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Abstract 

Now a day's software is the baseline for the success of any organization. There is a huge demand of 

quality software in the customer-oriented market. Regression testing makes it possible but it’s a costly 
affair. Regression test suite minimization is way to reduce this cost but it is NP hard problem. This 

paper proposes an effective approach for regression test suite minimization using Artificial Ecosystem 

Optimization algorithm. To improve its performance a modified Artificial Ecosystem Optimization 

algorithm is proposed for Test case minimization. To evaluate the performance of proposed approach 

experiment is conducted in controlled parameter setting on open-source subject program from SIR 

repository. The results are collected and analyzed in comparison to existing approaches using 

statistical test. The test results reflect the superiority of proposed approach. 
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Introduction 

Software development life cycle comprises of various stages including an inevitable one 

called maintenance. Regression testing is conducted during maintenance and consumes 

almost 50-60% of total software development cost. Apart from it timely delivery of software 

products within budget in every maintenance activity is still a big challenge for industry. 

Hence, there exists a scope of improvement to reduce time and cost by improving the 

regression testing process (Augustsson, 2012).  

Regression test case optimization is an effective way to overcome such issues.  There 

exist three different types of regression test suite optimization such as: Minimization, 

Selection and Prioritization (Yoo & Harman, 2010). Test suite minimization works by 

reducing the size of the original test suite that satisfies some test adequacy criteria. Test case 

selection focuses on selecting a subset of test cases from the original test suite. Test case 

prioritization on the other hand doesn’t reduce the size of the original test suite rather it 

reorders the existing test cases in some order so that they achieve some test adequacy criteria 

in decreasing/increasing order. In this paper author focuses on Test Case Minimization 

technique. To better understand the problem first we present a formal description of problem 

statement. “Software is a collection of programs                 with test suites                   respectively. For a program    the test suite     consists of a set of 

reusable test cases                            . F denotes the K faults exist in     which can 

be covered by    . We derive a minimized subset of test suite            such 

as     :                       where L < M. All the faults F must be covered from the test 

suite      to achieve the desired fault coverage.”  

Software products are evolutionary in nature and hence the test suite size keeps growing 

with every maintenance cycle. So, retest whole test suite after maintenance becomes very 

costly and time consuming. Regression test suite minimization is an effective solution to 

reduce time and effort required during regression testing. But the test case minimization 

becomes complex and transform to a NP hard problem, due to the presence of redundant test 

cases in existing test suite.  

Literature revealed that various heuristic and Meta heuristic approaches have been 

applied to solve the test case minimization problems. But the scope of optimization still 

exists. Various nature inspired optimization algorithm such as Bat Search algorithm, Harris 

Hawk Optimization algorithm, Crow Search algorithm etc. (Kaur et al., 2017; Kaur at al., 

2020; Chaudhary et al., 2019) have been utilized for regression test case optimization but 

there exist a room for improvement.  
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In this paper a new approach for Test Suite Minimization using Hybrid Artificial 

Ecosystem Optimization algorithm has been proposed.  The main contribution of the paper is 

as follows:   

 Proposed Test Case Minimization approach using Artificial Ecosystem Optimization 

(AEO) algorithm.  

 Updated the performance of proposed approach by changing exploration and 

exploitation process of AEO.   

 Rigorous statistical analysis have been conducted which reflects the superiority of 

proposed approach for test case Minimization  over Bat Search algorithm, , Harris 

Hawk Optimization algorithm, Crow Search algorithm etc. (Kaur et al., 2017; Kaur et 

al., 2020; Chaudhary et al., 2019). 

The structure of this paper is as follows. Section-2 briefly discusses the related works in 

the same area. Section-3 describes the proposed approach. Section-4 discloses the 

experimental setup and formulate the research questions. Section-5 report the results and 

answer the research questions formulated. Section 6 discusses the threat to validity and 

finally, section-6 concludes the paper with future extension of the proposed work. 

Related Work 

Test Suite Minimization became important if the test suites are not maintained properly, this 

may result in enormous test execution cost and diminish the regression testing benefits. 

