

Regression Test Suite Minimization Using Modified Artificial Ecosystem

Optimization Algorithm

Abhishek Singh Verma*

*Corresponding Author, Assistant Professor, CSED, School of Engineering & Technology, Sharda

University, Greater Noida, India. E-mail: abhiverma2005@gmail.com

Ankur Choudhary

Professor, Department of Computer Science & Engineering, Sharda University, Greater Noida, India.

E-mail: ankur.tomer@gmail.com

Shailesh Tiwari

Professor, Department of Computer Science & Engineering, ABES Engineering College, Ghaziabad,

India. E-mail: shail.tiwari@yahoo.com

Abstract

Now a day's software is the baseline for the success of any organization. There is a huge demand of

quality software in the customer-oriented market. Regression testing makes it possible but it’s a costly
affair. Regression test suite minimization is way to reduce this cost but it is NP hard problem. This

paper proposes an effective approach for regression test suite minimization using Artificial Ecosystem

Optimization algorithm. To improve its performance a modified Artificial Ecosystem Optimization

algorithm is proposed for Test case minimization. To evaluate the performance of proposed approach

experiment is conducted in controlled parameter setting on open-source subject program from SIR

repository. The results are collected and analyzed in comparison to existing approaches using

statistical test. The test results reflect the superiority of proposed approach.

Keywords: Test Suite Minimization, Regression testing, AEO, MAEO.

DOI: 10.22059/jitm.2021.80023 © University of Tehran, Faculty of Management

Journal of Information Technology Management, 2021, Vol.13, No.1 23

Introduction

Software development life cycle comprises of various stages including an inevitable one

called maintenance. Regression testing is conducted during maintenance and consumes

almost 50-60% of total software development cost. Apart from it timely delivery of software

products within budget in every maintenance activity is still a big challenge for industry.

Hence, there exists a scope of improvement to reduce time and cost by improving the

regression testing process (Augustsson, 2012).

Regression test case optimization is an effective way to overcome such issues. There

exist three different types of regression test suite optimization such as: Minimization,

Selection and Prioritization (Yoo & Harman, 2010). Test suite minimization works by

reducing the size of the original test suite that satisfies some test adequacy criteria. Test case

selection focuses on selecting a subset of test cases from the original test suite. Test case

prioritization on the other hand doesn’t reduce the size of the original test suite rather it

reorders the existing test cases in some order so that they achieve some test adequacy criteria

in decreasing/increasing order. In this paper author focuses on Test Case Minimization

technique. To better understand the problem first we present a formal description of problem

statement. “Software is a collection of programs with test suites respectively. For a program the test suite consists of a set of

reusable test cases . F denotes the K faults exist in which can

be covered by . We derive a minimized subset of test suite such

as : where L < M. All the faults F must be covered from the test

suite to achieve the desired fault coverage.”

Software products are evolutionary in nature and hence the test suite size keeps growing

with every maintenance cycle. So, retest whole test suite after maintenance becomes very

costly and time consuming. Regression test suite minimization is an effective solution to

reduce time and effort required during regression testing. But the test case minimization

becomes complex and transform to a NP hard problem, due to the presence of redundant test

cases in existing test suite.

Literature revealed that various heuristic and Meta heuristic approaches have been

applied to solve the test case minimization problems. But the scope of optimization still

exists. Various nature inspired optimization algorithm such as Bat Search algorithm, Harris

Hawk Optimization algorithm, Crow Search algorithm etc. (Kaur et al., 2017; Kaur at al.,

2020; Chaudhary et al., 2019) have been utilized for regression test case optimization but

there exist a room for improvement.

Regression Test Suite Minimization Using Modified Artificial Ecosystem… 24

In this paper a new approach for Test Suite Minimization using Hybrid Artificial

Ecosystem Optimization algorithm has been proposed. The main contribution of the paper is

as follows:

 Proposed Test Case Minimization approach using Artificial Ecosystem Optimization

(AEO) algorithm.

 Updated the performance of proposed approach by changing exploration and

exploitation process of AEO.

 Rigorous statistical analysis have been conducted which reflects the superiority of

proposed approach for test case Minimization over Bat Search algorithm, , Harris

Hawk Optimization algorithm, Crow Search algorithm etc. (Kaur et al., 2017; Kaur et

al., 2020; Chaudhary et al., 2019).

The structure of this paper is as follows. Section-2 briefly discusses the related works in

the same area. Section-3 describes the proposed approach. Section-4 discloses the

experimental setup and formulate the research questions. Section-5 report the results and

answer the research questions formulated. Section 6 discusses the threat to validity and

finally, section-6 concludes the paper with future extension of the proposed work.

Related Work

Test Suite Minimization became important if the test suites are not maintained properly, this

may result in enormous test execution cost and diminish the regression testing benefits.

Various researchers have conducted various studies in test suite minimization and reduction.

