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Abstract

We study the problem of discovering a manifold
that best preserves information relevant to a non-
linear regression. Solving this problem involves
extending and uniting two threads of research.
On the one hand, the literature on sufficient di-
mension reduction has focused on methods for
finding the best linear subspace for nonlinear re-
gression; we extend this to manifolds. On the
other hand, the literature on manifold learning
has focused on unsupervised dimensionality re-
duction; we extend this to the supervised setting.
Our approach to solving the problem involves
combining the machinery of kernel dimension re-
duction with Laplacian eigenmaps. Specifically,
we optimize cross-covariance operators in kernel
feature spaces that are induced by the normalized
graph Laplacian. The result is a highly flexible
method in which no strong assumptions are made
on the regression function or on the distribution
of the covariates. We illustrate our methodology
on the analysis of global temperature data and
image manifolds.

1. Introduction

Dimension reduction is an important theme in machine
learning. Dimension reduction problems can be ap-
proached from the point of view of either unsupervised
learning or supervised learning. A classical example of the
former is principal component analysis (PCA), a method
that projects data onto a linear manifold. More recent re-
search has focused on nonlinear manifolds, and the long
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list of “manifold learning” algorithms—including LLE,
Isomap, and Laplacian eigenmaps—provide sophisticated
examples of unsupervised dimension reduction (Tenen-
baum et al., 2000; Roweis & Saul, 2000; Belkin & Niyogi,
2003; Donoho & Grimes, 2003). The supervised learn-
ing setting is somewhat more involved; one must make a
choice of the family of manifolds to represent the covari-
ate vectors, and one must also choose a family of functions
to represent the regression surface (or classification bound-
ary). Due in part to this additional complexity, most of the
focus in the supervised setting has been on reduction to lin-
ear manifolds. This is true of classical linear discriminant
analysis, and also of the large family of methods known
as sufficient dimension reduction (SDR) (Li, 1991; Cook,
1998; Fukumizu et al., 2006). SDR aims to find a linear
subspace S such that the response Y is conditionally inde-
pendent of the covariate vector X, given the projection of
X on 8. This formulation in terms of conditional indepen-
dence means that essentially no assumptions are made on
the form of the regression from X to Y, but strong assump-
tions are made on the manifold representation of X (it is a
linear manifold). Finally, note that the large literature on
feature selection for supervised learning can also be con-
ceived of as a projection onto a family of linear manifolds.

It is obviously of interest to consider methods that com-
bine manifold learning and sufficient dimension reduction.
From the point of view of manifold learning, we can read-
ily imagine situations in which some form of side infor-
mation is available to help guide the choice of manifold.
Such side information might come from a human user in
an exploratory data analysis setting. We can also envisage
regression and classification problems in which nonlinear
representations of the covariate vectors are natural on sub-
ject matter grounds. For example, we will consider a prob-
lem involving atmosphere temperature close to the Earth’s
surface in which a manifold representation of the covariate
vectors is quite natural. We will also consider an exam-
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ple involving image manifolds. Other examples involving
dynamical systems are readily envisaged; for example, a
torus is often a natural representation of robot kinematics
and robot dynamics can be viewed as a regression on this
manifold.

It is obviously an ambitious undertaking to attempt to iden-
tify a nonlinear manifold from a large family of nonlinear
manifolds while making few assumptions regarding the re-
gression surface. Nonetheless, it is an important undertak-
ing, because the limitation to linear manifolds in SDR can
be quite restrictive in practice, and the lack of a role for su-
pervised data in manifold learning is limiting. As in much
of the unsupervised manifold learning literature, we aim to
make progress on this problem by focusing on visualiza-
tion. Without attempting to define the problem formally,
we attempt to study situations in which supervised mani-
fold learning is natural and investigate the ability of algo-
rithms to find useful visualizations.

The methodology that we develop combines techniques
from SDR and unsupervised manifold learning. Specif-
ically, we make use of ideas from kernel dimension re-
duction (KDR), a recently-developed approach to SDR
that uses cross-covariance operators on reproducing kernel
Hilbert spaces to measure quantities related to conditional
independence. We will show that this approach combines
naturally with representations of manifolds based on Lapla-
cian eigenmaps.

