
Regression Test Selection for Black-box Dynamic Link Library Components

Jiang Zheng1, Laurie Williams1, Brian Robinson2, Karen Smiley2
1 Department of Computer Science, North Carolina State University, Raleigh, NC 27695

{jzheng4, lawilli3}@ncsu.edu
2 ABB Inc., US Corporate Research

{brian.p.robinson, karen.smiley}@us.abb.com

Abstract

Software products are often configured with

commercial-off-the-shelf (COTS) components. When
new releases of these components are made available
for integration and testing, source code is usually not
provided. Various regression test selection processes
have been developed and have been shown to be cost
effective. However, the majority of these test selection
techniques rely on access to source code for change
identification. Based on our prior work, we are
studying the solution to regression testing COTS-based
applications that incorporate components of dynamic
link library (DLL) files. We evolved the Integrated -
Black-box Approach for Component Change
Identification (I-BACCI) process that selects
regression tests for applications based upon static
binary code analysis to Version 4 to support DLL
components. A feasibility case study was conducted at
ABB on products written in C/C++ to determine the
effectiveness of the I-BACCI process. The results of the
case study indicate this process can reduce the
required number of regression tests by as much as
100% if our analysis indicates the changes to the
component are not called by the glue code of the
application using the COTS component. Similar to
other regression test selection techniques, when there
are many changes in the new component I-BACCI
suggests a retest-all regression test strategy.

1. Introduction

Companies increasingly incorporate a variety of
commercial-off-the-shelf (COTS) components in their
products. Upon receiving a new release of a COTS
component, users of the component often conduct
regression testing to determine if a new version of a
component will cause problems with their existing
software and/or hardware system. Regression testing
involves selective re-testing of a system or component
to verify that modifications have not caused unintended

effects and that the system or component still complies
with its specified requirements [4]. A variety of
regression test selection (RTS) processes have been
developed (for example, [1, 3, 10]) to reduce the
number of tests that need to be executed without
significant risk of excluding important
failure-revealing test cases. However, most existing
RTS processes rely on source code, and therefore are
not suitable when source code is not available for
analysis, such as when an application incorporates
COTS components.

Due to the lack of information, the most
straightforward RTS strategy for COTS-based
applications would be to rerun all of the test cases for
the application involving the glue code after the new
COTS component(s) have been integrated. Glue code
is application code that interfaces with the COTS
components, integrating the component with the
application. The retest-all strategy can be prohibitively
expensive in both time and resources [3]. In our prior
research, we have evolved an effective multi-step RTS
process called Integrated - Black-box Approach for
Component Change Identification (I-BACCI) for
COTS-based applications by static binary change
identification and the firewall analysis [12] RTS
technique [16-18]. Black-box testing, also called
functional testing or behavioral testing, is testing that
ignores the internal mechanisms of a system or
component and focuses solely on the outputs generated
in response to selected inputs and execution conditions
[4]. Tool support for library (LIB) components has
been developed [18]. We are continuing this research
to reduce the regression testing required for
COTS-based applications that incorporate DLL
components when components change and source code
is not available.

The rest of this paper is organized as follows.
Section 2 outlines the background and related work.
Section 3 describes the I-BACCI Version 4 process
and its limitations. Section 4 presents the feasibility
case study. Finally, Section 5 presents the conclusions
and future work.

2. Background and Related Work

2.1. Testing of Software Components

Poor testability, due to the lack of access to the
component's source code and other artifacts, is one of
the challenges in user-oriented component testing [2,
11]. Generally, black-box tests can be run on COTS
software even though users do not have access to the
source code to analyze the internal implementation.
Black-box test cases of COTS component functionality
can be based upon the specification documentation
provided by the vendor. Alternately, the behavior could
be determined by studying the inputs and the related
outputs of the component. When only binary code is
available, binary reverse engineering is a
technically-feasible approach for deriving information
that can inform the RTS, e.g. call graphs describing the
design structure of a component [9].

2.2. Firewall Analysis

Leung and White [7, 8, 14] developed firewall
analysis for regression testing with integration test
cases (tests that evaluate interactions among
components [4]) in the presence of small changes in
functionally-designed software. Firewall analysis
restricts regression testing to potentially-affected
system elements directly dependent upon changed
system elements [14, 15]. Affected system elements
include modified functions and data structures, and
their calling functions. Our approach extends the
traditional concept and scope of firewall analysis for
use with binary code.