Test suite size plays an important role in maintain testing cost, to reduce the test suite

size a heuristic approach has been proposed which identify and eliminate the redundant &

obsolete test cases based on different degree of essentialness for data flow testing (Harrold et

al., 1993). To find out an optimal subset of test suite an another heuristic approach based on

GRE (Greedy Redundant and Essential) has been proposed (Chen & Lau, 1998a). Lee and

Chung proposed another approach for selecting optimal subset of test suite by utilizing

enhanced zero–one optimal path set selection method (Chung & Lee, 1997; Lee & Chung,

2000). Chen and Lau performed a simulation study on above discussed approaches and

concluded that no single approach performs better than other two approaches in all the cases

and solve the test suite minimization problem using divide and conquer approach for finding

minimal and optimal representative test subsets (Chen & Lau, 1998b, 2003). A bi-criteria

decision making model for test suite minimization considering test suite size and error

detection rate as two criteria has been proposed (Black et al., 2004). Sprenkle et al. compared

the applied approaches (Harrold et al., 1993; Black et al., 2004) for user-session-based testing

Journal of Information Technology Management, 2021, Vol.13, No.1 25

of different web applications (Sprenkle et al., 2005). Jeffery et al. modified the Harrold,

Gupta and Jean, 1993 approach keeping selective redundant test cases and claimed better

performance (Jeffrey & Gupta, 2005; Jeffrey & Gupta, 2007).

Few researchers continued to explore the performance of existing heuristic approaches

such as greedy approach, Harrold, GRE and integer linear programming approaches on Java

programs (Harrold et al., 1993; Littlewood & Sofer, 1987)(Black et al., 2004; Chen & Lau,

1998a).In their empirical study authors have analyzed the differences and similarity of all the

selected approaches (Zhang et al., 2011).To perform early estimation of errors and reduce the

testing time and effort, Gupta et al. proposed an approach by utilizing decision table generated

from software requirement specification and claimed approx. 33% of saving in cost and time

(Gupta et al., 2014). A greedy based approach for coverage based test suite reduction has been

proposed and claimed the better code coverage in comparison to Harrold and Black approach

(Harris & Raju, 2015). Khan et al. taken multiple test adequacy criteria’s statement, branch ,
path adequacy, requirement and code coverage with minimum size test suite and claimed

good performance (Khan et al., 2017). A fault coverage based test suite optimization approach

inspired from Harrold approach has been proposed and this approach has further been

compared against Greedy, Additional Greedy, HGS, and Enhanced HGS approaches and

claimed better accuracy (Agrawal et al., 2019).

Regression test suite minimization, being an NP problem, various researcher explored

its solutions using search-based approaches. Yoo and Harman proposed a pareto optimal test

case selection approach taking coverage and cost as a multi objective criteria (Yoo & Harman,

2007). Maia et al. proposed multi objective approach for test case selection problem by

utilizing multi objective genetic algorithm and claimed better performance than random

search approach (Loiola & Maia, 2009). Yoo and Harman further utilized pareto optimal

multi-objective optimization to solve test suite minimization (Yoo & Harman, 2010). A

hybrid technique by combining Bee Colony optimization and genetic algorithm has been

proposed, in this approach crossover parameter have been borrowed from genetic algorithm to

generate and update the new solutions (Suri et al., 2011). You et al. proposed a genetic

algorithm based time aware test suite reduction approach which removes the redundant test

cases and minimize the total test case execution time (You & Lu, 2012). A fuzzy logic based

approach has been proposed for multi objective test suite minimization problem (Haider et al.,

2012), and also performed an empirical analysis (Haider et al., 2013) on computational and

fuzzy based approach for safe reduction of test suites. The analysis claimed that the fuzzy

based approach is safer then computational approaches for test suite minimization (Haider et

al., 2013). Ahmad utilized cuckoo search optimization technique to solve configuration-aware

structural testing the results was compared and claimed better then GA, PSO and other similar

approaches (Ahmed, 2015). Turner et al. utilized NSGA II approach for test suite

minimization on Mockito framework (Drake et al., 2016). Gupta et al. proposed multi

Regression Test Suite Minimization Using Modified Artificial Ecosystem… 26

objective test suite optimization approach for detection and localization of test cases (Gupta et

al., 2020).

The approaches discussed above claim that both heuristic and metaheuristic-based

approaches have been proposed to address the test suite minimization problem but still a

scope of optimization exists. In this paper first authors have applied original AEO approach

for minimizing test case in test suite. In order to improve performance a modified approach is

also proposed using Artificial Ecosystem Optimization. The proposed approach is further

utilized for test suite minimization.

