, the Riemannian 

Logarithmic map is given by Logq(q′) = arccos(qT q′)v/||v||, where v = q′ − (qT q′)q ≠ 0.

The special orthogonal group G = SO(k + 1) is a group of isometries on Sk and acts 

transitively and simply on Sk via the left matrix multiplication. Specifically, the rotation 

matrix Rq,q′, which rotates q to q′ ∈ Sk, is given by
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where . Thus, q′ = Rq,q′q and Rq,q′v ∈ Tq′S
k, for any v ∈ 

TqSk. Moreover, (−π, π) ∋ t ↦ cq′,q(t) · q′ is the unique geodesic curve in Sk joining q′ 
with q, where cq′,q(t) takes the form

Suppose that we observe {(yi, xi) : i = 1, …, n}, where yi ∈ Sk for all i. We introduce the 

three key components of our intrinsic regression model for Sk–valued responses. First, we 

consider several examples of the general link function µ(xi, θ). Specifically, without loss of 

generality, we fix the “north pole” p = (0, …, 0, 1)T ∈ Rk+1 as a base point. Let ej be the (k 

+1)×1 vector with a 1 at the j-th component and a 0 otherwise for j = 1, …, k. Let q ∈ Sk be 

the ‘center’, and we consider two link functions as follows:

(7)

where Tst,-p is the stereographic projection mapping from Sk \ {p} onto the d-dimensional 

hyperplane Rk×{−1} and f(x, β) is a function mapping from Rdx×Rdβ to Rk with f(0, ·) = f(·, 

0) = 0. A simple example of f(·, ·) is f(xi, β) = Bxi, where B is a k × dx matrix of regression 

coefficients and β includes all components of B.

Second, we define residuals for our intrinsic regression model. The residual in (4) requires 

that yi is not antipodal to µ(xi, θ). In this case, the residual for the i-th subject is given by 

Logµ(xi,θ)(yi) = arccos(µ(xi, θ)T yi)vi/||vi||, where vi = yi − (µ(xi, θ)T yi)µ(xi, θ). However, 

when yi = −µ(xi, θ) holds, there is an infinite number of geodesics connecting µ(xi, θ) and 

yi. In this case, Logµ(xi, θ)(yi) is not uniquely defined, whereas their geodesic distance is 

unique. However, according to the results in Le and Barden (2014), Logµ(xi,q,β)(yi) is well 

defined almost surely.

Third, we transport all the residuals, separately, to a common space, say TpSk. The rotated 

residual is given by

(8)
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Our intrinsic regression model is defined by the zero conditional mean assumption in (6) on 

the above rotated residuals (8). A graphic illustration of the stereographic link functions in 

(7), rotated residual, and parallel transport is given in Figure 2.

Alternatively, we may consider some parametric spherical regression models for spherical 

responses. As an illustration, we consider the von Mises-Fisher (vMF) regression model. 

Specifically, it is assumed that yi|xi ~ vMF(µ(xi, θ), κ) or, equivalently, Rµ(xi, θ),pyi|xi ~ 

vMF(p, κ), for i = 1, …, n, where κ is a positive concentration parameter and is assumed to 

be known for simplicity. Calculating the maximum likelihood estimate of θ is equivalent to 

solving a score equation given by , where ∂θ = ∂/∂θ. Since ||µ(xi, θ)|| 

= 1 and {∂θµ(xi, θ)}T µ(xi, θ) = 0 for all subcomponents of θ, we have

(9)

which is a linear combination of the rotated residual.

