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Summary. In the paper | give a brief review of the basic idea and some history and then dis-
cuss some developments since the original paper on regression shrinkage and selection via
the lasso.
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1. The lasso

Given a linear regression with standardized predictors x;; and centred response values y; for
i=1,2,...,Nand j=1,2,..., p, the lasso solves the /|-penalized regression problem of finding
B ={p,} to minimize

N 2 P

Z(Yi —injﬁj) +A X 1B

i=1 j j=1
This is equivalent to minimizing the sum of squares with a constraint of the form X [3;| <s.
It is similar to ridge regression, which has constraint ¥; ﬁf < t. Because of the form of the
[1-penalty, the lasso does variable selection and shrinkage, whereas ridge regression, in con-
trast, only shrinks. If we consider a more general penalty of the form (E?Zl ﬁ?)l/ 4, then the
lasso uses ¢ =1 and ridge regression has g =2. Subset selection emerges as ¢ — 0, and the
lasso uses the smallest value of ¢ (i.e. closest to subset selection) that yields a convex problem.
Convexity is very attractive for computational purposes.

2. History of the idea

The lasso is just regression with an /{-norm penalty, and /{-norms have been around for a long
time! My most direct influence was Leo Breiman’s non-negative garrotte (Breiman, 1995). His
idea was to minimize, with respect to ¢ ={c;},

N \2 _ P

Z(yi_zcjxijﬁj) subjecttocj20, Zngt,

i=1 j j=1

where 3 j are usual least squares estimates. This is undefined when p > N (which was not a hot
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topic in 1995!) so I just combined the two stages into one (as a Canadian I also wanted a gen-
tler name). In other related work around the same time, Frank and Friedman (1993) discussed
bridge regression using a penalty A¥|3;|7, with both A and ~y estimated from the data, and Chen
et al. (1998) proposed basis pursuit, which uses an /j-penalty in a signal processing context.
Surely there are many other references that I am unaware of. After publication, the paper did
not receive much attention until years later. Why?: my guesses are that

(a) the computation in 1996 was slow compared with today,

(b) the algorithms for the lasso were black boxes and not statistically motivated (until the
LARS algorithm in 2002),

(c) the statistical and numerical advantages of sparsity were not immediately appreciated (by
me or the community),

(d) large data problems (in N, p or both) were rare and

(e) the community did not have the R language for fast, easy sharing of new software tools.

3. Computational advances

The original lasso paper used an off-the-shelf quadratic program solver. This does not scale
well and is not transparent. The LARS algorithm (Efron et al., 2002) gives an efficient way of
solving the lasso and connects the lasso to forward stagewise regression. The same algorithm is
contained in the homotopy approach of Osborne et al. (2000). Co-ordinate descent algorithms
are extremely simple and fast, and exploit the assumed sparsity of the model to great advantage.
References include Fu (1998), Friedman ez al. (2007, 2010), Wu and Lange (2008) and Genkin
et al. (2007). We were made aware of its real potential in the doctoral thesis of Anita van der
Kooij (Leiden) working with Jacqueline Meulman. The glmnet R language package (Friedman
et al., 2010) implements the co-ordinate descent method for many popular models.

4. Some generalizations and variants of the lasso

There has been much work in recent years, applying and generalizing the lasso and /-like penal-
ties to a variety of problems. Table 1 gives a partial list. There has also been much deep and inter-
esting work on the mathematical aspects of the lasso, examining its ability to produce a model
with minimal prediction error, and also to recover the true underlying (sparse) model. Impor-
tant contributors here include Bickel, Bihlmann, Candes, Donoho, Johnstone, Meinshausen,
van de Geer, Wainwright and Yu. I do not have the qualifications or the space to summarize
this work properly, but I hope that Professor Bithimann will cover this aspect in his discussion.

Lasso methods can also shed light on more traditional techniques. The LARS algorithm,
which was mentioned above, brings new understanding to forward stepwise selection meth-
ods. Another example is the graphical lasso for fitting a sparse Gaussian graph, based on the
Gaussian log-likelihood plus A2 ~!||1, which is an /;-penalty applied to the inverse covariance
matrix. Since a missing edge in the graph corresponds to a zero element of X!, this gives a
powerful method for graph selection—determining which edges to include. As a bonus, a special
case of the graphical lasso gives a new simple method for fitting a graph with prespecified edges
(corresponding to structural Os in ©~!). The details are given in chapter 17 of Hastie et al.
(2008).