The paper is organized as follows. In Section 2, we pro-
vide basic background on SDR, KDR and unsupervised
manifold learning. Section 3 presents our new manifold
kernel dimension reduction (mKDR) method. In Section 4,
we present experimental results evaluating mKDR on both
synthetic and real data sets. In Section 5, we comment
briefly on related work. Finally, we conclude and discuss
future directions in Section 6.

2. Background

We begin by outlining the SDR problem. We then describe
KDR, a specific methodology for SDR in which the linear
subspace is characterized by cross-covariance operators on
reproducing kernel Hilbert spaces. Finally, we also provide
a brief overview of unsupervised manifold learning.

2.1. Sufficient Dimension Reduction

Let (X, Bx) and (Y, By) be measurable spaces of covari-
ates X and response variables Y respectively. SDR aims at
finding a linear subspace S C X such that S contains as
much predictive information regarding the response Y as
the original covariate space. This desideratum is captured

formally as a conditional independence assertion:
YLX|B'X (D

where B denotes the orthogonal projection of X onto S.
The subspace S is referred to as a dimension reduction sub-
space. Dimension reduction subspaces are not unique. We
can derive a unique “minimal” subspace, defined as the in-
tersections of all reduction subspaces S. This minimal sub-
space does not necessarily satisfy the conditional indepen-
dence assertion; when it does, the subspace is referred to as
the central subspace.

Many approaches have been developed to identify central
subspaces (Li, 1991; Li, 1992; Cook & Li, 1991; Cook &
Yin, 2001; Chiaromonte & Cook, 2002; Li et al., 2005).
Many of these approaches are based on inverse regression;
that is, the problem of estimating E [X|Y]. The intuition
is that, if the forward regression model P(Y|X) is concen-
trated in a subspace of X then E [X|Y] should lie in the
same subspace. Moreover, the responses Y are typically
of much lower dimension than the covariates X, and thus
the subspace may be more readily identified via inverse re-
gression. A difficulty with this approach, however, is that
rather strong assumptions generally have to be imposed on
the distribution of X (e.g., that the distribution be elliptical),
and the methods can fail when these assumptions are not
met. This issue is of particular importance in our setting,
in which the focus is on capturing the structure underlying
the distribution of X and in which such strong assumptions
would be a significant drawback. We thus turn to a descrip-
tion of KDR, an approach to SDR that does not make such
strong assumptions.

2.2. Kernel Dimension Reduction

The framework of kernel dimension reduction was first de-
scribed in Fukumizu et al. (2004) and later refined in Fuku-
mizu et al. (2006). The key idea of KDR is to map ran-
dom variables X and Y to reproducing kernel Hilbert spaces
(RKHS) and to characterize conditional independence us-
ing cross-covariance operators.

Let Hx be an RKHS of functions on X induced by the
kernel function Kx(-, X) for X € X. We define the space
Hy and the kernel function Ky similarly. Define the cross-
covariance between a pair of functions f € Hy and g € Hy
as follows:

Cre = Exy [ (£00 - Ex [FOO])(s - By [s])|. @

It turns out that there exists a bilinear operator Xyy from
Hx to Hy such that Cy, = (g, Zyxf)#, for all functions
f and g. Similarly we can define covariance operators Xyx
and Xyy. Finally, we can use these operators to define a
class of conditional cross-covariance operators in the fol-
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lowing way:
Zyyx = Zyy — ZyxEgyZxy- 3)

This definition assumes that Xy is invertible; more general
cases are discussed in Fukumizu et al. (2006).

Note that the conditional covariance operator Xyyjx of
eq. (3) is “less” than the covariance operator Xyy, as the
difference EYXZ;&EXY is positive semidefinite. This agrees
with the intuition that conditioning reduces uncertainty. We
gain further insight by noting the similarity between eq. (3)
and the covariance matrix of the conditional distribution
P(Y|X) when X and Y are jointly Gaussian.

Finally, we are ready to link these cross-covariance oper-
ators to the central subspace. Consider any subspace S in
X. Let us map this subspace to an RKHS Hs with a ker-
nel function K. Furthermore, let us define the conditional
covariance operator Xyyjs as if we would regress Y on S.
What is the relation between Xyyjs and Xyyjx?