Various researchers have conducted various studies in test suite minimization and reduction.  

Test suite size plays an important role in maintain testing cost, to reduce the test suite 

size a heuristic approach has been proposed  which identify and eliminate the redundant & 

obsolete test cases based on different degree of essentialness for data flow testing (Harrold et 

al., 1993). To find out an optimal subset of test suite an another heuristic approach based on 

GRE (Greedy Redundant and Essential) has been proposed (Chen & Lau, 1998a). Lee and 

Chung proposed another approach for selecting optimal subset of test suite by utilizing 

enhanced zero–one optimal path set selection method (Chung & Lee, 1997; Lee & Chung, 

2000). Chen and Lau performed a simulation study on above discussed approaches and 

concluded that no single approach performs better than other two approaches in all the cases 

and solve the test suite minimization problem using divide and conquer approach for finding 

minimal and optimal representative test subsets (Chen & Lau, 1998b, 2003).  A bi-criteria 

decision making model for test suite minimization considering  test suite size and  error 

detection rate as two criteria has been proposed (Black et al., 2004).  Sprenkle et al. compared 

the applied approaches (Harrold et al., 1993; Black et al., 2004) for user-session-based testing 
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of different web applications (Sprenkle et al., 2005). Jeffery et al. modified the Harrold, 

Gupta and Jean, 1993 approach keeping selective redundant test cases and claimed better 

performance (Jeffrey & Gupta, 2005; Jeffrey & Gupta, 2007).  

Few researchers continued to explore the performance of existing heuristic approaches 

such as greedy approach, Harrold, GRE and integer linear programming approaches on Java 

programs (Harrold et al., 1993; Littlewood & Sofer, 1987)(Black et al., 2004; Chen & Lau, 

1998a).In their empirical study authors have analyzed the differences and similarity of all the 

selected approaches (Zhang et al., 2011).To perform early estimation of errors and reduce the 

testing time and effort, Gupta et al. proposed an approach by utilizing decision table generated 

from software requirement specification and claimed approx. 33% of saving in cost and time 

(Gupta et al., 2014). A greedy based approach for coverage based test suite reduction has been 

proposed and claimed the better code coverage in comparison to Harrold and Black approach  

(Harris & Raju, 2015). Khan et al. taken multiple test adequacy criteria’s statement, branch , 
path adequacy,  requirement and code coverage with minimum size test suite and claimed 

good performance (Khan et al., 2017). A fault coverage based test suite optimization approach 

inspired from Harrold approach has been proposed and this approach has further been 

compared against Greedy, Additional Greedy, HGS, and Enhanced HGS approaches and 

claimed better accuracy (Agrawal et al., 2019).            

Regression test suite minimization, being an NP problem, various researcher explored 

its solutions using search-based approaches. Yoo and Harman  proposed a pareto optimal test 

case selection approach taking coverage and cost as a multi objective criteria (Yoo & Harman, 

2007). Maia et al. proposed multi objective approach for test case selection problem by 

utilizing multi objective genetic algorithm and claimed better performance than random 

search approach (Loiola & Maia, 2009). Yoo and Harman further utilized pareto optimal 

multi-objective optimization to solve test suite minimization (Yoo & Harman, 2010). A 

hybrid technique by combining Bee Colony optimization and genetic algorithm has been 

proposed, in this approach crossover parameter have been borrowed from genetic algorithm to 

generate and update the new solutions (Suri et al., 2011). You et al. proposed a genetic 

algorithm based time aware test suite reduction approach which removes the redundant test 

cases and minimize the total test case execution time (You & Lu, 2012). A fuzzy logic based 

approach has been proposed for multi objective test suite minimization problem (Haider et al., 

2012), and also performed an empirical analysis (Haider et al., 2013) on computational and 

fuzzy based approach for safe reduction of test suites. The analysis claimed that the fuzzy 

based approach is safer then computational approaches for test suite minimization (Haider et 

al., 2013). Ahmad utilized cuckoo search optimization technique to solve configuration-aware 

structural testing the results was compared and claimed better then GA, PSO and other similar 

approaches (Ahmed, 2015). Turner et al. utilized NSGA II approach for test suite 

minimization on Mockito framework (Drake et al., 2016). Gupta et al. proposed multi 
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objective test suite optimization approach for detection and localization of test cases (Gupta et 

al., 2020).  