4. Estimation and Test Procedures

4.1. Generalized Method of Moment Estimators

We consider the generalized method of moment estimator (GMM estimator) to estimate the 

unknown parameters in model (6) (Hansen, 1982; Newey, 1993; Korsholm, 1999). We may 

view the Tpℳ-valued function ℰ as a function with values in Rdℳ. Let h(x; q, β) be a s × dℳ 
matrix of functions of (x, q, β) with s ≥ dℳ + dβ and Wn be a random sequence of positive 

definite s × s weight matrices. It follows from (6) that

(10)

We define n(q, β) = [ℙn(h(x; q, β)ℰ(y, x; q, β))]T Wn [ℙn(h(x; q, β)ℰ(y, x; q, β))], where 

 for a real-vector valued function f (y, x). The GMM estimator 

(q ̂G, βĜ), or simply (q̂, β̂), of (q, β) associated with (h(·, ·, ·), Wn) is defined as

(11)

Under some conditions detailed below, we can show the first order asymptotic properties of 

(q ̂G, βĜ) including consistency and asymptotic normality of GMM-estimators. We introduce 

some notation. Let ||·|| denote the Euclidean norm of a vector or a matrix; 

 for l = 1, … ; a⊗2 = aaT any matrix or vector a; V = 
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Var[h(x; q*, β*)ℰ(y, x; q*, β*)]; Id is the identity matrix;  and , respectively, denote 

convergence in distribution and in probability. We obtain the following results, whose 

detailed proofs can be found in the supplementary document.

Theorem 4.1—Assume that (yi, xi), i = 1,…, n, are iid random variables in ℳ × Rdx. Let 

(q*, β*) be the exact value of the parameters satisfying (6). Let {Wn}n be a random sequence 

of s × s symmetric positive semi-definite matrices with s ≥ dℳ + dβ.

a. Under assumptions (C1)–(C5) in the Supplementary document, (q ̂G, β̂G) in (11) 

is consistent in probability as n → ∞.

b. Under assumptions (C1)–(C4) and (C6)–(C10) in the Supplementary document, 

for any local chart (U, ϕ) on ℳ near q* as n → ∞, we have

(12)

where , in which Gϕ is defined in 

(C9). Moreover, for any other chart (U, ϕ′) near q*, we have

(13)

where J(·)t denotes the Jacobian matrix evaluated at t.

Theorem 4.1 establishes the first-order asymptotic properties of (q̂G, β̂G) for the intrinsic 

regression model (6). Theorem 4.1 (a) establishes the consistency of (q ̂G, β̂G). The 

consistency result does not depend on the local chart. Theorem 4.1 (b) establishes the 

asymptotic normality of (ϕ(qĜ), β̂G) for a specific chart (U, ϕ) and the relationship between 

the asymptotic covariances Σϕ′ and Σϕ for two different charts. It follows from the lower-

right dβ × dβ submatrix of Σϕ′ that the asymptotic covariance matrix of β̂ does not depend on 

the chart. However, the asymptotic normality of q̂G does depend on a specific chart. A 

consistent estimator of the asymptotic covariance matrix Σϕ is given by 

 with 

 and

This estimator is also compatible with the manifold structure of ℳ.
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We consider the relationship between the GMM estimator and the intrinsic least squares 

estimator (ILSE) of (q, β), denoted by (qÎ, β̂I). The (qÎ, βÎ) minimizes the total residual sum 

of squares I,n(q, β) as follows:

(14)

According to (2), the ILSE is closely related to the intrinsic mean q̂IM of y1,⋯, yn ∈ ℳ, 

which is defined as

Recall that µ(0, q, β) is independent of β.

The (qÎ, βÎ) can be regarded as a special case of the GMM estimator when we set Wn = 

Idℳ+dβ and h’s rows hj(x, q, β) = (Lc(1;x, q,β)−1.*(∂tj µ(x, ϕ−1(t), β)|t=ϕ(q)))
T for j = 1,…, dℳ, 

and hdℳ+j (x, q, β) = (Lc(1;x,q,β)−1.*(∂βj µ(x, q, β)))T for j = 1,…, dβ, where (U, ϕ) is a chart 

on ℳ and each row of h(x, q, β) is in R1×dℳ via the identification Tpℳ ≅ Rdℳ corresponding 

to (U, ϕ). It follows from Theorem 4.1 that under model (6), (qÎ, β̂I) enjoys the first-order 

asymptotic properties as well.

