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Most discussions of ordinal variables in the sociological literature debate the 
suitability of linear regression and structural equation methods when some variables 
are ordinal. Largely ignored in these discussions are methods for ordinal variables 
that are natural extensions of probit and logit models for dichotomous variables. If 
ordinal variables are discrete realizations of unmeasured continuous variables, these 
methods allow one to include ordinal dependent and independent variables into 
structural equation models in a way that (I) explicitly recognizes their ordinality, (2) 
avoids arbitrary assumptions about their scale, and (3) allows for analysis of 
continuous, dichotomous, and ordinal variables within a common statistical 
framework. These models rely on assumed probability distributions of the continuous 
variables that underly the observed ordinal variables, but these assumptions are 
testable. The models can be estimated using a number of commonly used statistical 
programs. As is illustrated by an empirical example, ordered probit and logit models, 
like their dichotomous counterparts, take account of the ceiling andfloor restrictions 
on models that include ordinal variables, whereas the linear regression model does 
not. 

Empirical social research has benefited dur- 
ing the past two decades from the application 
of structural equation models for statistical 
analysis and causal interpretation of mul- 
tivariate relationships (e.g., Goldberger and 
Duncan, 1973; Bielby and Hauser, 1977). 
Structural equation methods have mainly been 
applied to problems in which variables are 
measured on a continuous scale, a reflection of 
the availability of the theories of multivariate 
analysis and general linear models for continu- 
ous variables. A recurring methodological 
issue has been how to treat variables measured 
on an ordinal scale when multiple regression 
and structural equation methods would other- 
wise be appropriate tools. Many articles have 
appeared in this journal (e.g., Bollen and Barb, 
1981, 1983; Henry, 1982; Johnson and Creech, 
1983; O'Brien, 1979a, 1983) and elsewhere 

(e.g., Blalock, 1974; Kim, 1975, 1978; Mayer 
and Robinson, 1978; O'Brien 1979b, 1981, 

1982) that discuss whether, on the one hand, 
ordinal variables can be safely treated as if they 
were continuous variables and thus ordinary 
linear model techniques applied to them, or, on 
the other hand, ordinal variables require spe- 
cial statistical methods or should be replaced 
with truly continuous variables in causal mod- 
els. Allan (1976), Borgatta (1968), Kim (1975, 
1978), Labovitz (1967, 1970), and O'Brien 
(1979a), among others, claim that multivariate 
methods for interval-level variables should be 
used for ordinal variables because the power 
and flexibility gained from these methods out- 
weigh the small biases that they may entail. 
Hawkes (1971), Morris (1970), O'Brien (1982), 
Reynolds (1973), Somers (1974), and Smith 
(1974), among others, suggest that the biases in 
using continuous-variable methods for ordinal 
variables are large and that special techniques 
for ordinal variables are required. 

Although the literature on ordinal variables 
in sociology is vast, its practical implications 
have been few. Most researchers apply regres- 
sion, MIMIC, LISREL, and other multivariate 
models for continuous variables to ordinal 
variables, sometimes claiming support from 
studies that find little bias from assuming inter- 
val measurement for ordinal variables. Yet 
these studies as well as the ones that they crit- 
icize provide no solid guidance because they 
are typically atheoretical simulations of limited 
scope. Somp researchers apply recently devel- 
oped techniques for categorical-data analysis 
that take account of the ordering of the 
categories of variables in cross-classifications 
(e.g., Agresti, 1983; Clogg, 1982; Goodman, 
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1980). These methods, however, while elegant 

and well grounded in statistical theory, are dif- 

ficult to use in the cases where regression 

analysis and its extensions would otherwise 
apply: that is, where data are nontabular; in- 

clude continuous, discrete, and ordinal vari- 

ables; and apply to a causal model with several 

endogenous variables. 
This article draws attention to alternative 

methods for estimating regression models and 

their generalizations that include ordinal vari- 

ables. These methods are extensions of logit 
and probit models for dichotomous variables 

and are based on models that include unmea- 

sured continuous variables for which only or- 
dinal measures are available. Largely ignored 

in the sociological literature (though see 
McKelvey and Zavoina, 1975), they provide 

multivariate models with ordinal variables that: 

(1) take account of noninterval ordinal mea- 

surement; (2) avoid arbitrary assumptions 
about the scale of ordinal variables; and, most 

importantly, (3) include ordinal variables in 

structural equation models with variables at all 

levels of measurement. The ordered probit and 

logit models can, moreover, be implemented 

with widely available statistical software. Most 
of the literature on these methods focuses on 

estimating equations with ordinal dependent 
variables (Aitchison and Silvey, 1957; 

Amemiya, 1975; Ashford, 1959; Cox, 1970; 

Gurland et al., 1960; Maddala, 1983; McCul- 

lagh, 1980; McKelvey and Zavoina 1975), 

though some of it is relevant to models with 
ordinal independent variables (Heckman, 1978; 
Winship and Mare, 1983). Taken together, 

these contributions imply that ordinal variables 

can be analyzed within structural equation 
models with the same flexibility and power that 

are available for continuous variables. 
This article summarizes the probit and logit 

models for ordered variables. It describes mea- 

surement models for ordinal variables and dis- 
cusses specification and estimation of models 

with ordinal dependent and independent vari- 
ables. Then it discusses some tests for model 

misspecification. Finally, it presents an em- 

pirical example which illustrates the models. 

An appendix discusses several technical topics 
of interest to those who wish to implement the 

models. 

MEASUREMENT OF ORDINAL 
VARIABLES 

A common view of ordinal variables, which is 

adopted here, is that they are nonstrict 

monotonic transformations of interval vari- 

ables (e.g., O'Brien, 1981). That is, one or 

more values of an interval-level variable are 

mapped into the same value of a transformed, 

ordinal variable. For example, a Likert scale 

may place individuals in one of a number of 

ranked categories, such as, "strongly agree," 

"somewhat agree," "neither agree nor dis- 

agree," "somewhat disagree," or " strongly 

disagree" with a statement. An underlying, 

continuous variable denoting individuals' de- 

grees of agreement is mapped into categories 

that are ordered but are separated by unknown 

distances. I 

This view of ordinal variables can also apply 

to variables that are often treated as continu- 

ous but might be better viewed as ordinal. 