The approaches discussed above claim that both heuristic and metaheuristic-based 

approaches have been proposed to address the test suite minimization problem but still a 

scope of optimization exists. In this paper first authors have applied original AEO approach 

for minimizing test case in test suite. In order to improve performance a modified approach is 

also proposed using Artificial Ecosystem Optimization. The proposed approach is further 

utilized for test suite minimization. 

Proposed Approach: Test Case Minimization Using AEO AND MAEO 

Nature is ocean of knowledge and inspiration; it’s an excellent example is ecological system. 
Nature intelligently maintains a perfect balance in ecological system. Zhao et al.(Weiguo et 

al., 2019) took inspiration from nature and proposed an effective nature inspired algorithm 

called  artificial ecosystem-based optimization (AEO) algorithm. AEO mimics the production, 

consumption, and decomposition behaviour of living creatures (Weiguo et al., 2019). The 

main aim of every meta-heuristics is to maintain balance between exploration and exploitation 

during their search process (Yang, n.d.; Kumar et al., 2018). In AEO, production, 

consumption, and decomposition behaviour is considered as operators (Weiguo et al., 2019). 

The role of production operator is to maintain the balance among exploitation and exploration 

behaviour while the consumption operator is utilized for to improve the exploration and at last 

decomposition operator is utilized to promote the exploitation behaviour. In this paper authors 

have proposed modified AEO to improvise the exploitation and exploration process by 

utilizing Equilibrium optimizer (Faramarzi et al., 2020) equations in AEO algorithm for test 

case minimization problem. Authors have used same problem statement as discussed in 

introduction section to explain the algorithmic process.    

In order to achieve optimal solution AEO and its modified version follows certain rules 

(Weiguo et al., 2019): 

1. The producer, consumer, and decomposer are three types of organisms included in the 

ecosystem. 

2. As an individual, there is only one producer as well as only one decomposer in the 

population. 

3. Rest of the population is treated as consumers, which are categorized as a carnivore, 

an herbivore, or an omnivore with equal probability.  

4. The energy level of individuals is evaluated by cost function. Higher the value of cost 

function reflects higher energy of the individual for minimization problem.  
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A. Production: 

The producer is considered as the worst individual of the ecological system, which may 

produce food energy from natural resources such as water, sunlight & carbon dioxide. The 

decomposer is the one who provides nutrition to the producer. The producer will be updated 

or generated from the random value between lower and upper limits of the search space (test 

suites)        and the decomposer    .  

The mathematical representation of production operator in AEO is as follows: 

   (     )  (   )   (   )              (1) 

  (       )    (2) 

        (     )     (3) 

where      represents production operator,        represents random test suite,     

represents best test suite so far or decomposer,   is a linear weight coefficient between [   ] to maintain balance between random test suite         and decomposer     for 

updating     (Production operator), r and r1 are random numbers ranges between [   ] ,     denotes the current iteration and TI denotes total iterations.   

In AEO, the linear weight coefficient decreases linearly from 1 to 0 using equation 2, 

while the proposed MAEO uses exponential function to decrease the value of   from 1 to 0 

over the iterations. As shown in figure1 the exploitation and exploration will ranges 70% and 

30 %.   

  (         )    (4) 

 

Figure 1. Linear and exponential 
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B. Consumption 

The consumption operator is performed by all the consumers. Each consumer may eat either a 

randomly selected lower energy consumer or a producer or both.  

 

 

Figure 2. Proposed Approach of Regression Test Case Minimization using AEO 
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In AEO, Levy flight is considered as a mathematical operator to perform random walk-

in order to explore the search space. In AEO, Levy flight is proposed as a consumption factor 

which is a simple free random walk. Each Consumer may use this consumption factor for 

hunting their food and there are various consumption approaches adopted by different 

varieties of consumers. 