4.2. Efficient GMM Estimator

We investigate the most efficient estimator in the class of GMM estimators. For a fixed h(·; ·, 

·), the optimal choice of W is Wopt = V−1, and the use of Wn = Wopt leads to the most 

efficient estimator in the class of all GMM estimators obtained using the same h(·) function 

(Hansen, 1982). Its asymptotic covariance is given by (GϕV−1Gϕ)−1. An interesting question 

is what the optimal choice of hopt(·) is.

We first introduce some notation. For a chart (U, ϕ) on ℳ near q*, let

Let (q ̂*, β*̂) be the GMM estimator of (q, β) based on  and . Generally, we obtain an 

optimal result of hopt(·), which generalizes an existing result for Euclidean-valued responses 

and covariates (Newey, 1993), as follows.

Theorem 4.2—Suppose that (C2)–(C8) and (C10)–(C12) in the Supplementary document 

hold for  and . We have the following results:

i. (q ̂*, β*̂) is asymptotically normally distributed with mean 0 and covariance ;
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ii. (q ̂*, β*̂) is optimal among all GMM estimators for model (6);

iii. (q ̂*, β̂*) is independent of the chart.

Theorem 4.2 characterizes the optimality of  and  among regular GMM estimators 

for model (6). Geometrically, (q̂*, β*̂) is independent of the chart. Specifically, for any other 

chart (U, ϕ′) near q*, we have

Thus, the quadratic form in (11) associated with  and  is the same as that which is 

associated with  and . It indicates that the GMM estimator (q̂*, β̂*)ϕ based on 

and  is independent of the chart (U, ϕ).

The next challenging issue is the estimation of Dϕ (x) and Ω(x). We may proceed in two 

steps. The first step is to calculate a -consistent estimator (q̂I, β̂I) of (q, β), such as the 

ILSE. The second step is to plug (q̂I, β̂I) into the functions ℰi(q̂I, β̂I) and ∂(t,β)ℰ(yi, xi; ϕ−1(t), 
β̂I)|t=ϕ(q̂I) for all i and then use them to construct the nonparametric estimates of Dϕ(x) and 

Ω(x) (Newey, 1993). Specifically, let K(·) be a dx-dimensional kernel function of the l0-th 

order satisfying ∫K(u1,…, udx)du1 … dudx = 1,  for any s 

= 1,…, dx and 1 ≤ l < l0, and . Let Kτ (u) = τ−1K(u/τ), 

where τ > 0 is a bandwidth. Then, a nonparametric estimator of Dϕ(x) can be written by

(15)

where . Although we may construct a 

nonparametric estimator of Ω(x) similar to (15), we have found that even for moderate dx, 

such an estimator is numerically unstable. Instead, we approximate Ω(xi) = Var(ℰ(y, x; q*, 

β*)|x = xi) by its mean VE* = Var(ℰ(y, x; q*, β*)). In this case,  and , respectively, 

reduce to

(16)

For any local chart (U, ϕ) with q ̂I ∈ U, we construct the estimators of  and  as 

follows. Let V̂(q, β) =ℙnℰ(y, x; q, β)⊗2, we have
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(17)

Then, we substitute ĥE, ϕ and ŴE, ϕ into (11) and then calculate the GMM estimator of (q, 

β), denoted by (q̂E, β̂E). Similar to (q ̂*, β̂*), it can be shown that (q̂E, β̂E) is independent of 

the chart (U, ϕ) on ℳ near q* with q ̂I ∈ U. For sufficiently large n, distℳ(q ̂I, q*) can be made 

sufficiently small and any maximal normal chart on ℳ centered at q̂I contains the true value 

q* with probability approaching one.

We calculate a one-step linearized estimator of (q, β), denoted by (qẼ, β̃E), to approximate 

(qÊ, β̂E). Computationally, the linearized estimator does not require iteration, whereas, 

theoretically, it shares the first asymptotic properties with (q ̂E, β̂E) as shown below. 