Intuitively, Xyy;s would indicate greater residual error of
predicting Y unless S contains the central subspace. This
intuition was formalized in Fukumizu et al. (2006):

Theorem 1 Suppose Z = BB'X € S where B € RP*¢
is a projection matrix such that B'B is an identity matrix.
Further, assume Gaussian RBF kernels for Kx, Ky and
Ks. Then

® Xyyix < Xyy)z, where < stands for “less than or equal
to” in some operator partial ordering.

e Tyyx = Xy if and only if Y 1L X|B"X, that is, S is
the central subspace.

Note that this theorem does not impose assumptions on ei-
ther the marginal distributions of X and Y or the conditional
distribution P(Y|X). Note also that although we have stated
the theorem using Gaussian kernels, other kernels are pos-
sible and general conditions on these are discussed in Fuku-
mizu et al. (2006).

Theorem 1 leads to an algorithm for estimating the cen-
tral subspace, characterized by B, for empirical samples.
Using the trace to order operators, B is the matrix that min-
imizes Tr [[iynzﬂ, where }A:YY|Z is the empirical version of
the conditional covariance operator (3). Let {x;, yi}ﬁ\; | de-
note N samples from the joint distribution P(X, Y), and let
Ky € RN and K, € RV denote the Gram matrices com-
puted over {y;} and {z; = BTx;}. Fukumizu et al. (2006)
show that this minimization problem can be formulated in
terms of Ky and K, so that B is the solution to:

min Tr [K$(KS + Nel)™'] 4
such that BB =1 (

where [ is the identity matrix of appropriate dimensional-
ity, and € a regularization coefficient. The matrix K¢ de-
notes the centered kernel matrices

K¢ = (1 - leeT)K(I - leeT) (5)
N N

where e is a vector of all ones.

2.3. Manifold Learning

Many real-world data sets are generated with very few de-
grees of freedom; an example is pictures of the same ob-
ject under different imaging conditions, such as rotation
angle or translation. The extrinsic dimensionality of these
images as data points in the Euclidean space spanned by
the pixel intensities far exceeds the intrinsic dimensionality
determined by those underlying factors. When these fac-
tors vary smoothly, the data points can be seen as lying on
a low-dimensional submanifold embedded in the high di-
mensional ambient space. Discovering such submanifolds
and finding low-dimensional representations of them has
been a focus of much recent work on unsupervised learn-
ing (Roweis & Saul, 2000; Tenenbaum et al., 2000; Belkin
& Niyogi, 2003; Donoho & Grimes, 2003; Sha & Saul,
2005). A key theme of these learning algorithms is to pre-
serve (local) topological and geometrical properties (for ex-
ample, geodesics, proximity, symmetry, angle) while pro-
jecting data points to low dimensional representations.

In this section, we briefly review the method of Lapla-
cian eigenmaps, which is the manifold learning method on
which we base our extension to supervised manifold learn-
ing. This method is based on the (normalized) graph Lapla-
cian which can be seen as a discrete approximation to the
Laplace-Beltrami operator on continuous manifolds.

Let {x; € RD} denote N data points sampled from a sub-
manifold. We start by constructing a graph which has N
vertices, one for each x;. Vertex i and vertex j are linked
by an edge if x; and x; are nearest neighbors. Let W be
the matrix whose element W;; = exp(—llx; — x,|*/o?) if
there is an edge between vertex i and j, and zero otherwise.
Furthermore, let D be the diagonal matrix whose diago-
nal elements are the row sums of W; ie., D; = 3; W;;.
The aim of the Laplacian eigenmap procedure is to find an
m < D dimensional embedding {u; € R™} such that u; and
u; are close if x; and x; are close. Formally, let v,, € R" be
column vectors such that [u, uz, ...ux] = [v1, V2, ..0n]".
Then v,, is chosen such that

lj(vml vmj)
(6)
Z VDii /D

is minimized, subject to the constraint that v,, is orthogo-
nal to v,y if m # m’. By the Rayleigh quotient theorem,
the vector v,, must be the m-th bottom eigenvector of the
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Figure 1. 3-D torus and bottom eigenvectors of graph Laplacian
for data sampled from the torus. See text for details.

matrix L = D™Y2(D — W)D™'/? excluding the very bot-
tom constant eigenvector. The matrix L is referred to as the
normalized (and symmetrized) graph Laplacian or graph
Laplacian for brevity in the rest of the paper.