The mathematical representation of consumption operator in AEO is as follows: 

a) Herbivore: Herbivore consumer eats only the producer. 

   (     )     (   )    (   (   )     (   ))                     (5) 

b) Carnivore: Carnivore consumer eats only randomly chosen consumer having a high 

energy level. 

   (     )     (   )    (   (   )     (   ))                                  (|     |) 

(6) 

c) Omnivore: Omnivore consumers can eat both either a producer or a consumer having a 

higher energy level. 

   (     )     (   )    (   (   (   )     (   )))  (    ) (   (   )     (   ))                      and        (|     |) 

(7) 

 

C. Decomposition 

The decomposition is most important operator and very essential process to maintain the 

functioning of an ecosystem as well as generates required nutrients for producer to help them 

in their growth. In the process of decomposition, when each individual of the population dies, 

the decomposer will break down chemically or decay its remains. 

Here D (decomposition factor), e and h (weight coefficient) are three main parameters 

to spread the decomposer to each individual.    

The mathematical representation of consumption operator in AEO is as follows: 

   (     )     (   )    (  (   (   )       (   )))                       (8) 
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         (   ) (9) 

          (|   |)    (10) 

         (11) 

In AEO, decomposition balance exploitation behaviour by using equations 8,9,10,11. In 

MAEO, authors have utilized equations from Equilibrium optimizer (Faramarzi et al., 2020).     

The mathematical representation of decomposition operator in MAEO is as follows: 

Generate random vectors of  ⃗  ⃗  random number vector of size [1- Dim] ranges 

between [   ].     , GP=0.5 to better maintain exploitation and exploration. The  

        ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗       (  ) (12) 

           ⃗          (  ⃗     )[     ⃗⃗⃗   ] (13) 

             ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗                     (14) 

           ⃗      ⃗⃗⃗⃗ ⃗⃗ ⃗⃗⃗ (         ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗    ⃗    ⃗⃗⃗⃗⃗⃗⃗ ) (15) 

           ⃗    ⃗   ⃗ (16) 

   (     )      (   )  (            )    (      ) (    ) (17) 

In Eq. 17 first part of the equation reflects the decomposer represents the best solution 

so far in this iteration the second term represents the movement in the direction of random 

consumer which behave like direct search and third term is used for global exploration.  

Experimental Setup 

Experimental setup contributes significantly to evaluate the quality of any research, keeping 

this in consideration. We have conducted the research experiments to evaluate the 

performance of proposed algorithm. The algorithms and their control parameters considered 

for this study is as follows: 
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Table 1. Control parameter setting for Experimental Setup 

Algorithm / Control Parameters 

MAEO Population size (N) No of Iterations a1 
 

 
30 500 1 

 

AEO Population size (N) No of Iterations 
  

 
30 500 

  

BAT No. of Bats Frequency Loudness Pulse Rate 

 
30 75 0.75 0.25 

CROW Population size (N) Awareness Probability Flight Length No of Iterations 

 
30 0.1 2 500 

HHO Population size (N) No of Iterations 
  

 30 500   

 

The proposed algorithm as well as existing approach is evaluated on benchmarked 

dataset consisting of 12 versions of 5 open-source programs. These versions are retrieved 

from benchmarked Software Artifact Repository in regression testing (Do et al., 2005) under 

controlled experimental setting. Table 2 present summarized details of fault data.  

Table 2. Dataset retrieved and their characteristics 
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Total number of faults 19 20 17 16 9 18 16 5 7 7 9 5 

Total number of test cases 567 567 567 567 567 199 214 15 214 216 216 15 

 

The research questions and research hypothesis section discuss the research questions 

and hypothesis formed to evaluate the performance of proposed approach over the existing 

literature. 

Research Questions 

We have formulated following three research questions to compare the performance of 

proposed and existing approaches available in literature. 
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 Research Question 1: How is the performance of the MAEO algorithm as compared to the 

rest of the algorithm adopted for regression test case minimization problem? 