Specifically, in the chart (U, ϕ) near q ̂I, we have

(18)

Furthermore, if (U′, ϕ ′) is another chart on ℳ near qÎ, then we have

Thus, βẼ,ϕ is independent of the chart ϕ and {t ̃E, ϕ − ϕ(qÎ) | ϕ is a chart on M} defines a 

unique tangent vector to ℳ at q̂I. Moreover, if ϕ and ϕ′ are maximal normal charts centered 

at qÎ, then γϕ (τ) = ϕ−1(τt̃E,ϕ) and γϕ′(τ) = ϕ′−1(τt ̃E, ϕ′) are two geodesic curves on ℳ 
starting from the same point q̂I with the same initial velocity vector, and thus these two 

geodesics coincide. Therefore, ϕ−1(t̃E,ϕ) is independent of the normal chart ϕ centered at q̂I. 

Finally, we can establish the first order asymptotic properties of (q ̃E, β̃E) as follows.

Theorem 4.3—Assume that (C2)–(C11) and (C13)–(C18) are valid. As n → ∞, we have 

the following results:

(19)

where . In addition, ΣE, ϕ is invariant under the change of 

coordinates in ℳ and the asymptotic distribution of β̃E does not depend on the chart (U, ϕ). 

Also, if we set
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(20)

then nΣ̂E,ϕ is a consistent estimator of ΣE,ϕ, i.e. . This estimator is also 

compatible with the manifold structure of ℳ.

Theorem 4.3 establishes the first-order asymptotic properties of (qẼ, βẼ). If Ω(x) = Ω for a 

constant matrix Ω, then it follows from Theorems 4.2 and 4.3 that (qẼ, β̃E) is optimal. If Ω(x) 

does not vary dramatically as a function of x, then (q̃E, β̃E) is nearly optimal. If Ω(x) varies 

dramatically as a function of x, one can replace V(̂q̂I, β̂I) in (17) by Ω̂(xi) to obtain ĥE,ϕ (x) = 

D̂ϕ(x)Ω̂(x)−1 and ŴE,ϕ = {ℙn[ĥE,ϕ (x)ℰ(y, x; q̂I, βÎ)]
⊗2}−1, where Ω̂(xi) is a consistent 

estimator of Ω(xi) for all i, then the optimality of (qẼ, β̃E) still holds. We have the following 

theorem.

Theorem 4.4—Assume that (C2)–(C17) and (C19) are valid. Then, as n → ∞, we have

(21)

in which  is given in Theorem 4.2. If we set Σ̂E,ϕ = n−1{ℙn[Dϕ̂ (x)Ω̂(x)−1D̂ϕ(x)T]}−1, 

then nΣ̂E,ϕ is a consistent estimator of .

4.3. Computational Algorithm

Computationally, an annealing evolutionary stochastic approximation Monte Carlo (SAMC) 

algorithm (Liang et al., 2010) is developed to compute (q ̂I, β̂I) and (q̂E, β̂E). See the 

supplementary document for details. Although some gradient-based optimization methods, 

such as the quasi-Newton method, have been used to optimize n(q, β) (Kim et al., 2014; 

Fletcher, 2013), we have found that these methods strongly depend on the starting value of 

(q, β). Specifically, when ℰ(y, x; q, β) takes a relatively complicated form, n(q, β) is 

generally not convex and can easily converge to local minima. Moreover, we have found that 

it can be statistically misleading to carry out statistical inference, such as the estimated 

standard errors of (qÊ, β̂E), at those local minima. The annealing evolutionary SAMC 

algorithm converges fast and distinguishes from many gradient-based algorithms, since it 

possesses a nice feature in that the moves are self-adjustable and thus not likely to get 

trapped by local energy minima. The annealing evolutionary SAMC algorithm (Liang et al., 

2010) represents a further improvement of stochastic approximation Monte Carlo for 

optimization problems by incorporating some features of simulated annealing and the 

genetic algorithm into its search process.
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4.4. Hypotheses Testing

Many scientific questions involve the comparison of the ℳ-valued data across groups and 

subjects and the detection of the change in the ℳ-valued data over time. Such questions 

usually can be formulated as testing the hypotheses of q and β. We consider two types of 

hypotheses as follows:

(22)

(23)

where C0 is an r × dβ matrix of full row rank and q0 and b0 are specified in ℳ and Rr, 

respectively. Further extensions of these hypotheses are definitely interesting and possible. 