Counted variables, such as grades of school 

completed, number of children ever born, or 

number of voluntary-association memberships, 

may be regarded as ordinal realizations of un- 

derlying continuous variables. Grades of 

school, for example, should be viewed as an 

ordinal measure of an underlying variable, 

"educational attainment," when one wishes to 

acknowledge that each grade is not equally 

easy to attain (e.g., Mare, 1980) or equally 

rewarding (e.g., Featherman and Hauser, 1978; 

Jencks et al., 1979). Similarly, when a continu- 

ous variable, such as earnings, is measured in 

categories corresponding to dollar intervals 

and category midpoints are unknown, the mea- 

sured variable is an ordinal representation of 

an underlying continuous variable.2 

The measurement model of ordinal variables 

can be stated formally as follows. Let Y denote 

an unobserved, continuous variable (-w < Y 

< o) and a0, al, . . a, J-1, aj denote cut-points 

in the distribution of Y, where a0 = - x and 

aj = ? (see Figure 1). Let Y* be an ordinal 

variable such that 

y= j if aj- , Y < aj 
(j= 1,..,J). 

I A less common type of ordinal variable, not dis- 

cussed further ini this article, may result from a strict 

monotonic transformation of an interval variable. 

That is, observations (e.g., of cities, persons, occu- 

pations, etc.) may be ranked according to some un- 

measured criterion (e.g., population size, wealth, 

rate of pay, etc.). A regression model with a ranked 

dependent variable requires that the nonlinear map- 

ping between the unmeasured continuous ranking 

variable and the ranks themselves be specified. 

Given the mapping, the model can be estimated by 

nonlinear least squares (e.g., Gallant, 1975). 
2 The ordinal-variable model can be extended to 

take account of measurement error. That is, an ordi- 

nal variable is a transformation of a continuous vari- 

able, but some observations may be misclassified 

(O'Brien, 1981; Johnson and Creech, 1983). Al- 

though this article does not discuss this complica- 

tion, it is a logical extension of the models presented 

here. Muthen (1979), Avery and Hotz (1982), and 

Winship and Mare (1983) discuss this extension for 

dichotomous variables; Muthen (1983, 1984) discus- 

ses it for ordinal variables. 
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Figure 1. Relationships Among Latent Continuous 
Variable (Y), Observed Ordinal Variable 
(Y*), and Thresholds (aj) 

Since Y is not observed, its mean and variance 
are unknown and their values must be as- 
sumed. For the present, assume that Y has 
mean of zero and variance of one. 

The relationship between Y and Y* can be 
further understood as follows. Consider the 
likelihood of obtaining a particular value of Y 
and the probability that Y* takes on a specific 
value (see Figure 1). If Y follows a probability 
distribution (for example, normal) with density 
function f(Y) and cumulative density function 
F(Y), then the probability that Y* = j is the 
area under the density curve f(Y) between aj-1 
and aj. That is, 

ai 
P(Y* =j) = f f(Y)dy=F(aj)-F(aj_), (1) 

where F(aj) = 1 and F(a0) = 0. For a sample of 

individuals for whom Y* is observed one can 
estimate the cutpoints or "thresholds" aj as 

&j = F-I(pj), 

where pj is the proportion of observations for 
which Y* < j, and F-1 is the inverse of the 
cumulative density function of Y. Given esti- 
mates of the aj, it is also possible to estimate 
the mean of Y for observations within each 
interval. If Y follows a standardized normal 
distribution, then the mean Y for the observa- 
tions for which Y* = j is 

k(a-j- 1)- (ai) 

Yaj, aji = , (2) 

where 4 is the standardized normal probability 
density function and 1 is the cumulative stan- 
dardized normal density function (Johnson and 
Kotz, 1970). 

MODELS WITH ORDINAL DEPENDENT 
VARIABLES 

Model Specification 

Given the measurement model for ordinal vari- 
ables, it is possible to model the effects of 

independent variables on an ordinal dependent 
variable. The following discussion assumes a 
single independent variable, although 
equations with several independent variables 
are an obvious extension. For the iPh observa- 
tion, let Yi be the unobserved continuous de- 
pendent variable Y (i = 1, . . ., N), Xi be an 
observed independent variable (which may be 
either continuous or dichotomous), Ei be a ran- 
domly distributed error that is uncorrelated 
with X, and l3 be a slope parameter to be esti- 
mated, Further, let YtIbe the observed ordinal 
variable where, as in the measurement model 
above, Yi =j if aj-, 

- 
Yi < aj (j = 1, . J). 

Then a regression model is 

Yi=_8xi + Ei 

(E(Y) = ,3X; Var (Y) = 1). (3) 

To specify the model fully, it is necessary to 
select a probability distribution for Y, or 
equivalently for E. If the probability that Y* 
takes on successively higher values rises (or 
falls) slowly at small values of X, more rapidly 
for intermediate values of X, and more slowly 
again at large values of X, then either the nor- 
mal or logistic distribution is appropriate for E. 
The former distribution yields the ordered pro- 
bit model; the latter the ordered logit model.3 
In contrast, a linear model, in which the unob- 
served variable Yi is replaced by the observed 
ordinal variable Y* in the regression model, 
assumes that the probability that Y* takes suc- 
cessively higher values rises (falls) a constant 
amount over the entire range of X. 

When Y* takes on only two values, then (3) 
reduces to a model for a dichotomous depen- 
dent variable and the alternative assumptions 
of normal or logistic distributions yield binary 
probit and logit models respectively. Replacing 
the unobserved Yi with the observed binary 
variable yields a linear probability model. As is 
well known, the probit or logit specifications 
are usually preferable to the linear model be- 
cause the former take account of the ceiling 
and floor effects on the dependent variable 
whereas the linear model does not (e.g., 
Hanushek and Jackson, 1977). When Y* is or- 
dinal and takes on more than two values, the 
ordered probit and logit models have a similar 
advantage over the linear regression model. 
Whereas the former take account of ceiling and 
floor restrictions on the probabilities, the linear 
model does not. This advantage of the ordered 
probit and logit over the linear model is 
strongest when Y* is highly skewed or when 
two or more groups with widely varying 

3 Other models for binary dependent variables that 
can be extended to ordinal variables are discussed 
by, for example, Cox (1970) and McCullagh (1980). 



REGRESSION MODELS WITH ORDINAL VARIABLES 515 

skewness in Y* are compared (see example 
below). The assumption that E follows a normal 
or logistic distribution, however, while often 
plausible, may be false. As discussed below, 
one can test this assumption and, in principle, 
modify the model to take account of departures 
from the assumed distribution. 