Module dependencies, control-flow dependencies,
and data dependencies are considered in firewall
analysis [14]. Dependencies are modeled as call graphs
and a "firewall" is set up around the changed functions
on the call graph. All modules inside the firewall are
unit and integration tested, and are integration tested
with all modules not enclosed by the firewall [14]. Test
cases that need to be re-run over these modules are
identified and/or new test cases to exercise new code or
functionality are generated. The firewall concept has
been utilized on object-oriented systems [5, 6, 12] and
for regression testing of graphical user interfaces [13].

Firewall methods can only be guaranteed to select
all modification-revealing tests and to be safe if all unit
and integration tests initially used to test system
components are reliable. Modification-revealing test
cases are those test cases, when executed before and
after the modification, for which the program will
generate different output [10]. A safe RTS process
guarantees that the subset of tests selected contains all

test cases in the original test suite that can reveal faults
based upon the modified program [1, 7, 10]. Tests are
reliable if the correctness of modules exercised by
those tests for the tested inputs implies correctness of
those modules for all inputs [10]. Since test suites are
typically not reliable in practice [15], the firewall
technique may omit modification-revealing tests and/or
may admit some non-modification-traversing tests.
However, via empirical studies of industrial real-time
systems, firewall was shown to be effective despite
these theoretical limitations [15]. Firewall is the RTS
technique embodied in the I-BACCI Version 4. Based
upon these empirical study results for firewall, these
theoretical limitations of firewall should not impair the
effectiveness of the I-BACCI process in practice.

2.3. Legal Issues

Twenty-eight software license agreements 1 were
gathered to investigate the legality of analyzing binary
code of purchased COTS components. Relevant
sentences in the license agreements were reviewed by
lawyers of North Carolina State University (NCSU).
Many of these license agreements of commercial
components prohibit the users of components from
reverse engineering, decompiling, disassembling, or
otherwise attempting to discover the source code of the
software, except to the extent that this restriction is
expressly prohibited by law. Copyright law does not
prohibit analysis on the code, only prohibits
reproducing the components, making derivative works,
or distributing copies of the products. As a result, the
NCSU lawyers deemed that the approaches and
algorithms used in the I-BACCI process are legal given
the purpose of the analysis.

We have also consulted a professor of Software
Engineering who is also a lawyer. The definition of
"reverse engineering" he provided is: "to study or
analyze (a device, as a microchip for computers) in
order to learn details of design, construction, and
operation, perhaps to produce a copy or an improved
version." The professor deems that we are reverse
engineering, and if a license indicates "no reverse
engineering", then use of the tool could constitute a
breach of contract. However, the interaction of patent
law and mass market license terms, as it affects
interoperability, is being actively debated within the
legal profession2; furthermore, many software
components may not have this license clause.

1 The agreements we analyzed are listed at
http://www4.ncsu.edu/~jzheng4/895/legalissues.htm
2 e.g. Daniel Laster, http://law.bepress.com/expresso/eps/975

3. The I-BACCI Version 4 Process
The I-BACCI process is an integration of a binary

code change identification process and a code-based
RTS process. Our uniqueness is the combination of
these two parts to identify and localize the changes, to
reduce the regression test suite. The I-BACCI process
and supporting tools have been generalized to Version
4 through the application of the process on both LIB
and Dynamic Link Library (DLL) components written
in C/C++. The I-BACCI Version 4 involves seven
steps, as shown in Figure 1. The inputs to the I-BACCI
process are shown in gray blocks. The first four steps
are completed via the binary change identification
process (in dash-dotted line frame), which produces a
report on affected exported component functions.
Affected exported component functions are functions
within the COTS component that interface with the
application, and are either changed or affected by other
changed functions. The remaining three RTS steps are
currently completed via firewall analysis (in dashed
line frame) and ultimately produce the reduced test
suite that needs to be rerun.

3.1. Process

The first step of the I-BACCI process is to
decompose2 the binary files of the component. Prior to
distribution, component source code is compiled into
binary code, such as .lib, .dll, or .class files.
Information on the data structures, functions, and
function calling relationships of the source code is
stored in the binary files according to pre-defined
formats, such as Common Object File Format (COFF)
and Portable Executable (PE) format 3 , so that an
external system is able to find and call the functions in
the corresponding code sections. Often the first
sub-step can be accomplished by parsing tools
available for the language/architecture. For example,
COFF and PE binary files can be examined by the
Microsoft COFF Binary File Dumper (DUMPBIN)4.