 Research Question 2: Is there any effect of the subject program on the performance of the 

algorithms? 

 Research Question 3: Does minimized test suite size effect fault revealing ability of 

algorithms? 

 Research Question 4: How the computational cost of the MAEO algorithm is as compared 

to the rest of the algorithm adopted for regression test case minimization problem? 

Research Hypothesis 

The following hypothesis is designed to answer our research questions RQ1, RQ2 and RQ3 

respectively: 

Ho: Overall Performance of MAEO = Overall Performance of AEO = Overall Performance of 

BA= Overall Performance of HHO= Overall Performance of CSA 

Ha: Overall Performance of MAEO ≠ Overall Performance of AEO ≠ Overall Performance of 
BA≠ Overall Performance of HHO ≠ Overall Performance of CSA 

Ho: Algorithmic performance is independent of Subject Program 

Ha: Algorithmic performance is dependent of Subject Program 

Ho: RTM_5 = RTM_10 = RTM_15 

Ha: RTM_5 ≠ RTM_10 ≠ RTM_15 

Ho: Computational Cost of MAEO = Computational Cost of AEO = Computational Cost of 

BA= Computational Cost of HHO= Computational Cost of CSA 

Ha: Computational Cost of MAEO ≠ Computational Cost of AEO ≠ Computational Cost of 
BA≠ Computational Cost of HHO ≠ Computational Cost of CSA 

Results & Discussion 

The experiment is conducted on subject programs under control parameters setting as shown 

in Table 2 and 3. In this experiment 15 runs of each algorithm is evaluated and means of these 

runs is utilized for performance evaluation. The values highlighted in bold are best from one 

or the other viewpoint. Table 3 present the means of dependent variable fault covered. 
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Table 3. Mean value of Faults Covered by proposed and adopted algorithms on different test suite sizes 

and subject programs 

Subject 

Program 
Test suite size 

% Test Cases Covered 

MAEO AEO BA HHO CSA 

flex v1 

5 100 100 96 100 100 

10 100 100 100 100 100 

15 100 100 100 100 100 

flex v2 

5 98 95 75 89 87 

10 100 95 81 92 90 

15 100 98 82 93 92 

flex v3 

5 98 93 59 92 90 

10 100 100 74 99 98 

15 100 100 79 100 99 

flex v4 

5 100 100 100 100 100 

10 100 100 100 100 100 

15 100 100 100 100 100 

flex v5 

5 100 100 100 100 100 

10 100 100 100 100 100 

15 100 100 100 100 100 

Grep 

5 100 100 58 98 100 

10 100 100 71 100 100 

15 100 100 80 100 100 

Gzip 

5 100 100 52 88 98 

10 100 100 78 98 100 

15 100 100 78 99 100 

nano v1 

5 100 100 100 100 100 

10 100 100 100 100 100 

15 100 100 100 100 100 

nano v2 

5 100 100 100 100 100 

10 100 100 100 100 100 

15 100 100 100 100 100 

nano v3 

5 100 100 100 100 100 

10 100 100 100 100 100 

15 100 100 100 100 100 

nano v5 

5 100 99 75 88 99 

10 100 100 82 97 100 

15 100 100 89 99 100 

xmlSec 

5 100 100 99 100 100 

10 100 100 100 100 100 

15 100 100 100 100 100 
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 Answer to Research Question 1: 

The bold highlighted mean values reflect the fault coverage by different approaches on 

different subject programs and different minimized test suites. The highlighted means reflect 

that the proposed MAEO performs superior to other compared approaches. However, to 

confirm the claim of superiority a two- way ANOVA test is performed. The test results will 

show the effect of independent variables separately and in combination on dependent variable 

fault coverage. The tests are conducted in SPSS 20 tool and results are shown in Table 4 

below.  

         

Table 4. Two-way ANOVA of independent variables (Algorithm, Test suite size, subject program) and 

their combined effects on fault coverage at 95% Confidence Interval (α = 0.05) 

Tests of Between-Subjects Effects 

Dependent Variable: Fault_Coverage 

Source Type III Sum of Squares Df Mean Square F Sig. 