For instance, for the multicenter link function, we may be interested in testing whether all 

intercepts are independent of the discrete covariate class.

We develop several test statistics for testing the hypotheses given in (22) and (23). First, we 

consider the Wald test statistic for testing  against  in (22), which is given by

where Σ̂E,ϕ is given in Theorem 4.3 or Theorem 4.4, and Σ̂E,ϕ;22 is its lower-right dβ × dβ 
submatrix. Since β̃E and its asymptotic covariance matrix are independent of the chart on ℳ, 

the test statistic  is independent of the chart.

Second, we consider the Wald test statistic for testing the hypotheses given in (23) when 

there is a local chart (U, ϕ) on ℳ containing both qÊ and q0. Specifically, the Wald test 

statistic for testing (23) is defined by

Third, we develop an intrinsic Wald test statistic, that is independent of the chart, for testing 

the hypotheses given in (23). We consider the asymptotic covariance estimator ΣÊ,ϕ based on 

qẼ and its upper-left dℳ × dℳ submatrix Σ̂E,ϕ;11. Since both are compatible with the manifold 

structure of ℳ, Σ̂E,ϕ;11 defines a unique non-degenerate linear map ΣÊ;11(·) from the tangent 

space Tq̃Eℳ of ℳ at q̃E onto itself, which is independent of the chart (U, ϕ). In a maximal 

normal chart centered at q̃E, then in any such normal chart, the Wald test statistic for testing 

(23) is given by
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We obtain the asymptotic null distributions of , and  as follows.

Theorem 4.5—Let (U, ϕ) be a local chart on ℳ so that q̃E, q* ∈ U. Assume that all 

conditions in Theorem 4.3 hold. Under the corresponding null hypothesis, we have the 

following results:

i.
 and  are asymptotically distributed as  and , respectively;

ii.
 is independent of the chart (U, ϕ);

iii.
, for any other local chart (U, ϕ′) with qẼ and q0 in U;

iv.
, for any normal chart (U, ϕ) centered at q̃E.

Theorem 4.5 has several important implications. Theorem 4.5 (i) characterizes the 

asymptotic null distributions of  and . Theorem 4.5 (ii) shows that  does not 

depend the choice of the chart (U, ϕ) on ℳ. Theorem 4.5 (iii) shows that  and  are 

asymptotically equivalent for any two local charts. Theorem 4.5 (iv) shows that  can be 

used to construct an intrinsic test statistic.

We consider a local alternative framework for (22) and (23) as follows:

(24)

(25)

where δ and v are specified (and fixed) in Rr and Tq0ℳ, respectively, and we establish the 

asymptotic distributions of  and  under these local alternatives.

Theorem 4.6—Let (U, ϕ) be a local chart on ℳ so that q̃E, q* ∈ U. Assume that all 

conditions in Theorem 4.3 hold. Under the local alternatives (24) and (25), we have the 

following results:

i.
Under  is asymptotically distributed as noncentral  with 

noncentrality parameter .
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ii.
Under  is asymptotically distributed as noncentral , with 

noncentrality parameter J(ϕ ∘ Expq0)0(v)T [Σ̂E,ϕ;11]−1 J(ϕ ∘ Expq0)0(v). The 

noncentrality parameter does not depend on the choice of the coordinate system 

at q0. Here, J(f)a denotes the Jacobian matrix of map f at a.

iii.
Under  is asymptotically distributed as noncentral , with 

noncentrality parameter mqẼ((Σ̂E;11)−1(J(LogqẼ)q0(v)), (J(LogqẼ)q0(v))). The 

noncentrality parameter does not depend on the choice of the coordinate systems 

at q̃E and q0, respectively.