The second step, filtering trivial information, is
frequently necessary because the output from the first
sub-step may contain information such as timestamps
and file pointers, which are irrelevant to the change
identification. Generally, the second step cannot be
completed via existing tools. The Decomposer and
Trivial Information Zapper (D-TIZ)4 tool was created
to perform the decomposition and remove trivial
information. The output of Step 2 is the raw code

3 We use the term decomposing to refer to breaking up the binary
code down into constituent elements, such as code sections and
relocation tables.
4 MSDN Library - Visual Studio .NET 2003
5 http://www4.ncsu.edu/~jzheng4/895/tools.htm

section of each function/data, and function/data calling
relationships for the new version of the component.

The main goal of the third step of the I-BACCI
process is to identify true positive changes in the raw
binary code of functions and data. The Trivial
Identifier of Differences in BInary-analysis Text
Zapper (TID-BITZ)4 tool removes most of the false
positives caused by trivial differences such as shifted
addresses and register reallocations. Also, this step
generates call graphs for the new version of the
component. We created Call-graph Analyzer - Affected
Function Identifier (CAAFI)5 applications to represent
and analyze the call graphs of components of both LIB
and DLL types automatically in the I-BACCI Version
4. For LIB components, Step 2 is executed before Step
3. However, Step 3 must be executed before Step 2 for
DLL components because only the names of exported
component functions can be obtained in the binary
code. The main goal of Step 2 and Step 3 is to facilitate
comparisons and the identification of affected exported
component functions.

In the fourth step, we identify changed and new
component functions according to the results of prior
steps, and then identify affected exported component
functions by tracing along the call graphs within the
component using directed graph theory algorithms.
Analysis starts from each component function
identified as changed, and that change is propagated
along the call graphs from Step 3 until the exported
functions are reached. The output of Step 4 is a list of
all affected exported component functions. CAAFI
identifies the affected component functions as well.

Using the source code of glue code functions, the
fifth step is to generate function call graphs for glue
code functions that call exported component functions.
The call graphs generated from Step 3 and Step 5 can
be integrated to learn how glue code functions are
affected by changed and new component functions.
The call graphs can be drawn using existing open
source tools such as GraphViz5.

Similar to Step 4, the affected glue code functions
are identified in the sixth step. Affected glue code
functions are functions within the glue code that
directly call affected exported component functions
and therefore need to be re-tested.

In the seventh step, the set of test cases which are
mapped to the glue code functions they cover are used
to select only test cases that cover the affected glue
code functions, as identified by the steps above.

The I-BACCI process has the potential to reduce the
set of regression test cases because it focuses on the
affected glue code functions and ignores the unaffected
areas in the application.

6 An open source tool, http://www.graphviz.org/

Figure 1: I-BACCI Version 4 regression test selection process

3.2. Limitations of the I-BACCI Process

The I-BACCI process shares an acknowledged
technical limitation with all existing firewall methods:
the potential for reporting false positives and false
negatives when binary differences are due to factors
other than changes in source code (e.g. build tools,
environment, or target platform). Although such
differences are potentially detectable from the binary
file comparisons used in the I-BACCI process, the
current method of analysis precludes identification of
such differences.

The second limitation of the I-BACCI process is its
potential for identifying false positives by
conservatively assuming, in tracing the call graphs, that
any uses of called functions with changed binaries will
be affected by the change. However, an actual use of a
changed function might never exercise the changed
logic or data. With further development of the
I-BACCI process, these unneeded tests may be
eliminated from the regression suite.

As noted above, license agreement considerations
may constrain the breadth of applicability of this tool
and method.

Finally, the I-BACCI process requires (as input) test
suites which are traceable to the glue code functions
they cover, in order to perform RTS.

4. Feasibility Case Study for DLL
Components

Two case studies had previously been conducted on
ABB applications that incorporate LIB components
using the prior I-BACCI versions [16-18]. These two
case studies were re-analyzed with I-BACCI Version 4
and the results are identical to those presented in [18].