Estimation 

In practice, one seeks to estimate the slope 
parameter(s) /3 and the threshold parameters 
a1, - . , aj-1. The former denotes the effect of a 
unit change in the independent variable X on 
the unobserved variable Y. The latter provide 
information about the distribution of the 
ordered dependent variable such as whether 
the categories of the variable are equally 
spaced in the probit or logit scale. Because the 
ordered probit and logit models are nonlinear, 
exact algebraic expressions for their parame- 
ters do not exist. Instead, to compute the pa- 
rameters, iterative estimation methods are re- 
quired. This section summarizes the logic of 
maximum likelihood estimation for these mod- 
els as well as a useful non-maximum likelihood 
approach. Further technical details, including 
information about computer software, are pre- 
sented in the Appendix.4 

Maximum Likelihood. If the unobserved de- 
pendent variable Y has conditional expectation 
given the independent variables) E(YIX) = ,3X 
and variance one, then the measurement model 
(1) can be modified to give the probability that 
the ith individual takes the value j on the ordinal 
dependent variable as 

p(Y* = jjXj) = F(aj - 83Xj) 
- F(a-1 - /3X1), (4) 

where F(ao - 83X1) = 0 and F(aj - 83X1) = 1 
because a0 = -w and aj = x. If the model is an 
ordered probit, then F is the cumulative stan- 
dard normal density function. If the model is an 
ordered logit, then F is the cumulative logistic 
function. The quantities (4) for each individual 
are combined to form the sample likelihood as 
follows: 

L = L1J7Ip(Y*i_=j1Xi)dij (5) 
iij 

where dij is a variable that equals one if Yli = i, 
and zero otherwise. Maximum likelihood esti- 

mation consists of finding values of ,3 and the aj 
in (4) that make L as large as possible. 

Binary Probit or Logit. In practice, 

maximum likelihood estimation of the ordered 
logit or probit model can be expensive, espe- 
cially when the numbers of observations, 
thresholds, or independent variables are large 
and the analyst does not know what values of 
the unknown parameters would be suitable 
"start values" for the estimation. Moreover, 
although the ordered models can be im- 
plemented with widely available computer 
software (see Appendix), such applications are 
harder to master and apply routinely than more 
elementary methods. Other methods of esti- 
mation are cheaper and easier to use and con- 
sistently (though not efficiently) estimate the 
unknown parameters. These methods are use- 
ful both for exploratory research where many 
models may be estimated and for obtaining ini- 
tial values for maximum likelihood estimation. 

One method is to collapse the categories of 
Y* into a dichotomy, Y* < j versus Y* - j, 
say, and to estimate (3) as a binary probit or 
logit by the maximum likelihood methods 
available in many statistical packages or, if the 
data are grouped, by weighted least squares 
(e.g., Hanushek and Jackson, 1977). This 
yields consistent estimates of /3 and of ai, 
though not of the remaining thresholds. This 
method can also be applied J-1 times, once for 
each of the J-1 splits between adjacent 
categories of Y*, to estimate all of the as's, but 
this yields J-1 estimates of /3, none of which 
uses all of the information in the data. 

A better alternative is to estimate the J-1 
binary logits or probits simultaneously to ob- 
tain estimates of the J-1 thresholds and a com- 
mon slope parameter ,3. To do this, replicate 
the data matrix J-1 times, once for each of the 
J- 1 splits between adjacent categories of Y*, to 
get a data set with (J-l)N observations. Each 
of the J-1 data matrices has a different coding 
of the dependent variable to denote that an 
observation is above or below the threshold 
that matrix estimates, and J-1 additional col- 
umns are added to the matrix for J-1 dummy 
variables, denoting which threshold is esti- 
mated in each of the J-1 data sets. This method 
is illustrated in Figure 2, which presents a 
hypothetical data matrix for a dependent vari- 
able having 4 ordered categories. The total 
matrix has 3N observations. For clarity, within 
each of the 3 replicates of the data, observa- 
tions are ordered in ascending order of Y*. The 
third column denotes the dependent variable 
for a binary logit or probit model, which is 
coded one if the observation is above the 
threshold and zero otherwise. In the first 
panel, observations scoring 2 or above on Y* 
have a one on the dependent variable; in the 

4Models with ordinal dependent variables can 

also be estimated by weighted nonlinear least 
squares (e.g., Gurland et al., 1960). For models 
based on distributions within the exponential family, 

such as the logit and probit, weighted nonlinear least 
squares and maximum likelihood estimation are 
equivalent (e.g., Nelder and Wedderburn, 1972; 

Bradley, 1973; Jennrich and Moore, 1975). 
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Dep. 2-4/ 3-4/ 4/ 
Variable Y* var. 1 1-2 1-3 XI X2 

Parameter a, a2 a3 31 A 

Observation 

1 1 0 -1 0 0 X11 X21 
2 1 0 - 1 0 0 X 12 X22 

1 0 -1 0 0 

2 1 -1 0 0 

2 1 -1 0 0 
3 1 -1 0 0 

3 1 -1 0 0 
4 1 -1 0 0 

N 4 1 -1 0 0 XIN X2N 

1 1 0 0 1 0 X11 X21 

2 1 0 0 1 0 X12 X22 

1 0 0 1 0 

2 0 0 1 0 

2 0 0 1 0 
3 1 0 1 0 

3 1 0 1 0 
4 1 0 1 0 

N 4 1 0 1 0 XIN X2N 

1 1 0 0 0 1 Xll X21 

2 1 0 0 0 1 X12 X22 

1 0 0 0 1 

2 0 0 0 1 

2 0 0 0 1 
3 0 0 0 1 

3 0 0 0 1 
4 1 0 0 1 

N 4 1 0 0 1 X1N X2N 

Figure 2. Hypothetical Data Matrix for Dichotomous Estimation of Ordered Logit or Probit Model. 

second, observations scoring 3 or above on Y* 
have a one; and in the third, observations 
scoring 4 have a one. The fourth through sixth 
columns denote which of the three thresholds 
are estimated in each of the panels of the data 
matrix. These are effect coded and thus can all 
be included as independent variables in the 
probit or logit model to estimate the three 
thresholds. The final two columns denote two 
independent variables, values of which are 
replicated exactly across the three panels. 