We consider another scenario that there are no local charts on ℳ containing both q̃E and q0. 

In this case, we restate the hypotheses  and  as follows:

(26)

We propose a geodesic test statistic given by

(27)

which is independent of the chart (U, ϕ). Theoretically, we can establish the asymptotic 

distribution of Wdist under both the null and alternative hypotheses as follows.

Theorem 4.7—Assume that all conditions in Theorem 4.5 hold.

a. Under , nWdist is asymptotically weighted chi-square χ2(λ1, …, λdℳ) 

distributed, where the weights λ1, …, λdℳ are the eigenvalues of the matrix 

ΣE,Logq0,11, which is the upper-left dℳ × dℳ submatrix of the asymptotic 

covariance matrix ΣE,Logq0
 of q̃E in a normal chart centered at q0. Moreover, the 

weights are independent, up to a permutation, of the choice of the normal chart 

centered at q*.

b. Under the alternative hypothesis, Wdist is asymptotically normal distributed and 

we have

where Ddist is the column vector representation of gradq*(dist(·, q0)2) with 

respect to the orthonormal basis of Tq*ℳ associated with the normal chart used 

to represent the asymptotic covariance of q̃E as the matrix ΣE,Logq*
. In particular, 

when q0 is close to q*, then

Cornea et al. Page 16

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2017 September 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Theorem 4.7 establishes the asymptotic distribution of Wdist when qẼ and q0 do not belong 

to the same chart of ℳ. In practice, the covariance matrix ΣE,Logq*,11 is not available, since 

ΣE,Logq*
 is not known; it also depends on the unknown true value β*, so we may use the 

estimate Σ̂E,Logq*
 as defined in Theorems 4.3 and 4.4. Therefore, under the null hypothesis, 

the asymptotic distribution of Wdist can be approximated by the weighted chi-square 

distribution χ2(λ̂1, …, λd̂ℳ), in which the weights λ̂1, …, λ̂dℳ are the eigenvalues of the 

covariance matrix (Σ̂E,Logq0
)11/n.

Finally, we develop a score test statistic for testing  against . An advantage of using 

the score test statistic is that it avoids the calculation of an estimator under the alternative 

hypothesis . For notational simplicity, we only consider the ILSE estimator of (q, β), 

denoted by (q0, βĨ), under the null hypothesis . For any chart (U, ϕ) on ℳ with q0 ∈ U, 

we define

where the subcomponents Fϕi,1 and Fϕi,2 correspond to t and β, respectively. It can be shown 

that the score test WSC,ϕ reduces to

(28)

where , in which 

. Theoretically, we can establish the asymptotic distribution of WSC,ϕ 
under the null hypothesis.

Theorem 4.8—Assume that all conditions in Theorem 4.5 hold. We have the following 

results:

i. For any suitable local chart (U, ϕ), the score test statistic WSC,ϕ is asymptotically 

distributed as  under the null hypothesis .

ii. Under , for any other local chart (U, ϕ′) with q0 ∈ U, we have
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5. Real Data Example

5.1. ADNI Corpus Callosum Shape Data

Alzheimer disease (AD) is a disorder of cognitive and behavioral impairment that markedly 

interferes with social and occupational functioning. It is an irreversible, progressive brain 

disease that slowly destroys memory and thinking skills, and eventually even the ability to 

carry out the simplest tasks. AD affects almost 50% of those over the age of 85 and is the 

sixth leading cause of death in the United States.

The corpus callosum (CC), as the largest white matter structure in the brain, connects the left 

and right cerebral hemispheres and facilitates homotopic and heterotopic interhemispheric 

communication. It has been a structure of high interest in many neuroimaging studies of 

neuro-developmental pathology. Individual differences in CC and their possible implications 

regarding interhemispheric connectivity have been investigated over the last several decades 

(Paul et al., 2007).