A new case study (henceforth called Case 3) was
conducted with on a 757 thousand lines of code
(KLOC) ABB application (henceforth called
Application A) written in C/C++ using the I-BACCI
Version 4 process. For Case 3, Application A uses a 3
KLOC internal ABB software component (henceforth
called Component C) of a DLL file written in C. Four
incremental releases of Component C were analyzed
and compared (henceforth referred to as Release C1
through Release C4, respectively). Each Component C
release contains a DLL file with size of about 110
kilobytes. We strived to maintain as much objectivity

as possible in the work. The first author was the
analyzer and the third author was the verifier. The
analyzer conducted the first six steps of the I-BACCI
Version 4. The results of the identified changes for all
comparisons and all call graphs for the components
were preliminarily verified by the analyzer, using
source code for the component to determine the
accuracy of the analysis post hoc. Then, the verifier
determined the numbers and percent reduction of the
regression test cases needed, based on the list of all the
affected glue code functions and the original test suite.
The verifier also confirmed the efficacy of the RTS
process by examining the failure records of the
retest-all black-box testing that had been conducted.

4.1. Results

The results of applying the I-BACCI Version 4 on
Case 3 are shown in Table 1. To establish a baseline of
affected functions in the application, the interface
between Application A's glue code functions and
Component C was examined. Only two functions in
Application A call four functions of Component C.

Table 1: Case 3 Results by the I-BACCI V4
Comparisons Metrics

1 vs 2 2 vs 3 3 vs 4
Same linker? No Yes Yes
Affected exported
component functions

45 9 44

True positive ratio 100% 100% 100%
False positive ratio 60% 0% 0%
% of affected exported
component functions

91.8% 18.4% 84.6%

Affected glue code functions 2 0 2
% of affected glue code
functions

100% 0% 100%

Total test cases needed 31 0 31
% of test cases reduction 0% 100% 0%
Actual regression failures
found

1 0 0

Regression failures detected
by reduced test suite

1 0 0

The first analysis was conducted between Release

C1 and Release C2. Of the 49 exported component
functions in Release C2, 45 were changed. Both of the
glue code functions in Application A that called
Component C were affected. As a result, there was no
regression test case reduction. The current tools
identified all changes but had significant false positives
when two versions were not built by the same linker.
The second analysis comparing Release C2 and
Release C3 correctly identified nine affected exported

component functions, but no function in Application A
called any affected functions in the components.
Therefore, we achieved 100% regression test case
reduction for this comparison. The result of the third
analysis between Release C3 and Release C4 was
similar to that of the first analysis, but no false
positives were identified because the current tools
worked well when comparing two releases built by the
same linker. The verifier examined the failure records
of retest-all black-box testing. One regression test
failure was found in the first comparison. No false
negatives were found in any analyses.

4.2. Case Study Limitations

A limitation of the case studies is that all of the
applications and components used were software
developed by ABB Inc. involving .lib and .dll library
files. Additionally, the current tools work well only
when the releases of components are built by the same
linker. If two compared releases are built by different
compilers or linkers, the current tools used in the
I-BACCI process will yield a significant number of
false positives. Also, we do not yet have data on the
saving of regression testing time for the case studies.

5. Conclusions and Future Work

In this paper, we present a feasibility case study of
the I-BACCI Version 4 process for regression test
selection for applications that incorporate DLL
components for which source code is not available.
The I-BACCI process can reduce the required number
of regression tests by as much as 100% if our analysis
indicates the changes to the COTS component are not
called by the glue code. Similar to other RTS
techniques, when there are a large number of changes
in the new component, I-BACCI suggests a retest-all
regression testing strategy. The results have been
verified by examining the failure records of retest-all
black-box testing. Current tools identified all changes;
no failures would have escaped the reduced test suites.
However, current tools reported false positives when
two versions were not built by the same linker.

We plan to pursue several directions in our future
work. Besides expanding the I-BACCI process to adapt
to more programming languages and more of the
COTS types, such as Component Object Model
(COM)4 type, we plan to address the limitations of the
I-BACCI process which are discussed in Section 3.2.
First a theoretical analysis of the safeness [10] of the
I-BACCI process will be conducted to complement our
empirical studies. We will evaluate replacing the
theoretically unsafe firewall analysis with other

existing safe code-based RTS processes (for example,
[1, 3, 10]). Second, we will consider changes caused by
factors other than source code (e.g. build tools,
environment, and target platforms) to remove as many
false negatives as possible. Additionally, extensive
validation of both the tool support and RTS process
will require more industrial case studies, data
collection, and further RTS analysis. Based on the
results of the case studies and research on limitations
removal, we will continuously refine and integrate the
supporting tools. Eventually, an open source
end-to-end automation will be implemented to
facilitate the efficiency and convenience of the whole
process.