Although this method requires a larger data 
set, it is a flexible way of exploring the data and 
obtaining preliminary estimates of the aj's 
and /3's for maximum likelihood estimation. 
Estimates obtained by this method are often 
very close to the maximum likelihood esti- 

mates (within 10 percent). The standard errors 
of the parameters are somewhat underesti- 
mated because the method assumes that there 
are (J-1)N observations when only N are 
unique. In practice, however, this bias is often 
small.5 

I In the probit model, the rationale for this method 
is as follows: An ordered probit is equivalent to J- 1 
binary probits in which constants (thresholds) differ, 
slopes are identical (within variables across 
equations), and correlations among the disturbances 
of the J- 1 equations are all equal to one. A binary 
probit estimated over J- 1 replicates of the data as 
described here is equivalent to J- 1 binary probits 
with varying constants and identical slopes but with 
disturbance correlations all equal to zero. In prac- 
tice, the slope and threshold estimates are insensitive 
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Scaling of Coefficients 

Most computer programs for ordered probit or 
logit estimation fix the variance of E at I in the 
probit model or at ir2/3 in the logit model rather 
than fix the variance of Y as in (3) above. 
Although computationally efficient, this prac- 
tice may lead to ambiguous comparisons be- 
tween the coefficients of different equations. 
Adding new independent variables to an equa- 
tion alters the variance of Y and thus the re- 
maining coefficients in the model, even if the 
new independent variables are uncorrelated 
with the original independent variables. When 
estimating several equations with a common 
ordinal dependent variable it is advisable to 
rescale estimated coefficients to a constant 
variance for the latent dependent variable (say 
Var(Y) = 1) across equations. The resulting 
coefficients will then measure the change in 
standard deviations in the latent continuous 
variable per unit changes in the independent 
variables. 

If, for example, the computations assume 
that Var(E) = 1 but Var(Y) = 1, then the esti- 
mated equation is 

Yi = bXi + ei 

where b = 1(3E1E, ei = Ei/o-E, and Var(E) = v>. 

Then roI = 1/[1 + b2Var(X)] and ,3 = boa. 
Under this scaling assumption, oe decreases as 
additional variables that affect Y are included 
in the equation, and measures the proportion of 
variance in Y that is unexplained by the inde- 

pendent variables. Thus 1 - o-2 is analogous to 
R2 in a linear regression. 

MODELS WITH ORDINAL 
INDEPENDENT VARIABLES 

Ordinal variables may also be independent or 
intervening variables in structural equation 
models. For example, job tenure, a continuous 
variable, may depend on job satisfaction, an 
ordinal variable measured on a Likert scale, as 
well as on other variables. Job satisfaction in 
turn may depend on characteristics of individ- 
uals and their jobs. One solution to this prob- 
lem is to assume that the ordered categories 
constitute a continuous scale, but this is inap- 
propriate if the ordered variable Y* is non- 
linearly related to an unobserved continuous 
variable Y (as in the model discussed above) 
and it is the unobserved variable that linearly 
affects the dependent variable. Another strat- 
egy is to represent Y* as J- 1 dummy variables 
and to estimate their effects on the dependent 

variable. This strategy, however, is unpar- 
simonious, fails to use the information that the 
categories of Y* are ordered, and may still 
yield biased estimates if the correct model is a 
linear effect of the unobserved variable Y on 
the dependent variable. This section considers 
several preferable solutions to this problem. 

Consider the following two equations: 

Zi = 31X1i + f32Yi + Ezi (6) 

Yi = 01X1i + 02X2i + Eyi (7) 

where for the ith observation Z is continuous 
and may be either an observed variable or an 
unobserved variable that corresponds to an ob- 
served dichotomous or ordinal variable, say 
Z*; Y is an unobserved continuous variable 

corresponding to an observed ordinal variable 
Y* through the measurement model discussed 

above; X1 and X2 are observed continuous or 
dichotomous variables; ez and Ey are random 
errors that are uncorrelated with each other 
and with their respective independent vari- 
ables; and the ,3's and 0's are parameters to be 
estimated. If this model is correct, that is, if the 
effect of the ordinal variable Y* on Z is prop- 
erly viewed as the linear effect of the observed 
variable Y, of which Y* is a realization, then 
several methods of identifying and estimating 

/32 are available. These methods include: (1) 
instrumental-variable estimation; (2) estima- 
tion based on the conditional distribution of Y; 
and (3) maximum likelihood estimation. These 
methods are summarized in turn. 

Instrumental Variables 

One method of estimating (6) and (7) is to use 
the fact that X2 affects Y but not Z, that is, that 
X2 is an instrumental variable for Y. First, es- 
timate (7) as an ordered logit or probit model 
by the procedures discussed above and, using 
the estimated equation, calculate expected 
values for Y: 

E(YjjXjj, X20) = Yi = 61X1i + 62X2i. 

Then, in a second stage of estimation, replace 
Y with Y in (6) and estimate the latter equation 

by a method suited to the measurement of Z 

(ordinary least squares (OLS), probit, logit, 
etc.). This method consistently estimates /3' 
and /2 under the assumption that Ez and Ey are 

uncorrelated with each other and with X, and 

X2. Standard errors for estimated parameters 

to alternative assumptions about the disturbance 

correlations. 

6 A fourth method is to rely on multiple indicators 

of Y, as would be possible if, for example, Y denoted 
job satisfaction and Ye and Y* were Likert scales of 
satisfaction with specific aspects of a job (pay, op- 
portunity for advancement, etc.). 
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should be computed using the usual formulas 
for instrumental-variable estimation (e.g., 
Johnston, 1972:280). 

This method works only if X2 affects Y but 
not Z; otherwise Y would be an exact linear 
combination of variables already in (6) and 32 

would not be estimable. In addition, for the 
method to yield precise estimates, X2 and Y 
should be strongly associated. When these 
conditions are not met, alternative methods 
should be considered. 

Using the Conditional Distribution of Y 

If Z is an observed continuous variable, and Z 
and Y follow a bivariate normal distribution, 
then an alternative method of estimating Y for 
substitution in (6) is available. Suppose 02 = 0, 

that is, there is no instrumental variable X2 
through which to identify /2 in (6). One can 
nonetheless compute expected values of Y that 
are not linearly dependent on variables in (6) 
by using the relationship between Y and Y*: 

E(YilXli, Y*) = Yi= 01X1i + E(YyiXli, Y*) 

= lx1, +4(&?i_ - 1X1i) - ( lXi) 

(D(a'j- 01X11)- c(a?i_1- 01X1- ) 

where all parameters are taken from ordered 
probit estimates of (7) (excluding X2). The sec- 
ond term in (8) is an extention of equation (2) 
above to the case where each observation has a 
mean conditional on its. value of X1 in addition 
to Y*. With predicted values Y in hand, one 
can then substitute them for Y in (6) and esti- 
mate that equation by least-squares regression. 