The eigenvectors of the graph Laplacian can be seen as
discretized versions of harmonic functions (Lafon, 2004;
Coifman et al., 2005); i.e., they are eigenfunctions of the
continuous Laplace-Beltrami operator sampled at the lo-
cations of the x;. As an example, Fig. 1 shows some of
the first non-constant eigenvectors (mapped onto 2-D) for
data points sampled from a 3-D torus. The image inten-
sities correspond to the high and low values of the eigen-
vectors. The variation in the intensities can be interpreted
as the high and low frequency components of the harmonic
functions. Intuitively, these eigenvectors can be used to ap-
proximate smooth functions on the manifold (Bengio et al.,
2003; Ham et al., 2004). We will explore this intuition in
the next section to parameterize the central subspace with
these eigenfunctions.

3. Manifold KDR

Consider regression problems where the covariates have an
intrinsic manifold structure. Can we incorporate such geo-
metrical information into the process of identifying a pre-
dictive representation for the covariates? To this end, we
present an algorithm that we refer to as manifold kernel di-
mension reduction (nNKDR). The algorithm combines ideas
from unsupervised manifold learning and KDR.

At a high level, the algorithm has three ingredients: (1) the
computation of a low-dimensional embedding of covari-
ates X; (2) the parametrization of the central subspace as
a linear transformation of the low-dimensional embedding;
(3) the computation of the coefficients of the optimal linear
map using the KDR framework. The linear map yields di-
rections in the low-dimensional embedding that contribute
most significantly to the central subspace. Such directions
can be used for data visualization.

Let us choose M eigenvectors {vm}%: |» Or equivalently, an
M-dimensional embedding U € U c RMN. As in the

framework of KDR, we consider a kernel function that

maps a point B x; in the central subspace to the RKHS.
We construct the mapping explicitly:

K(,B'x;) ~ ®u; (7)
by approximating it with a linear expansion ® € RM*M in
the eigenfunctions. Note that the linear map ® is indepen-

dent of x;, enforcing a globally smooth transformation on
the embedding U.

We identify the linear map ® in the framework of KDR.
Specifically, we aim to minimize the contrast function of
eq. (4) for statistical conditional independence between the
response y; and x;. The Gram matrix is then approximated
and parameterized by the linear map ®:

(K(,B"x)),K(,B'x})) ~ u;"® " ®u; ®)

Finally, we formulate the following optimization problem:

min Tr [K, (U QU + Nel)™']
suchthat Q>0 9
Tr(Q) = 1

where Q@ = ®T®. Note that if Q is allowed to grow arbi-
trarily large then the objective function attains an arbitrarily
small value with infimum of zero. Therefore, we constrain
the matrix Q to have unit trace: Tr(2) = 1. Furthermore,
the matrix € needs to be constrained in the cone of positive
semidefinitive matrices, i.e., Q > 0, so that a linear map ®
can be computed as the square root of the €.

Note that recovering B from the linear map @ is possible
via inverting the map in eq. (7). However, we would like to
point out that for the purpose of regression using reduced
dimensionality, it is sufficient to build regression models
for Y from the central subspace ®U in the embedding space
U generated by the graph Laplacian.

The optimization of eq. (9) is nonlinear and nonconvex. We
have applied the projected gradient method to find local op-
timal minimizers. This method worked well in all of our
experiments. Despite the nonconvexity of the problem, ini-
tialization with the identity matrix gave fast convergence in
our experiments. Algorithm 1 gives the pseudocode for the
mKDR algorithm. In our experiments we choose a regu-
larized linear response kernel Ky = Y'Y + Nel, but other
choices could also be considered.