We consider the CC contour data obtained from the ADNI study. For each subject in ADNI 

dataset, the segmentation of the T1-weighted MRI and the calculation of the intracranial 

volume were done in the FreeSurfer package‡ (Dale et al., 1999), while the midsagittal CC 

area was calculated in the CCseg package, which is measured by using subdivisions in 

Witelson (1989) motivated by neuro-histological studies. Finally, each T1-weighted MRI 

image and tissue segmentation were used as the input files of CCSeg package to extract the 

planar CC shape data.

5.2. Intrinsic Regression Models

We are interested in characterizing the change of the CC contour shape as a function of three 

covariates including gender, age, and AD diagnosis. We focused on n = 409 subjects with 

223 healthy controls (HCs) and 186 AD patients at baseline of the ADNI1 database. We 

observed a CC planar contour Yi with 32 landmarks and three clinical variables including 

gender xi,1 (0-female, 1-male), age xi,2, and diagnosis xi,3 (0-control, 1-AD) for i = 1, …, 

409. The demographic info is presented in Table 1.

We treat the CC planar contour Yi as a RSS-valued response in the Kendall’s planar shape 

space . The geometric structure of  for k > 2 is included in the supplementary 

document. Each Yi is specified as a 32 × 2 real matrix, whose rows represent the planar 

coordinates of 32 landmarks on yi. Moreover, Yi = (Yi,1 Yi,2) can be represented as a 

complex vector zi = Yi,1 +jYi,2 in C32, where  and C is the standard complex space. 

After removing the translations and normalizing to the unit 2-norm, each contour Yi can be 

view as an element . Then, 

‡http://surfer.nmr.mgh.harvard.edu/
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after removing the 2-dimensional rotations, we obtain an element yi = [zi] in Kendall’s 

planar shape space, , which has dimension 30 and is identified with the 

complex projective space CP30.

In order to use our intrinsic regression model, we determined the base point p and an 

orthonormal basis {Z1, …, Z30} for  as follows. We initially set p0 = [z0] with 

 and an orthonormal basis {Z̃1, …, Z̃30} in , where 

. Then, we projected all yi’s onto 

and calculated Logp0(yi) for all i. Finally, we set the base point p as 

 and then used the parallel transport to rotate the initial basis 

{Z1̃, …, Z̃30} to obtain a new orthonormal basis {Z1, …, Z30} at p.

We consider an intrinsic regression model with  as a response vector and a vector 

of four covariates including gender, age, diagnosis, and the interaction age*diagnosis, that is, 

xi = (xi,1, xi,2, xi,3, xi,4)T with xi,4 = xi,2xi,3. We used a single-center link function with 

model parameters  as follow. The intercept q is specified by 

, where t = (t1, …, t60)T ∈ R60. The regression 

coefficient vector β includes four 60 × 1 subvectors including β(g), β(a), β(d), and β(ad), 

which correspond to xi1, xi2, xi3, and xi4, respectively. Therefore, there are 300 unknown 

parameters in (tT, βT)T. We define a 30 × 4 complex matrix as B = Bo+jBe, with 

, where 

and  are the subvectors of β(·) formed by the odd-indexed and even-indexed components, 

respectively, and a link function by , 

where , with q1 = [zq1], q2 = [zq2],  the optimal rotational 

alignment of zq2 to zq1, given by , and Uz1,z2v for any v ∈ Ck takes the 

form of

in which , for z1, z2 ∈ 32. Finally, our intrinsic model is 

defined by , for i = 1, …, 409.

5.3. Results

We first calculated  in (14) and  in (18). The 

intercept estimates qÎ and q̂E are very close to each other with . 
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Second, we compared the efficiency gain in the estimates of β. The estimates β̂I and β̂E of 

regression coefficients and their standard deviations are displayed in Figure 3(a) & (b). The 

efficiency gain in Stage II is measured by the relative reduction in the variances of β̂E 

relative to those of βÎ, which is shown in Figure 3(c). There is an average variance relative 

reduction of about 16.77% across all parameters in β. There is an average variance relative 

reduction of about 12.25% for parameters in β(ad), whereas there is an average relative 

reduction of 19.98% for parameters in β(g).