Another recent example is nearly isotonic regression (Fig. 1) (Tibshirani et al., 2010). Given a
data sequence yi, y2, ..., yn isotonic regression solves the problem of finding y;, y,,...,y to
minimize
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Table 1. A sampling of generalizations of the lasso

Method Reference Detail
Grouped lasso Yuan and Lin (2007a) 24118412

Elastic net Zou and Hastie (2005) M2 |/3q |+ )\22[3
Fused lasso Tibshirani et al. (2005) AX|Bjs1 — Bjl
Adaptive lasso Zou (2006) MEw;lB)l

Grapbhical lasso

Dantzig selector

Near isotonic regularization
Matrix completion
Compressive sensing
Multivariate methods

Yuan and Lin (2007b); Friedman et al. (2007)

Candes and Tao (2007)
Tibshirani et al. (2010)

Candes and Tao (2009); Mazumder et al. (2010)

Donoho (2004); Candes (2006)

Jolliffe et al. (2003); Witten et al. (2009)

loglik+ A= ~1;
mm{XT(y XB)lloo BN <1
i — B+

||X X+ N[ X ]«

min(|3];) subject to y= X3

Sparse principal components
analysis, linear discriminant
analysis and canonical
correlation analysis

L]

(b)

(]
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Fig. 1. lllustration of nearly isotonic fits for a toy example: (a) interpolating function (A = 0) and three joining
events (1), (b) (A\=0.25), (c) (A\=0.7) and (d) (A =0.77), with the usual isotonic regression

S =9’ subject to §; <

By

This assumes a monotone non-decreasing approximation, with an analogous definition for the
monotone non-increasing case. The solution can be computed via the well-known pool adjacent
violators algorithm (e.g. Barlow et al. (1972)). In nearly isotonic regression we minimize, with

respect to 3,

—z@, B+ (B — B,

i=1
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with x4 indicating the positive part, x4 =x - 1(x > 0). This is a convex problem, with B,- =y; at
A =0 and culminating in the usual isotonic regression as A — co. Along the way it gives nearly
monotone approximations. (8; — Bi+1)+ is ‘half’ of an /-penalty on differences, penalizing dips
but not increases in the sequence. This procedure allows us to assess the assumption of monoto-
nicity by comparing nearly monotone approximations with the best monotone approximation.
Tibshirani et al. (2011) have provided a simple algorithm that computes the entire path of solu-
tions, which is a kind of modified version of the pooled adjacent violators procedure. They
also showed that the number of degrees of freedom is the number of unique values of y; in the
solution, using results from Tibshirani and Taylor (2011).

5. Discussion

Lasso (I1-)penalties are useful for fitting a wide variety of models. Newly developed compu-
tational algorithms allow application of these models to large data sets, exploiting sparsity
for both statistical and computation gains. Interesting work on the lasso is being carried out in
many fields, including statistics, engineering, mathematics and computer science. I conclude
with a challenge for statisticians. This is an enjoyable area to work in, but we should not invent
new models and algorithms just for the sake of it. We should focus on developing tools and
understanding their properties, to help us and our collaborators to solve important scientific
problems.
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Comments on the presentation

Peter Bithlmann (Eidgendssiche Technische Hochschule, Ziirich)

I congratulate Rob Tibshirani for his excellent retrospective view of the lasso. It is of great interest to the
whole community in statistics (and beyond), ranging from methodology and computation to applications:
nice to read and of wide appeal!

The original paper (Tibshirani, 1996) has had an enormous influence. Fig. 2 shows that its frequency of
citation continues to be in the exponential growth regime, together with the false discovery rate paper from
Benjamini and Hochberg (1995): both of these works are crucial for high dimensional statistical inference.

The lasso was a real achievement 15 years ago: it enabled estimation and variable selection simulta-
neously in one stage, in the non-orthogonal setting. The novelty has been the second ‘s’ in lasso (least
absolute shrinkage and selection operator). More recently, progress has been made in understanding the
selection property of the lasso.