Corrected Model 36997.683a 179 206.691 3247.265 0 

Intercept 155283.917 1 155283.917 2439622.637 0 

Algo 237.613 4 59.403 933.266 0 

Subject 36259.461 11 3296.315 51787.486 0 

TS_Size 23.490` 2 11.745 184.52 0 

Algo * Subject 392.076 44 8.911 139.996 0 

Algo * TS_Size 17.325 8 2.166 34.024 0 

Subject * TS_Size 39.079 22 1.776 27.907 0 

Algo * Subject * TS_Size 28.639 88 0.325 5.113 0 

Error 160.4 2520 0.064     

Total 192442 2700       

Corrected Total 37158.083 2699       

 

 

All the significance values listed in column 6 of table 4 are lesser than α, so we can 
claim that all the approaches are statistically significant from each other. Further we have 

conducted the post –hoc test Tukey’s HSD at 95% confidence interval to perform a pair wise 
comparative analysis of approaches for fault coverage and the results are shown in table 5 

below:  
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Table 5. Pair wise Comparison of different algorithms with respect to Fault Coverage at α = 0.05 

Dependent Variable: Fault_Cov 

 Tukey HSD 

(I) Algo Mean Difference (I-J) Std. Error Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 

MAEO 

AEO .05* 0.015 0.01 0.01 0.09 

BA .82* 0.015 0 0.77 0.86 

HHO .17* 0.015 0 0.13 0.22 

CSA .14* 0.015 0 0.1 0.18 

AEO 

MAEO -.05* 0.015 0.01 -0.09 -0.01 

BA .77* 0.015 0 0.72 0.81 

HHO .12* 0.015 0 0.08 0.17 

CSA .09* 0.015 0 0.05 0.13 

BA 

MAEO -.82* 0.015 0 -0.86 -0.77 

AEO -.77* 0.015 0 -0.81 -0.72 

HHO -.64* 0.015 0 -0.68 -0.6 

CSA -.67* 0.015 0 -0.72 -0.63 

HHO 

MAEO -.17* 0.015 0 -0.22 -0.13 

AEO -.12* 0.015 0 -0.17 -0.08 

BA .64* 0.015 0 0.6 0.68 

CSA -0.03 0.015 0.242 -0.07 0.01 

CSA 

MAEO -.14* 0.015 0 -0.18 -0.1 

AEO -.09* 0.015 0 -0.13 -0.05 

BA .67* 0.015 0 0.63 0.72 

HHO 0.03 0.015 0.242 -0.01 0.07 

 

The results observed from table 5 above shows that the pair wise algorithms is 

significantly different among others in term of their fault coverage as all the P-values are 

lesser than α. The result evident from homogenous subset of fault coverage of different 

algorithms in table 6 answers the Research question1 that proposed MAEO works better than 

other adopted Algorithms. The MAEO is superior then BA, HHO, CSA and AEO algorithm. 

Table 6 Homogenous Subsets of Mean Fault Coverage of Algorithms 

Fault_Coverage 

Tukey HSD 

Algo N 
Subset 

1 2 3 4 

BA 540 7       

HHO 540   7.65     

CSA 540   7.68     

AEO 540     7.77   

MAEO 540       7.82 

Sig.   1 0.242 1 1 
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 Answer to Research Question 2 

Table 3 and Figure 3 also help us to answer our Research Question 2. The figure 3 shows that 

except flex v4, nano v3 and xmlSec, there is a significant difference in the performance of 

algorithm. Table 3 also strengthen the claim of research question 2. So, we can conclude that 

a test suite size of 10 test cases is fair enough to perform regression testing without 

significantly affecting the fault detection effectiveness of RTM approaches. 