This method is a variant of procedures for 
estimating regression equations that are sub- 
ject to "sample selection bias" (Berk, 1983; 
Heckman, 1979). It permits identification of 
the effects of the unmeasured variable Y in (6) 
in the absence of the instrumental variable X2 
because it takes account of the correlation 
between Ey and the disturbance of the reduced 
form of (6) (that is, El + 32EY), which is ignored 
in the instrumental-variable estimation. This 
method relies on the assumed bivariate normal 
distribution of the disturbances of the two 
equations. One should be cautious about the 
degree to which one's results may depend on 
this distributional assumption. 

Maximum Likelihood Estimation 

Identifying ,/3 using the conditional distribution 
of Y requires that Z be an observed continuous 
variable. It is not a fully efficient method in 
that it relies on two separate estimation stages. 
If Z and Y follow a bivariate normal distribu- 

tion, (6) and (7) can be estimated simulta- 
neously regardless of whether Z results from 
an observed continuous or ordinal variable. 
Suppose that 02 = 0 in (7), that is, that there is 
no instrumental variable and that Var(E,) = 

Var(E,) = 1. (Maximum likelihood, like the 

method based on the conditional expectation of 
Y, works regardless of whether 02 = 0.) Then 
the reduced form of (6) is 

Zi= aiX1i + Vi (9) 

where 8, = /31 + /3201, Vi = Ezi + 32EYi, and 

COv(VEy) = P = 820,Y = 32. The maximum 
likelihood procedure estimates (7) and (9) si- 
multaneously along with p. Thus 01, 02, and /2 

are estimated directly, and 8,3 can be calculated 
as 81 - 201.-7 

The estimation procedure itself consists of 
computing the joint probabilities of obtaining Z 
(or Z* if Z is an unobserved variable for which 
only an ordinal variable is observed) and Y* for 
each individual and forming the likelihood 
which, assuming a bivariate normal distribu- 
tion for Z and Y, depends on the reduced-form 
parameters in (7) and (9) and on p. The method 
searches for values of the parameters that 
make the likelihood as large as possible. See 
the Appendix for further technical details. 

Extensions 

Given estimates of equations that include ordi- 
nal variables as either dependent or indepen- 
dent variables, it is possible to formulate 
structural equation models with mixtures of 
continuous, discrete and ordinal variables. As 
a result one can compute direct and indirect 
effects of exogenous variables on ultimate en- 
dogenous variables even when the intervening 
variables are ordinal. The same procedures de- 
scribed by Winship and Mare (1983:82-86) for 
the path analysis of dichotomous variables can 
be applied to systems in which some of the 
variables are ordinal. 

In addition, the models described here can 
be extended to allow for the discrete and con- 
tinuous effects of ordinal variables. If, for 
example, a continuous variable, say, earnings, 
is affected by an ordinal variable, say, highest 
grade of school completed, one might elect to 
model the school effect as twofold: (1) as an 
effect of a latent continuous variable, "educa- 
tional attainment"; and (2) as the effect(s) of 
attaining particular schooling milestones or 

7If alternative assumptions about Var(E,) aid 

Var(E,) are made, the estimating formulas are dif- 
ferent, but the model is nonetheless identified pro- 
vided a scale for Y and Z (and thus E, and E,) is 

assumed. 
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credentials (for example, high school degree, 
college degree, etc.). To do this, augment (6) 
above-in which Z denotes earnings, Y de- 
notes "educational attainment," and X1 de- 
notes determinants of earnings-with dummy 
variables denoting whether or not the school- 

ing milestones of interest have been attained. 

Then by estimating the new equation (6) along 
with (7), one can assess the independent effects 
of these two aspects of schooling on earnings. 
Thus the alternative formulations of effects of 

ordinal variables parallel those for binary vari- 

ables (Winship and Mare, 1983; Heckman, 
1978; Maddala, 1983). 

TESTS FOR DISTRIBUTIONAL 
MISSPECIFICAT1ON 

Ordered probit and logit models for ordered 

dependent variables rely on the assumptions of 

normal and logistic distributed errors respec- 
tively. Unlike the linear model, where the 
normality assumption for the errors affects the 
validity of significance tests but not the un- 
biasedness of parameter estimates, for the or- 
dinal models both the parameters and the test 
statistics are distorted when distributional as- 

sumptions are false. This section summarizes 
methods for testing the validity of the distribu- 
tional assumptions. 

If a model such as (3) above is specified to 

have the correct probability distribution for the 

errors (or the latent continuous variable), then 
the estimated parameters) /3 should be in- 

variant except for sampling variability through 
the full range of both the independent vari- 

able(s) X and the dependent variable Y. Con- 
versely, significant variation in estimated 13's 

among different segments of the range of X or 

Y, or among weightings of the observations that 

give different emphasis to different parts of the 

distributions of X or Y, is evidence that the 
model is misspecified. 

Test Based on the Independent Variable 

A test based on an independent variable is to 

partition the observations into k mutually ex- 

clusive segments defined by X and to create 

k - 1 dummy variables denoting into which seg- 
ment each observation falls. For example, a 

dummy variable could be formed that takes the 

value 1 if an observation is above the mean (or 
median) of X and zero otherwise, or three 

dummy variables could be formed that indexed 

whether or not each observation was in the 

first, second, or third quartile. Augment (3) 
with the dummy variables and their interac- 

tions with X. Then estimate the augmented 
equation by maximum likelihood and perform a 

likelihood ratio test for the improvement in fit 

of the augmented model over (3). If the test 
statistic is significant, this is evidence that the 
functional relationship given by (3) is incor- 
rect.8 

Test Based on the Dependent Variable 

An alternative test examines whether the effect 
of X on Y varies with Y, that is, whether the 
threshold parameters a( vary with X. This pos- 

sibility can be explored by expanding the ma- 
trix in Figure 2. Separate effects of the inde- 
pendent variables for varying values of the de- 
pendent variable can be obtained by augment- 
ing Figure 2 to include interactions between the 
indicators for which threshold is estimated by 
which panel of the data (2-4/1, 3-4/2, 4/1-3) 
and the independent variables X1 and X2. Good 
estimates of such an interactive model can be 

obtained from binary logit or probit analysis. 
These estimates, however, will not provide a 
valid test because the binary model assumes 
3N independent observations when only N are 
independent. To obtain the correct likelihood 
statistic to compare to the likelihood corre- 
sponding to (3), the latter model must be aug- 
mented with parameters 8j that denote the sep- 
arate effect of X at each threshold. Then the 
contribution to the likelihood for the ith obser- 
vation is: 

p(Y',= jiX) = F(aj - jXi) 
-F(a(j_ 1- j-,Xi)- 

These quantities can be combined to form the 
likelihood function and the parameters can be 
estimated as described above. Again, a signifi- 
cant likelihood-ratio test statistic is evidence 
that (3) is misspecified.9 