The problem of choosing the dimensionality of the central
subspace is still open in the case of KDR and is open in our
case as well. A heuristic strategy is to choose M to be larger
than a conservative prior estimate of the the dimensionality
d of the central subspace and to rely on the fact that the
solution to the optimization eq. (9) often leads to a low rank
linear map ®. The rank r = rRANK(®) then provides an
empirical estimate of d. Let ®" stand for the matrix formed
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Algorithm 1 Manifold Kernel Dimension Reduction
Input:
Covariates {x; € R} and responses {y; € R”'}
M < D: number of eigenvectors
d < M: the dimensionality of the central subspace
Output: linear map @
Compute eigenvectors {vm}n"f=l via graph Laplacian
Initialize Q « I
t—1
repeat
Set step size 7 «— 1/t
Update Q with gradient descent

N
i=1

ATt [K,(U™QU + Nel)™']
oQ

Qe—Q-g (10)

where the gradient is given by
~UU'QU + Nel) 'K,(U'QU + Nel)™'U"
Project Q to the positive semidefinite cone

Q Z max(d,, 0)a,a’ (11)

where (4,,, a,,) are Q’s eigenvalues and eigenvectors.

Scale Q to have unit trace: Q « Q/ Tr(Q)

Increase #: t « ¢+ 1
until |V(t) - V(- 1)|/|V(#)| < tol, where V() is the
value of the objective function of eq. (9) at step ¢.
Compute ® as the square root of Q

by the top r eigenvectors of ®@. We can approximate the
subspace of ®U with ®@"U.

Additionally, the row vectors of the matrix ®" are com-
binations of eigenfunctions. We can select the eigenfunc-
tions with the largest coefficients and use them to visual-
ize the original data {x;}. Note that these eigenfunctions
are not necessarily chosen consecutively from the spectral
bottom of the graph Laplacian (in contradistinction to the
unsupervised manifold learning setting). Indeed, the seem-
ingly out-of-order selection of eigenfunctions implemented
by our procedure can be interpreted as the “most predic-
tive” functions that respect the intrinsic geometry of {x;}.
In our experiments, we have used these strategies to reveal
the central subspace as well as to visualize data.

4. Experimental Results

We demonstrate the effectiveness of the mKDR algorithm
with one synthetic and two real-world data sets. For two
of the three data sets, the true manifolds underlying the
data can be directly visualized with 3-D graphics. The
true manifold for the third data set is high-dimensional and

1 1
rd
08 o 08
ws
06 L 06
> e >
0.4 - 04
02 e 02
of ¥ 0
3 2 -1 o0 1 3 2 -1 o0 1
eu x10° ey x10°
(a) ()

Figure 2. Central subspaces of data on torus, sampled uniformly
and randomly. See text for details.

cannot be visualized directly. Applying the algorithm of
mKDR to these data sets yielded interesting and informa-
tive low-dimensional representations, confirming the po-
tential of the algorithm for exploratory data analysis and
visualization of high-dimensional data.

4.1. Regression on a Torus

We begin by analyzing data points lying on the surface
of a torus, illustrated in Fig. 1. A torus can be con-
structed by rotating a 2-D cycle in R3 with respect to an
axis. Therefore, a data point on the surface has two de-
grees of freedom: the rotated angle 6, with respect to the
axis and the polar angle 6, on the cycle. We synthesized
our data set by sampling these two angles from the Carte-
sian product [0 2x] x [0 2x]. The 3-D coordinates
of our torus are thus given by x; = (2 + cos6,)coséb,,
X» = (2 + cosf,)siné,, and x3 = sinf,. We then em-
bed the torus in x € R!® by augmenting the coordinates
with 7-dimensional all-zero or random vectors. To set up
the regression problem, we define the response by y =
o [-17(V(6, =7 + (@, — 1)? - 0.6x)| where o] is the
sigmoid function. Note that y is radial symmetric, depend-
ing only on the distance between (6,,6,) and (r, 7). The
colors on the surface of the torus in Fig. 1 correspond to
the value of the response.

We applied mKDR to the torus data set generated from 961
uniformly sampled angles 6, and 6,. We used M = 50 bot-
tom eigenvectors from the graph Laplacian. The mKDR
algorithm then computed the matrix ® € R that min-
imizes the empirical conditional covariance operator; cf.
eq. (9). We found that this matrix is nearly rank 1 and can
be approximated by a'a where a is the eigenvector corre-
sponding to the largest eigenvalue. Hence, we projected the
50-D embedding of the graph Laplacian onto this principal
direction a. Fig. 2(a) shows the scatter plot of the projec-
tions and the responses of all samples. The scatter plot re-
veals a clear linear relation. Thus, if we want to regress the
response on the eigenvectors returned by the graph Lapla-
cian, a linear regression function is appropriate and very
likely to be sufficient.
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Figure 3. Visualizing data using the most predictive eigenvectors,
contributing the most to the central subspace, as well as the bot-
tom eigenvectors ignoring responses. See text for details.