 

Figure 3. Algorithm Performance vs 

Subject program 

 

 

Figure 4. Algorithm Performance vs 

Test Suite size 
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 Answer to Research Question 3 

Table 3, 7 and Figure 4 answer the 3
rd

 research question. It can be clearly seen from figure 4 

that on 5 test suite size the algorithm performance is less as compare to 10 and 15 test suite 

size. It can be clearly seen from table 3and 7 that the algorithm performance varies with 

minimized size of test suite. 

 

Table 7. Homogenous Subsets of Mean Fault Coverage of Test Suite Size 

Fault_Coverage 

Tukey HSD 

TS_Size N 
Subset 

1 2 3 

5 900 7.45 
  

10 900 
 

7.63 
 

15 900 
  

7.67 

Sig. 
 

1.000 1.000 1.000 

 

 Answer to Research Question 4 

Table 8 and 9 answers the 4
th

 research question. Table 7 shows that the execution time of 

MAEO is lesser than AEO and HHO but it is taking much time in comparison to BA and CSA 

approach. Table 8 also confirm the claim and reject the null hypothesis.  

So, it is clear from the table 6, 8 and 9 MAEO is providing better fault coverage as 

compare to other algorithms and computationally costlier as compare to CSA and BA but 

better than AEO and HHO.    

 

Table 8. Execution time of adopting algorithm on Regression Test Case Minimization  

Report 

Exe_Time 

Algo Mean N Std. Deviation Variance Skewness 

MAEO 3.78514065 540 0.362517888 0.131 2.826 

AEO 4.17900657 540 0.549269359 0.302 1.799 

BA 1.3497452 540 0.236788935 0.056 4.605 

HHO 4.08997542 540 1.129432657 1.276 2.447 

CSA 0.70746535 540 0.185845226 0.035 3.558 

Total 2.82226664 2700 1.601025632 2.563 0.135 
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Table 9. Tukey HSD test on adopting algorithm for Regression Test Case Minimization 

Exe_Time 

Tukey HSD 

Algo N 
Subset for alpha = 0.05 

1 2 3 4 

CSA 540 0.707465349       

BA 540   1.349745202     

MAEO 540     3.78514065   

HHO 540       4.08997542 

AEO 540       4.179006573 

Sig.   1 1 1 0.105 

Means for groups in homogeneous subsets are displayed. 

a. Uses Harmonic Mean Sample Size = 540.000. 

  

Threats to Validity  

Threats to external validity limit the capability to generalize the results beyond the experiment 

settings which can be reduced by taking the more realistic experimental setup. To overcome 

such issues, we have adopted benchmarked subject programs from SIR repository to perform 

the experiment. 

Threat to internal validity mainly affects the independent variables such as algorithms, 

subject programs and minimized size of test suite in our case. To overcome this threat we 

adopted algorithms available in literature, similarly subject programs and minimized test suite 

size. Threat to construct validity reflects the degree up to that the experiment setting imitates 

the theory. In our case stochastic nature of Meta heuristic algorithms has been addressed by 

running our experiment 15 times with 500 iterations each to collect the results. Means of these 

15 runs has been considered. 

Conclusion 

Regression test suite minimization is very challenging problem under software maintenance. 

In each maintenance cycle running all the test cases is costly affair.  To these issues this paper 

proposes an effective Modified Artificial Ecosystem optimization-based approach for test 

suite minimization. The proposed MAEO with updated formulation maintains optimal 

balance in exploration and exploitation for test case minimization problem. All the three 

research questions are answered through empirical study: 

Answer to Research Question 1: The proposed Modified AEO based RTM approach is 

significantly superior to other adopted approaches. 
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Answer to Research Question 2: Yes, there is significant impact of subject program on 

performance of algorithms.  

Answer to Research Question 3: Yes, there is impact of minimized test suite size on fault 

revealing ability of algorithms. The Test suite size of 10 test cases is sufficient in mostly 

cases. 

Answer to Research Question 4: Yes, the computational cost of different metaheuristics is not 

same. Computational cost of MAEO is higher as compare to BA and CSA but lesser than 

AEO and HHO. 

In future we will focus to generalize this approach to various domains of applications and 

generalize the approach to select the minimum required test case in suite automatically. 
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