EXAMPLE: EDUCATIONAL MOBILITY 

Data 

This section discusses an example of ordered 
probit estimation applied to a model that con- 

8 White (1981) develops additional, more- 
sophisticated versions of this test for nonlinear re- 
gression models. 

9 Varying 13's across segments of the X or Y distri- 
bution may signify a number of specification ills: (1) 
incorrect distribution for Y; (2) nonlinearities in the 
effects of X; (3) interactions among independent 
variables; or (4) improperly excluded independent 
variables (Stinchcombe, 1983; Winship and Mare, 
1983). White (1981) proposes methods that, in prin- 
ciple, empirically distinguish (1), (2), and (3), though 
the practical value of these methods remains to be 
determined. Aranda-Ordaz (1981) and Pregibon 
(1980) suggest alternative distributions for Y that 
may be considered if the logit or probit model is 
rejected. 
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tains ordered dependent and independent vari- 
ables. The data are from the 1962 Occupational 
Changes in a Generation Survey (OCG) on the 
association of father's and son's grades of 
school completed for white and nonwhite men 
age 20-64 in the civilian noninstitutional 
population (U.S. Bureau of the Census, 
1964:17-18). They are taken from a frequency 
table with the following dimensions: father's 
schooling (less then 8, 8-11, 12, 13+ grades); 
color white, nonwhite); and son's schooling 
(less than 8, 8-11, 12, 13+ grades). Although 
the published table reports population frequen- 
cies, the analyses presented here are based on 
18,345 sample observations for which data are 
present on the three variables. 

Measurement 

Suppose one wishes to assess the effect of fa- 
ther's schooling and color on son's schooling 
and to see whether the effect differs between 
whites and nonwhites. The effect of father's 
schooling may be stronger for whites than 
nonwhites in the cohorts represented in these 
data because nonwhite sons of highly educated 
fathers experience economic and discrimi- 
natory barriers to higher education that are less 
severe for elementary and secondary school- 
ing. 

In this analysis both son's and father's 
schooling are ordered variables with four 
categories. Grades of schooling is typically 
treated as a continuous dependent variable and 
analyzed using a linear model. This may seem 
compelling when separate observations are 
available for each individual, and it may even 
seem appropriate in the present case, where 
one can assign scores to the midpoints of the 
categories. Although estimates based on both 
the linear and ordered probit models are pre- 
sented below, there is nonetheless consider- 
able reason to prefer the latter to the former. 
As noted above, grades may not be equally 
spaced either in the difficulty with which they 
are acquired or in their rewards. Moreover, in 
samples with highly skewed schooling distri- 
butions or in cross-sample comparisons where 
degrees of skewness differ, it is better to use a 
model such as the ordered probit which takes 
ceiling and floor effects into account. In the 
present case, where schooling is grouped into 
four broad categories and the schooling distri- 
butions of whites and nonwhites differ greatly, 
the ordered probit model may be more appro- 
priate. IO 

Model Specification 

In the models presented below, the indepen- 
dent variables include a variable for color 
equaling one if the son is white and zero other- 
wise, a continuous variable for father's 
schooling, and a continuous variable for the 
interaction between father's schooling and 
color. Thus if, for the ith individual, Zi denotes 
son's schooling, Xi denotes a dummy variable 
for color, Yi denotes father's schooling, Ezi de- 
notes a random disturbance, and /3k, /2, and /3 

denote parameters to be estimated, the model 
is: 

Zi = /18Xi + p2Yi + /33XiYi ? Ezi (10) 

To see if the effect of father's schooling on 
son's schooling differs between whites and 
nonwhites, one examines the size and 
significance of the interaction coefficient 3 or, 
equivalently, compares (10) to a simpler equa- 
tion that excludes the interaction variable X1Yi. 
In a linear model, Z and Y are observed vari- 
ables based on the categories of son's and fa- 
ther's schooling. In the linear models presented 
below, the four categories of the two schooling 
variables have the scores 5, 10, 12, and 14 
grades, which approximate the category mid- 
points. Given these scores, (10) can be esti- 
mated by OLS. 

In the ordered probit model, however, Z and 
Y are unobserved realizations of the ordered 
categorical variables, say, Z* and Y*. Were 

only Z unobserved, then (10) could be esti- 
mated using one of the methods for ordered 
dependent variables discussed above. Because 
Y is also unobserved, it is necessary to con- 
sider a second equation in which Y is the de- 
pendent variable: 

Yi= oXi + Eyi, (11) 

where Eyi is a random disturbance, 0 is a pa- 
rameter to be estimated, and all other notation 
is as defined above. This equation predicts the 
ordered variable, father's schooling, from color 
and provides a means of estimating the 
covariances between the two unobserved vari- 
ables Y and Z and between color and the unob- 
served variable Y, which are needed to esti- 
mate (10)."I 

10 Alternative nonlinear models that are poten- 
tially useful for studying schooling are binary probit 
or logit models that treat schooling as a sequence of 
"continuation decisions" (e.g., Fienberg 1980; Mare 

1980, 1981). Although these models avoid assigning a 
metric to an ordered variable, take floor and ceiling 
effects into account, and are always mathematically 
feasible, they are best suited to measures that ac- 
cumulate over time (e.g., grades, children, jobs, 
marriages, etc.). The ordered probit model, in con- 
trast, is potentially applicable to all ordered variables 
without regard to the process by which their values 
come about. 

1I Equation (10) can also be estimated with a sim- 
pler specification of (11), namely, that Y is affected 
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Estimnation 

The results reported below are obtained 
through simultaneous estimation of (10) and 
(11) by maximum likelihood under the as- 
sumptions that El. and E, are uncorrelated and 
each follows a normal distribution. This proce- 
dure is an extension of methods discussed 
above for a single, ordinal independent vari- 
able. That is, ( 11) is estimated along with the 
reduced form of (10), 

Z. ` 8X, + vi, 

where 8 = 13 + 1320 + ?3:1Xj and v = E1 + /32E2 

+ 8:3E,7Xl. In addition, two disturbance correla- 
tions are estimated, say pi and P2, for non- 
whites and whites respectively. In terms of the 
parameters of (10) and (11), p = [32 and P2 = 

/32 + 3:30. The maximum likelihood procedures 
described in the Appendix are used to obtain 
the reduced-form parameters 0, 8, pi, and P2, 

and from these are derived the structural pa- 
rameters 0, 1i 132, and 1:3. 