The linear relation revealed in Fig. 2(a) does not mean that
it is appropriate to choose linear functions to regress the
response on the original coordinates of the torus. Specifi-
cally, the coordinates are mapped to the kernel space via a
highly nonlinear mapping induced by the graph Laplacian.
For this particular example, the kernel mapping is powerful
enough to make linear regression in the RKHS sufficient.

In practice it is often not possible to achieve a uniform sam-
pling of the underlying manifold. Furthermore it is reason-
able to assume that both covariates and response are noisy.
To examine the robustness of the mKDR algorithm, we cre-
ate a torus data set where 6, and 6, are randomly sampled
and the covariate x and response y are disturbed by additive
Gaussian noise. Fig. 2(b) illustrates the central subspace
of the noisy data set. Comparing to the noiseless central
subspace in Fig. 2(a), the central subspace is more diffuse
although the general trend is still linear.

The principal direction a allows us to view central sub-
spaces in the RKHS induced by the manifold learning ker-
nel. It also gives rise to the possibility of visualizing data
in the coordinate space induced by the graph Laplacian.
Specifically, a encodes the combining coefficients of eigen-
vectors. To understand which eigenvectors are the most
useful in forming the principal direction, we chose the three
eigenvectors with largest coefficients in magnitude. They
corresponded to the first, the third and the fifth bottom
eigenvectors of graph Laplacian. We call them predictive
eigenvectors. Fig. 3(a) shows the 3-D embedding of sam-
ples using the predictive eigenvectors as coordinates, where
the color encodes the responses. As a contrast, Fig. 3(b)
shows the 3-D embedding of the torus using the bottom
three eigenvectors. The difference in how data is visual-
ized is clear: mKDR arranges samples under the guidance
of the responses while unsupervised graph Laplacian does
so solely based on the intrinsic geometry of the covariates.

4.2. Predicting Global Temperature

To investigate the effectiveness of mKDR on complex non-
linear regression problems, we have applied it to visualize

Figure 4. A map of the global temperature in Dec. 2004 and its
central subspace. See text for details

and analyze a set of 3168 satellite measurements of temper-
atures in the middle troposphere (Remote Sensing Systems,
2004). Fig. 4(a) shows these temperature encoded by col-
ors on a world map, where yellow or white colors mean
hotter temperature and red colors mean lower temperature.
Our regression problem is to predict the temperature using
the coordinates of latitude and longitude. Note that there
are only two covariates in the problem. However, it is not
obvious what is the most suitable regression function by
reading the temperature map. Moreover, the domain of the
covariates is not Euclidean, but rather ellipsoidal, a fact that
a regression method should take into consideration when
estimating the global temperature distribution.

We applied the algorithm of mKDR to the temperature
data set. We choose M = 100 eigenvectors from the
graph Laplacian. We projected the M-dimensional mani-
fold embedding onto the principal direction of the linear
map ®. Fig. 4(b) displays the scatter plot of the projection
against the temperatures. The relationship between the two
is largely linear.

We tested the linearity by regressing the temperatures on
the projections, using a linear regression function. The
predicted temperatures and the prediction errors are shown
in Fig. 5(a) and Fig. 5(b), with color encoding tempera-
tures and errors respectively. Note that the central space
predicts the overall temperature pattern well. In areas of
inner Greenland, inner Antarctica and the Himalayas, the
prediction error are relatively large, shown in red color
in Fig. 5(b). Climates in these areas are typically ex-
treme and vary significantly even across small local re-
gions. Such variations might not be well represented by
the graph Laplacian eigenfunctions which are smooth.

4.3. Regression on Image Manifolds

In our two previous experiments, the underlying mani-
folds are low dimensional and can be directly visualized.
In this section, we experiment with a real-world data set
whose underlying manifold is high-dimensional and un-
known. Our data set contains one thousand 110x 80 images
of a snowman in a three-dimensional scene. Each snowman
is rotated around its axis with an angle chosen uniformly
random from the interval [—45°, 45°], and tilted with an an-
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(a)

Figure 5. Prediction and prediction errors of the global tempera-
ture. See text for details.

gle chosen uniformly random from [—-10°, 10°]. Moreover,
the objects are subject to random vertical plane translations
spanning 5 pixels in each direction. A few representative
images of such variations are shown in Fig. 6(a). Note that
all variations are chosen independently. Therefore, the data
set resides on a four-dimensional manifold embedded in
110 x 80-dimensional space.