6. Acknowledgments

This research was supported by a research grant
from ABB Corporate Research.

7. References

[1] Bible, J., Rothermel, G., and Rosenblum, D., "A

Comparative Study of Course- and Fine-Grained
Safe Regression Test-Selection Techniques," ACM
Transactions on Software Engineering and
Methodology, 10(2), 2001, pp. 149-183.

[2] Gao, J. Z., Tsao, H.-S. J., and Wu, Y., Testing and
Quality Assurance for Component-Based Software.
Boston: Artech House, 2003.

[3] Graves, T. L., Harrold, M. J., Kim, Y. M., Porter,
A., and Rothermel, G., "An Empirical Study of
Regression Test Selection Techniques," ACM
Transactions on Software Engineering and
Methodology, 10(2), 2001, pp. 184-208.

[4] IEEE, "IEEE Standard Glossary of Software
Engineering Terminology," IEEE Standard 610.12,
1990.

[5] Kung, D., Gao, J., Hsia, P., Wen, F., Toyoshima,
Y., and Chen, C., "Change Impact Identification in
Object-Oriented Software Maintenance,"
International Conference on Software
Maintenance, Victoria, B.C., Canada, 1994, pp.
202-211.

[6] Kung, D., Gao, J., Hsia, P., Wen, F., Toyoshima,
Y., and Chen, C., "Class Firewall, Test Order and
Regression Testing of Object-Oriented Programs,"
Journal of Object-Oriented Programming, 8(2),
1995, pp. 51-65.

[7] Leung, H. and White, L., "A Study of Integration
Testing and Software Regression at the Integration
Level," International Conference on Software
Maintenance, San Diego, 1990, pp. 290-301.

[8] Leung, H. and White, L., "Insights into Testing
and Regression Testing Global Variables,"
Journal of Software Maintenance, 2(4), 1991, pp.
209-222.

[9] Memon, A. M., "A process and role-based
taxonomy of techniques to make testable COTS
components," in Testing Commercial-off-the-shelf
Components and Systems, S. Beydeda and V.
Gruhn, Eds. Berlin, Germany: Springer-Verlag,
2005, pp. 109-140.

[10] Rothermel, G. and Harrold, M., "Analyzing
regression test selection techniques," IEEE Trans.
on Software Engineering, 22(8), 1996, pp.
529-551.

[11] Weyuker, E. J., "Testing Component-Based
Software: A Cautionary Tale," IEEE Software,
15(5), 1998, pp. 54-59.

[12] White, L. and Abdullah, K., "A Firewall Approach
for the Regression Testing of Object-Oriented
Software," in Software Quality Week, San
Francisco, 1997.

[13] White, L., Almezen, H., and Sastry, S., "Firewall
Regression Testing of GUI Sequences and Their
Interactions," International Conference on
Software Maintenance, Amsterdam, The
Netherlands, 2003, pp. 398-409.

[14] White, L. and Leung, H., "A Firewall Concept for
both Control-Flow and Data Flow in Regression
Integration Testing," International Conference on
Software Maintenance, Orlando, 1992, pp.
262-271.

[15] White, L. and Robinson, B., "Industrial Real-Time
Regression Testing and Analysis Using Firewall,"
International Conference on Software
Maintenance, Chicago, 2004, pp. 18-27.

[16] Zheng, J., Robinson, B., Williams, L., and Smiley,
K., "A Lightweight Process for Change
Identification and Regression Test Selection in
Using COTS Components," 5th International
Conference on COTS-Based Software Systems,
Orlando, FL, USA, 2006, pp. 137-143.

[17] Zheng, J., Robinson, B., Williams, L., and Smiley,
K., "An Initial Study of a Lightweight Process for
Change Identification and Regression Test
Selection When Source Code is Not Available,"
16th IEEE International Symposium on Software
Reliability Engineering, Chicago, IL, USA, 2005,
pp. 225-234.

[18] Zheng, J., Robinson, B., Williams, L., and Smiley,
K., "Applying Regression Test Selection for
COTS-based Applications," 28th IEEE
International Conference on Software Engineering
(ICSE'06), Shanghai, P. R. China, May 2006, pp.
512-521.