Results 

Table 1 presents ordered probit and linear re- 
gression estimates for the effect of father's 
schooling and color on son's schooling for 
models with and without terms for interaction 
of father's schooling and color. The first and 
third columns of ihe table show that both the 
ordered probit and linear models indicate much 
higher levels of schooling for whites and for 
sons of more highly educated fathers. The pro- 
bit and linear coefficients are not directly com- 
parable inasmuch as the former are measured 
in the scale of z-scores (inverse of the cumula- 
tive normal distribution), whereas the latter are 
measured in grades of school completed. 
Nonetheless the two models yield much the 
same results about the effects of the indepen- 
dent variables. To see this, note that one can 
rescale the probit coefficients for color and 
father's schooling to the same units as the 
linear regression coefficients. Given the cate- 
gory midpoints assumed in the regression 
analysis, the standard deviations of son's and 
father's schooling are 2.802 and 3.194 respec- 
tively. As reported in Table 1, the probit coef- 
ficient for color gives the difference between 
whites and nonwhites on a latent variable for 
son's schooling that has a standard deviation of 
one. Under the assumption that the latent vari- 

able has the same standard deviation as as- 
sumed in the linear regression, the coefficient 
for color is 1.088 (0.386 x 2.802). The probit 
coefficient for father's schooling is the effect of 
a one standard deviation change in father's 
schooling on son's schooling in standard de- 
viation units. If the schooling variables are as- 
sumed to have the same scale as in the regres- 
sion, the coefficient for father's schooling is 
0.379 (0.432 x 2.802/3.194). The ordered probit 
results also imply that the schooling categories 
are approximately equally spaced in the probit 
scale, as indicated by the roughly equal dis- 
tances between adjacent thresholds. 

The ordered probit and linear models, how- 
ever, yield different results about a possible 
interaction effect of father's schooling and 
color on son s schooling. According to the 
ordered probit results, the effect of father's 
schooling on son's schooling is approximately 
25 percent larger for white sons than for non- 
white sons (.436 vs. .344). Rescaling the probit 
coefficients to conform to the standard devia- 
tions for father's and son's schooling assumed 
in the linear regression models yields a similar 
race difference in the effect of father's school- 
ing (.383 vs. .302). The test statistic for the 
interaction parameter and the one degree of 
freedom likelihood ratio chi-square statistic 
(90067-90047 = 20) are significant, even tak- 
ing account of the complexity of the OCB sam- 
ple. 12 For the linear model, in contrast, the 
interaction coefficient is insignificant and of 
opposite sign to that of the probit model. 

This discrepancy between the ordered probit 
and linear regression findings results from the 
sensitivity of the regression model to the dif- 
ferent skewness of the white and nonwhite 
schooling distributions. Under the assumptions 

only by the random disturbance En. Although com- 
putationally feasible, this specification is tantamount 
to assuming that color and father's schooling are 
uncorrelated, and thus gives an unsatisfactory esti- 
mate for /,3. Parameter estimates for (I 1) are avail- 
able from the authors on request. 

12 Because these data derive from a frequency 
table, it is possible to compute a likelihood ratio 
chi-square statistic to assess the goodness of fit of 
the model. Under the saturated model, the log likeli- 
hood statistic is minus 21;n jklog(Puk), where n,jk is the 
number of observations in the ill category of father's 
schooling (i= 1,2,3,4), the jth category of son's 
schooling (j=1,2,3,4), and the kth color group 
(k=1,2); and Pijk is the proportion of the kth color 
group that is in the ith father's and jth son's schooling 
categories. For these data this statistic is 89727, 
implying a chi-square fit statistic for the model 
with the father's schooling-race interaction of 
90047-89727=320 with 20 degrees of freedom, indi- 
cating a poor fit. A better-fitting model allows for 
more complex interactions between father's and 
son's schooling than the two correlation coefficients 
assumed here. More complex interactions can be 
included in the ordered probit model, albeit at the 
expense of more complex interpretations. The 
goodness-of-fit test is appropriate only when data 
come from a fixed table and cell frequencies are 
large. 
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Table 1. Ordered Probit and Linear Regression Analysis of the Effects of Father's Schooling and Color on 
Son's Schoolinga 

Ordered Probit (MLE) Linear Regression (OLS) 

(1) (2) (1) (2) 

Variable 3 f8/(SE(/3)) /3 f/(SE(f)) 3 f8/(SE(f3)) / 8/(SE(f3)) 

White (nonwhite) 0.386 17.9 0.375 16.2 1.503 23.1 1.746 10.2 
Father's Schooling 0.432 72.3 0.344 16.5 0.332 56.1 0.362 17.4 
White x Father's 

Schooling 0.092 4.2 -0.033 -1.5 
Thresholds 

8-11/<8 -0.390 -17.2 -0.384 -17.1 
12/8-11 0.483 21.2 0.479 21.4 
13+/12 1.182 50.8 1.171 51.0 

Constant 6.687 89.9 6.468 40.2 
-2 x (log 

likelihood) 90067 90047 
R2 0.217 b 0.234 b 0.1859 0.1860 

0-e 0.885 0.875 2.5279 2.5277 

a Source: 1962 Occupational Changes in a Generation Survey (U.S. Bureau of the Census, 1964) 
(N = 18345). 

b R2 estimated as one minus error variance under assumption that latent continuous variable has variance 
one. 

of the probit model, the ordered schooling 
variable is a realization of a latent, normally 
distributed variable. As shown in Figure 1, a 
change in an independent variable induces a 
larger shift in the ordered dependent variable 
for observations concentrated in the middle of 
the distribution than for those concentrated at 
either end. If the effect of father's schooling on 
son's schooling is stronger for whites than for 
nonwhites, but the former are concentrated at 
one extreme of the schooling distribution 
whereas the latter are concentrated in the mid- 
dle, then the effects of father's schooling as 
estimated by a linear model may be approx- 
imately equal despite the underlying difference 
between the two groups. 

This distortion is illustrated in Figure 3, 
which presents the hypothetical relationship 
between father's and son's schooling by color 
under the ordered probit and linear models. To 
highlight the point, the race difference in the 
distribution of son's schooling is exaggerated. 