Consider a potentially high dimensional linear model: ¥ =Xg, + ¢ (p>>n), with active set Sy = {j; 5o, ; #
0} and sparsity index so = |Sy|. The evolution of theory looks roughly as follows (to simplify, I use an asymp-
totic formulation where the dimension can be thought of as p = p, > n as n — oo, but, in fact, most of the
developed theory is non-asymptotic). It requires about 15 lines of proof to show that, under no conditions
on the design X (assuming a fixed design) and rather mild assumptions on the error,

IX(B— Bo)13/n < I Bolly Op/{log(p)/n}L;

see Bithlmann and van de Geer (2011), chapter 6, which essentially recovers an early result by Greenshtein
and Ritov (2004). Hence, the lasso is consistent for prediction if the regression vector is sparse in the
li-norm || Bylly = o[/{n/log(p)}]. Achieving an optimal rate of convergence for prediction and estim-
ation of the parameter vector requires a design condition such as restricted eigenvalue assumptions
(Bickel et al., 2009) or the slightly weaker compatibility condition (van de Geer, 2007; van de Geer and
Biihlmann, 2009). Denoting by ¢§ such a restricted eigenvalue or compatibility constant (which we assume
to be bounded away from zero),

IX(B = Bo)13/n < 50/ 83 Op{log(p)/n},
13— Bolly <50/ 6% Opl/{log(p)/n}], qe{1,2};

see Donoho et al. (2006), Bunea et al. (2007), van de Geer (2008) and Bickel et al. (2009). Finally, for
recovering the active set Sy, such that P(S=S)) is large, tending to 1 as p>n — oo, we need quite

O]
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Fig. 2. Cumulative citation counts (on a log-scale) from the Thomson ISI Web of Knowledge (the largest
abscissa on the x-axis corresponds to August 31st, 2010): (a) the lasso (O) (Tibshirani, 1996), false discovery
rate (A) (Benjamini and Hochberg, 1995), reversible jump Markov chain Monte Carlo sampling (+) (Green,
1995) and wavelet shrinkage (X) (Donoho and Johnstone, 1994), published between 1994 and 1996;
(b) the bootstrap (A) (Efron, 1979), published earlier

restrictive assumptions which are sufficient and (essentially) necessary: the neighbourhood stability con-
dition for X (Meinshausen and Biihlmann, 2006), which is equivalent to the irrepresentable condition
(Zhao and Yu, 2006; Zou, 2006), and a ‘beta-min’ condition

min |y ;| > Csy> /¢3/{log(p)/n}

requiring that the non-zero coefﬁ01ents are not too small. Both of these conditions are restrictive and
rather unlikely to hold in practice! However, it is straightforward to show from the second inequality in

expression (1) that
N log(p)
§2 Srelev: Srelev = {]a |60 /| > C \/{ P }}
¢0 n

holds with high probability. The underlying assumption is again a restricted eigenvalue condition on the
design: in sparse problems, it is not overly restrictive; see van de Geer and Biithlmann (2009) and Biihlmann
and van de Geer (2011) (corollary 6.8). Furthermore, if the beta-min condition holds, then the true active
set So = Sreley and we obtain the variable screening property

S5, with high probability.

Regarding the choice of the regularization parameter, we typically use Aev from cross-validation. ‘Luck-
ily’, empirical and some theoretical indications support that SOcev) 2 Sy (or SGev) 2 Srelev): this is the
relevant property in practice! The lasso is doing variable screening and, hence, I suggest that we interpret
the second ‘s’ in lasso as ‘screening’ rather than ‘selection’.

Once we have the screening property, the task is to remove the false positive selections. Two-stage pro-
cedures such as the adaptive lasso (Zou, 2006) or the relaxed lasso (Meinshausen, 2007) are very useful.
Recently, we have developed methods to control some type I (multiple-testing) error rates, guarding against
false positive selections: stability selection (Meinshausen and Biithlmann, 2010) is based on resampling or
subsampling for very general problems, and related multiple sample splitting procedures yield p-values in
high dimensional linear or generalized linear models (Meinshausen ef al., 2009).
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These resampling techniques are feasible since computation is efficient: as pointed out by Rob, (block)
co-ordinatewise algorithms are often extremely fast. Besides Fu (1998), the idea was transferred to statis-
tics (among others) by Paul Tseng, Werner Stuetzle and Sylvain Sardy (who was a former doctoral student
of Stuetzle); see Sardy ez al. (2000) or Sardy and Tseng (2004). A key work is Tseng (2001), and also Tseng
and Yun (2009) is crucial for extending the computation to for example group lasso problems for the
non-Gaussian, generalized linear model case (Meier et al., 2008).