Third, we assessed whether there is an age×diagnosis interaction effect on the shape of the 

CC contour or not. We tested H0 : β(ad) = 060 versus H1 : β(ad) ≠ 060. The Wald test statistic 

equals  with its p-value around 0.001. Thus, the data contains enough evidence 

to reject H0, indicating that there is a strong age dependent diagnosis effect on the shape of 

the CC contours. The mean age-dependent CC trajectories for HCs and ADs within each 

gender group are shown in Figure 4. It can be observed that there is a difference in shape 

along the inner side of the posterior splenium and isthmus subregions in both male and 

female groups. The splenium seems to be less rounded and the isthmus is thinner in subjects 

with AD than in HCs.

Fourth, we assessed whether there is a gender effect on the shape of the CC contour or not. 

We tested H0 : β(g) = 060 versus H1 : β(g) ≠ 060. The Wald test statistic is  with 

its p-value 0.116. Thus, it is not significant at the 0.05 level of significance. It may indicate 

that there is no gender effect on the shape of the CC contours. The mean age-dependent CC 

trajectories for the female and male groups within each diagnosis group are shown in Figure 

5. We observed similar shapes of CC contours in males and females.

6. Discussion

We have developed a general statistical framework for intrinsic regression models of 

responses valued in a Riemannian symmetric space in general, and Lie groups in particular, 

and their association with a set of covariates in a Euclidean space. The intrinsic regression 

models are based on the generalized method of moment estimator and therefore the models 

avoid any parametric assumptions regarding the distribution of the manifold-valued 

responses. We also proposed a large class of link functions to map Euclidean covariates to 

the manifold of responses. Essentially, the covariates are first mapped to the tangent bundle 

to the Riemmanian manifold, and from there further mapped, via the manifold exponential 

map, to the manifold itself. We have adapted an annealing evolutionary stochastic algorithm 

to search for the ILSE, (q̂I, β̂I), of (q, β), in the Stage I of the estimation process, and a one-

step procedure to search for the efficient estimator (q̃E, βẼ) in Stage II. Our simulation study 

and real data analysis demonstrate that the relative efficiency of the Stage II estimator 

improves as the sample size increases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Examples of manifold-valued data: (a) diffusion tensors along white matter fiber bundles 

and their ellipsoid representations; (b) principal direction map of a selected slice for a 

randomly selected subject and the directional representation of some randomly selected 

principal directions on S2; (c) median representations and median atoms of a hippocampus 

from a randomly selected subject; and (d) an extracted contour and landmarks along the 

contour of the midsagittal section of the corpus callosum (CC) from a randomly selected 

subject.
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Fig. 2. 
Graphical illustration of (a) stereographic projection and (b) rotated residual and parallel 

transport. In panel (a), N and O denote the north pole (0, 0, 1) and the origin (0, 0, 0), 

respectively. In panel (b), y, µ = µ(x, q, β), εD = Logµ(y), ℰ(y, x; q, β), and p, respectively, 

represent an observation, the conditional mean, the residual, the rotated residual, and the 

base point.
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Fig. 3. 
Regression coefficient estimates (a) and their standard deviations (b) from Stages I and II; 

and (c) the relative reduction in the variances of β̂E relative to those of β̂I. There is an 

average of 16.77% relative decrease in variances all parameters in β, corresponding to 

12.25% for β(ad) and 19.98% for β(g).
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Fig. 4. 
Age-trajectories of the intrinsic mean shapes by diagnosis within each gender group.
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Fig. 5. 
Age-trajectories of the intrinsic mean shapes by gender within each diagnosis group.
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Table 1

Demographic information for the processed ADNI CC shape dataset including disease status, age, and gender.

Disease status No. Range of age in years (mean) Gender (female/male)

Healthy Control 223 62–90 (76.25) 107/116

AD 186 55–92 (75.42) 88/98
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