P(Y--J ) 
(S-' 

SNhN'N1N~g) 

Schoolin on Son's Schoolingfor 

and N s Nonwhit 

IrN YW 
Sc2hooling) 

Figure 3. Linear and Nonlinear Effects of Father's 

Schooling on Son's Schooling for Whites 
and Nonwhites 

The figure, therefore, is not drawn to the scale 
dictated by the results in Table 1, but nonethe- 
less illustrates the source of discrepancy be- 
tween the ordered probit and linear model re- 
sults in the Table. The curves in Figure 3 illus- 
trate the stronger effect of father's schooling 
on son's schooling for whites than for non- 
whites in the probit scale. If whites are more 
concentrated at the top of the schooling distri- 
bution whereas nonwhites are concentrated in 
the middle of the distribution, OLS will esti- 
mate slopes that are tangent to the curved lines 
at different points in the schooling distribution, 

that is, at a point of relatively lesser slope for 
whites and greater slope for nonwhites. The 
straight lines in Figure 3 are approximately 
parallel for the two groups despite the greater 
nonlinear effect for whites. This example illus- 
trates the potential distortion in linear nr.,del 
results when groups differ in the way that their 
effects are sensitive to ceilings and floors on 
the ordered dependent variable. 

CONCLUSION 

Much of the sociological literature on ordinal 
variables offers the unhappy compromises of 
(1) ignoring ordinal measurement and treating 
ordinal variables as if they were continuous; (2) 
adopting special techniques for ordinal vari- 
ables that are not integrated into established 
frameworks for multivariate and structural 
equation analysis; or (3) adopting frequency 
table approaches when regression or structural 
equation models would otherwise be desirable. 
This article has reviewed methods that enable 
one to analyze mixtures of ordered, dichotom- 
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ous, and continuous variables in structural 
equation models while taking account of the 
distinct measurement properties of these vari- 
ables. Although the ordered logit and probit 
models are slightly more complex than multiple 
regression analysis inasmuch as they rely on 
nonlinear estimation methods, they can be im- 
plemented with standard statistical computer 
software. These methods require assumptions 
about the probability distributions of the un- 
measured continuous variables from which 
ordered variables arise, but these assumptions 
are testable. 

Like many topics in sociological methodol- 
ogy, the problem of ordinal variables has been 
discussed in isolation from broader method- 
ological issues and with insufficient attention 
to high-quality research on the problem by 
applied statisticians in other fields. Whatever 
problems they may have presented 
methodologists, ordinal variables need present 
no special impediment to sound substantive 
research. 

APPENDIX 

Maximum Likelihood Estimation of Two-Equation 
Models with Ordinal Variables 

As for single equations, maximum likelihood estima- 
tion for multiple equation models consists of 
specifying the probability of obtaining each observa- 
tion as a function of the unknown parameters, form- 
ing the likelihood as the joint probability of obtaining 
all observations, and searching for parameter values 
that maximize the likelihood. Consider the two- 
equation model given by (6) and (7) above, but for 
simplicity assume again that 32 = 0. Then the re- 
duced form of the model is given by (7) and (9). 
Further, assume that Y and Z follow a bivariate 
normal distribution, where Var(E,) = 0rEY and Var(v) 
= or . That is, the joint probability density function 
of the disturbances of the equations is 

g (t,t) = [1(27r1- p)] x 

{exp[-(tY - 2ptyt, + t2)/(l - p2)]}, (Al) 

where ty = Ey/orEy, tZ = v/c-,, and p denotes the 
correlation between Ey and v (e.g., Hogg and Craig, 
1970). Given these assumptions it is possible to form 
the likelihood functions for alternative types of en- 
dogenous variables. 

Suppose both Y and Z are unmeasured continuous 
variables that correspond to observed ordinal vari- 
ables Y* and Z* respectively. That is, let aso, asi,-. 
asi-1 aSJ denote thresholds in the distribution of Y 
and Z (s = 1,2), where aso = _x, 9asJ = o,Y* = j if 
aii-1 

- 
Y < a:j, and Z* = j' if a2i'-1 

< Z < aS2j- To 
identify the scales of Y and Z assume that 0rEy = cry 
= 1. Then the probability of obtaining an observation 
with category j of Y* and j' of Z* is: 

P(Y*l = j Z*, = j'iX1i) = 

Jc1' iC2J' g (tZ19 ty1) dtzdtyg (A2) 
Clj-1 C2J'-1 

where c1j = a1i-61Xij and c2P = a2i, - 81X1i. Then 

the likelihood function is: 

L = [I [I [I [p(Y* = j, Z*, = j' X 1)] ijj (A3) 
i j j' 

where dijj, is a variable that equals one if Y* = j and 
Z- j' and zero otherwise. Iterative estimation pro- 
cedures pick 06, 81, and the acj that make L as large 
as possible. 

If either Y* or Z* is a dichotomous variable, then 
the likelihood is just a special case of (A3), where 
one of the variables has only two ordered categories. 

If Y is an unmeasured continuous variable corre- 
sponding to an observed ordinal variable Y*, but Z is 
an observed continuous variable, then no longer as- 
sume o-, = 1, but rather that o-, can be estimated 
from the data and that t, = (Zi - 81X1i)/o-v. Then the 
likelihood is: 

Cjjd 
L = [I [I f [g (t, ty1) dt7 dty] ' (A4) 

W lj-1 

where dij is a variable that equals one if Y*, equals j, 
and zero otherwise. 

Statistical Programs for Ordered 
Probit and Logit 

Single equations with ordinal dependent variables 
can be estimated with "user-defined" functions in a 
number of commonly used statistical programs. In 
most of these programs, the user supplies the for- 
mula for the appropriate likelihood function and ini- 
tial values for the estimated parameters. Initial 
values can be obtained using the dichotomous-vari- 
able approach discussed in this article or by ordinary 
least squares. 

GLIM (Baker and Nelder, 1978), BMDP (Dixon, 
1983), SAS (SAS Institute Inc., 1982), SPSSX (SPSS 
Inc., 1983), LIMDEP (Greene, n.d.), and 
HOTZTRAN (Avery and Hotz, 1983) permit the user 
to specify the ordered logit or probit likelihood func- 
tions and to estimate these models by maximum 
likelihood or its equivalent. LIMDEP and 
HOTZTRAN can also estimate ordered probit mod- 
els directly without user specification of the likeli- 
hood function. Routines for estimating ordered pro- 
bit models in BMDP or through a FORTRAN pro- 
gram that can be run on an IBM personal computer 
are available from the authors.'3 HOTZTRAN can 
also estimate models with multiple equations, 
ordered independent variables, latent variables with 
several ordinal indicators, and structural equation 
models with mixtures of continuous, discrete, ordi- 
nal, and truncated variables.'4 
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