The issue of assigning uncertainty and variability in high dimensional statistical inference deserves fur-
ther research. For example, questions about power are largely unanswered. Rob Tibshirani laid out very
nicely the various extensions and possibilities when applying convex penalization to regularize empirical
risk corresponding to a convex loss function. There is some work arguing why concave penalties have
advantages (Fan and Lv, 2001; Zhang, 2010): the latter reference comes up with interesting properties
about local minima. The issue of non-convexity is often more severe if the loss function (e.g. negative log-
likelihood) is non-convex. Applying a convex penalty to such problems is still useful, yet more challenging
in terms of computation and understanding the theoretical phenomena: potential applications are mix-
ture regression models (Khalili and Chen, 2007; Stadler et al., 2011), linear mixed effects models (Bondell
et al., 2010; Schelldorfer et al., 2011) or missing data problems (Allen and Tibshirani, 2010; Stadler and
Bithlmann, 2009). The beauty of convex optimization and convex analysis is (partially) lost and further
research in this direction seems worthwhile.

The lasso, which was invented by Rob Tibshirani, has stimulated and continues to stimulate exciting
research: it is a true success! It is my great pleasure to propose the vote of thanks.

Chris Holmes (University of Oxford)
It is both an honour and a great pleasure to have been invited to second the vote of thanks on this ground
breaking paper that is as relevant today as it was 14 years ago at the time of publication, although the
tradition of the Society for the seconder to offer a more critical appraisal makes this challenging to say
the least. There can be few papers which have had such a marked influence on our way of thinking about
regression analysis and parameter estimation; and it is one of a select handful of papers that have strongly
influenced both Bayesian and non-Bayesian statistics.

All this is even more remarkable in view of, or perhaps due to, the simple structure of the lasso estimator,

B:argmgx{l(ﬂ)—)\zwﬂq} )
- J

where /() has the form of a log-likelihood recording fidelity to the data and, with g =1, the lasso penalty
encodes a priori beliefs about the nature of the unknown regression coefficients. Written in this way we
can see that one interpretation of the lasso is as a Bayesian maximum a posteriori (MAP) estimate under
a double-exponential prior on S. I believe that it is instructive to note an alternative representation of the
lasso estimator in the form of a generalized ridge regression (see for example Holmes and Pintore (2007)),
where

{/B, n}=arg I%alx{l(ﬂ) — 277/._1 [312} subject to > n;=t, 3)
B j j

leading to 3= 3 for some 7 a monotone function of A. This shows the lasso as a Bayesian MAP estimate
under a normal prior on 3 with individual variance components constrained to sum to some constant ¢.
This sheds light on the essential difference between ridge regression and the lasso. Whereas in ridge regres-
sion the variance components are equal and fixed at some constant, in the lasso the variance components
can be apportioned in a data-adaptive manner to maximize the likelihood. For variables that are non-
relevant to the regression we find ; — 0 and hence B =01is ‘shrunk’ to 0 by the corresponding normal prior
which then allows for more variance, and hence less shrinkage, to be placed on the important predictors.

From a frequentist perspective this interpretation also highlights a potential weakness of the lasso when
estimating sparse signals. As the sample size becomes large, n — oo and (if you are being frequentist) you
would clearly wish for some 7; — 0 (to achieve sparsity) but also for those predictors that are relevant to
the regression to have 77; — oo (to remove bias), to achieve oracle properties. But the lasso does not give you
this freedom without setting t — co. In terms of the MAP interpretation of expression (2) we see that the
tails of the double-exponential prior are too light. This has led to considerable recent research investigating
other forms of penalty that allow for oracle properties (Zou, 2006; Zou and Li, 2008; Candes et al., 2008).
However, improved properties of the corresponding estimators come at the expense of computational
tractability.
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The interpretation of the lasso as an MAP estimate also highlights another issue from a Bayesian
perspective—although I fully appreciate that Professor Tibshirani does not refer to, or think of, the lasso
as a Bayesian MAP estimator. From the Bayesian perspective, the use or reporting of a parameter estimate
must follow from some decision process under an appropriate loss or scoring rule (Bernardo and Smith,
1994). It is then interesting to ask for what class of problems, decisions or loss functions is the lasso the
appropriate estimate to use? In other words, if the answer is the ‘lasso’, what is the question? It turns out that
there is no natural decision process under which the appropriate answer is to use an MAP estimate. To see
this we note that reporting or using the MAP estimate only arises under a 0—1 loss which for continuous
parameters is contrived:

Loss(a, 8) —1 =15, (B)

where B.(a) is a ball of radius ¢ — 0 in Q5 centred at a Should this worry us at all?: yes if you adhere
to the Bayesian school of statistics. It highlights the fact that conditioning on the estimates of a set of
unknown parameters is rarely justified from a decision theory perspective and masks a key component
of uncertainty in the regression analysis. In the Bayesian approach the reporting of models, predictions
and parameter values all typically follow from a process of marginalzation over any unknowns to provide
posterior distributions on parameters, models etc. that accommodate the uncertainty arising from finite
data. One direct effect of this masking of uncertainty in modern applications, for instance in genomics,
is when the nature of the processes leads to highly dependent predictor variables sometimes with cryptic
(almost malicious) associations. In the presence of strong correlations between predictors with differing
effect sizes, frequentist sparsity approaches, including the lasso, will tend to select a single variable within
a group of collinear predictors, discarding the others in the pursuit of sparsity. However, the choice of the
particular predictor might be highly variable and by selecting one we may ignore weak (but important)
predictors which are highly correlated with stronger predictors. Recent methods have sought to address
this in innovative ways (see, for example, Yuan and Lin (2006) and Meinshausen and Biithlmann (2010)),
but the Bayesian approach naturally accommodates this uncertainty through reporting of joint distribu-
tions on predictor inclusion—exclusion that quantifies the dependence between dependent predictors; see
for example, Clyde and George (2004) and Park and Cassella (2008). It seems to me that if you are going to
introduce subjective penalty measures then it is much simpler and more natural to do so within a Bayesian
paradigm.

In summary, Tibshirani (1996) is a thought-provoking and landmark paper that continues to influence
and shape current thinking in regression. It has generated many extensions including branches within
domains such as classification, clustering and graphical modelling, and fields such as signal processing
and econometrics. I look forward to seeing its continued influence for many years to come.

Author’s response

I thank Professor Biihlmann and Professor Holmes for their kind words, both in person and in print. Since
this is a retrospective paper published over 10 years ago, it is not surprising that the contributed discussions
are uncharacteristically ‘tame’ for a Royal Statistical Society discussion paper. Hence my rejoinder will be
brief.

In my original paper I mentioned that the lasso solution can be viewed as the Bayesian maximum
a posteriori estimate when the parameters are a priori independent, each having a Laplacian (double-expo-
nential) prior distribution. However, the lasso solution is not the posterior mean or median in that setting:
these latter solutions will not be sparse. Professor Holmes presents an alternative way to view the lasso as
a Bayesian maximum a posteriori estimate. His model has a Gaussian prior with unequal variances n; for
each predictor j, and a constraint ¥; =t. It interesting that the solution to this problem gives the lasso
estimate. But I am not sure what to make of it: is this prior with a constraint something which a statistician
might think is reasonable on its own?

Professor Holmes then criticizes maximum a posteriori estimates in general and goes on to recommend
that a more standard, complete Bayesian analysis be used to assess the instability and uncertainty in the
lasso solution due to correlation between features. In this regard he refers to the ‘Bayesian lasso’ of Park
and Casella (2008), which computes the posterior mean and median estimates from the Gaussian regres-
sion model with Laplacian prior. But these estimates, as I mentioned above, are not sparse. It seems to me
that, if you want to obtain sparse solutions from a standard Bayesian model, you need to specify a prior
that puts some mass at zero. One example of this is the spike-and-slab model of George and McCulloch
(1993). These kinds of approaches are interesting but lead to non-convex problems that are computa-
tionally daunting. And the problem of correlated features that was mentioned by Professor Holmes is an
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important one, but I think that a better way to improve the lasso estimates can be through generalized
penalties such as the group lasso (Ming and Lin, 2006) (which was mentioned by Professor Holmes), the
elastic net (Zou and Hastie, 2005) or the covariance regularization via the ‘scout’ procedure (Witten and
Tibshirani, 2009).

Professor Biihlmann has nicely summarized recent work by many people on the prediction and selection
consistency properties of the lasso. He mentions the fact that the lasso is good at finding (asymptotically) a
superset of the correct predictors, and that methods that produce even sparser models can be useful. I think
that the adaptive lasso is a promising approach for this problem, but the relaxed lasso (which Professor
Bithlmann also mentions) only adjusts the non-zero lasso coefficients and so does not generally prune the
model. Another way to obtain sparser models is through non-convex penalties such as smoothly clipped
absolute deviation (Fan and Li, 2005) or Sparsenet (Mazumder et al., 2010).

Finally, I think that we need better tools for inference with the lasso and related methods. Professor
Biithlmann mentions some promising work on multiple testing for lasso models. More basically, we need
reliable ways to assess the sampling variability of the lasso estimates. Standard errors would be a start but,
since the sampling distributions are mixtures (with some mass at zero), more refined summaries are needed.
We might need to fall back on bootstrap methods for this purpose: it would be important to understand
how best to apply these methods and to understand their properties.
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