Suppose that we are interested in the rotation angle and
would like to create a low-dimensional embedding of the
data that highlights this aspect of image variation, while
also maintaining variations in other factors. To this end,
we set up a regression problem whose covariates are im-
age pixel intensities and whose responses are the rotation
angles of the images.

We applied the mKDR algorithm to the data set and the as-
sociated regression problem, using M = 100 eigenvectors
of the graph Laplacian. The algorithm resulted in a cen-
tral space whose first direction correlates fairly well with
the rotation angle, as shown in Fig. 6(b). In Fig. 7(a), we
visualize the data in R? by using the top three predictive
eigenvectors. We use colors to encode the rotation angle of
each point. The data clustering pattern in the rotation an-
gles are clearly present in the embedding. As a contrast, we
used the bottom three eigenvectors to visualize the data as
typically practiced in unsupervised manifold learning. The
embedding, shown in Fig. 7(b) with colors encoding rota-
tion angles, shows no clear structure or pattern, in terms
of rotation. In fact, the nearly one-dimensional embedding
reflects closely the tilt angle, which tends to cause large
variations in image pixel intensities.

5. Related Work

There has been relatively little previous work on the su-
pervised manifold learning problem. Sajama and Orlit-
sky (2005) recently proposed a dimensionality algorithm
that exploits supervised information to tie the parameters
of Gaussian mixture models. This contrasts to the model-
free assumption of the SDR framework. This is also the
case for the manifold regularization framework (Belkin
et al., 2006), which implements semi-supervised learning
with regularization terms controlling the complexity both

Rotation angle (degrees)
°

'
&
S

-0.05 0 0.05
U

(b)

Figure 6. Images of rotating, tilting and translating snowman and
its central subspace when the rotation angle is used as regression
response. See text for details.

in the ambient and intrinsic geometries. Side information
can also be used to achieve better low-dimensional em-
beddings in the “pure” setting of manifold learning (Yang
et al.,, 2006). However, that work does not treat regres-
sion; the side information is the prior knowledge of a “cor-
rect” embedding, not the predictive information coded by
responses. Finally, it is important to emphasize that despite
the similarity in terminology, the work on “sufficient di-
mensionality reduction” of Globerson and Tishby (2003) is
fundamentally different from the SDR framework studied
here, in that it focuses on algorithms for compressing data
in the form of two-way contingency tables. It is closely
related to low-rank matrix factorization for compact repre-
sentation of matrices; it is not a regression methodology.

6. Conclusions

Dimensionality reduction is an essential component of
many high-dimensional data analysis procedures. This pa-
per presents a new method for dimensionality reduction
that is appropriate when supervised information is available
to guide the process of finding manifolds of reduced dimen-
sionality yet with high predictive power. Our approach is
based on two strands of research that have hitherto not in-
teracted: sufficient dimension reduction from the statistics
literature and manifold learning from the machine learning
literature. The bridge that connects these ideas is the re-
cently proposed methodology of kernel dimension reduc-
tion.

We have proposed an algorithm of manifold kernel dimen-
sion reduction (mKDR). We have applied the algorithm to
several synthetic and real-world data sets in the interest of
exploratory data analysis and visualization. In these exper-
iments, the algorithm discovered low-dimensional and pre-
dictive subspaces and revealed interesting and useful data
patterns that are not accessible to unsupervised manifold
learning algorithms.

The mKDR algorithm is a particular instantiation of the
framework of kernel dimension reduction. Therefore, it en-
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(b)

Figure 7. Embedding the snowman images with predictive eigen-
vectors and bottom graph Laplacian eigenvectors, respectively.
Color corresponds to rotation angle.

joys many of the desirable properties of kernel methods in
general, including the ability to handle of multivariate re-
sponse variables and non-vectorial data. We view mKDR
as a promising general tool for the visualization of complex
data types.
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