Proposed Approach: Test Case Minimization Using AEO AND MAEO

Nature is ocean of knowledge and inspiration; it’s an excellent example is ecological system.
Nature intelligently maintains a perfect balance in ecological system. Zhao et al.(Weiguo et

al., 2019) took inspiration from nature and proposed an effective nature inspired algorithm

called artificial ecosystem-based optimization (AEO) algorithm. AEO mimics the production,

consumption, and decomposition behaviour of living creatures (Weiguo et al., 2019). The

main aim of every meta-heuristics is to maintain balance between exploration and exploitation

during their search process (Yang, n.d.; Kumar et al., 2018). In AEO, production,

consumption, and decomposition behaviour is considered as operators (Weiguo et al., 2019).

The role of production operator is to maintain the balance among exploitation and exploration

behaviour while the consumption operator is utilized for to improve the exploration and at last

decomposition operator is utilized to promote the exploitation behaviour. In this paper authors

have proposed modified AEO to improvise the exploitation and exploration process by

utilizing Equilibrium optimizer (Faramarzi et al., 2020) equations in AEO algorithm for test

case minimization problem. Authors have used same problem statement as discussed in

introduction section to explain the algorithmic process.

In order to achieve optimal solution AEO and its modified version follows certain rules

(Weiguo et al., 2019):

1. The producer, consumer, and decomposer are three types of organisms included in the

ecosystem.

2. As an individual, there is only one producer as well as only one decomposer in the

population.

3. Rest of the population is treated as consumers, which are categorized as a carnivore,

an herbivore, or an omnivore with equal probability.

4. The energy level of individuals is evaluated by cost function. Higher the value of cost

function reflects higher energy of the individual for minimization problem.

Journal of Information Technology Management, 2021, Vol.13, No.1 27

A. Production:

The producer is considered as the worst individual of the ecological system, which may

produce food energy from natural resources such as water, sunlight & carbon dioxide. The

decomposer is the one who provides nutrition to the producer. The producer will be updated

or generated from the random value between lower and upper limits of the search space (test

suites) and the decomposer .

The mathematical representation of production operator in AEO is as follows:

 () () () (1)

 () (2)

 () (3)

where represents production operator, represents random test suite,

represents best test suite so far or decomposer, is a linear weight coefficient between [] to maintain balance between random test suite and decomposer for

updating (Production operator), r and r1 are random numbers ranges between [] , denotes the current iteration and TI denotes total iterations.

In AEO, the linear weight coefficient decreases linearly from 1 to 0 using equation 2,

while the proposed MAEO uses exponential function to decrease the value of from 1 to 0

over the iterations. As shown in figure1 the exploitation and exploration will ranges 70% and

30 %.

 () (4)

Figure 1. Linear and exponential

distribution of “a”

0

0.2

0.4

0.6

0.8

1

1.2

1 10192837465564738291

a

No. of itearion

Linear

Distribution of a

Exponential

Distribution of a

Regression Test Suite Minimization Using Modified Artificial Ecosystem… 28

B. Consumption

The consumption operator is performed by all the consumers. Each consumer may eat either a

randomly selected lower energy consumer or a producer or both.

Figure 2. Proposed Approach of Regression Test Case Minimization using AEO

Journal of Information Technology Management, 2021, Vol.13, No.1 29

In AEO, Levy flight is considered as a mathematical operator to perform random walk-

in order to explore the search space. In AEO, Levy flight is proposed as a consumption factor

which is a simple free random walk. Each Consumer may use this consumption factor for

hunting their food and there are various consumption approaches adopted by different

varieties of consumers.

The mathematical representation of consumption operator in AEO is as follows:

a) Herbivore: Herbivore consumer eats only the producer.

 () () (() ()) (5)

b) Carnivore: Carnivore consumer eats only randomly chosen consumer having a high

energy level.

 () () (() ()) (| |)

(6)

c) Omnivore: Omnivore consumers can eat both either a producer or a consumer having a

higher energy level.

 () () ((() ())) () (() ()) and (| |)

(7)

C. Decomposition

The decomposition is most important operator and very essential process to maintain the

functioning of an ecosystem as well as generates required nutrients for producer to help them

in their growth. In the process of decomposition, when each individual of the population dies,

the decomposer will break down chemically or decay its remains.

Here D (decomposition factor), e and h (weight coefficient) are three main parameters

to spread the decomposer to each individual.

The mathematical representation of consumption operator in AEO is as follows:

 () () ((() ())) (8)

Regression Test Suite Minimization Using Modified Artificial Ecosystem… 30

 () (9)

 (| |) (10)

 (11)

In AEO, decomposition balance exploitation behaviour by using equations 8,9,10,11. In

MAEO, authors have utilized equations from Equilibrium optimizer (Faramarzi et al., 2020).

The mathematical representation of decomposition operator in MAEO is as follows:

Generate random vectors of ⃗ ⃗ random number vector of size [1- Dim] ranges

between []. , GP=0.5 to better maintain exploitation and exploration. The

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ () (12)

 ⃗ (⃗)[⃗⃗⃗] (13)

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ (14)

 ⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗⃗ (⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ⃗ ⃗⃗⃗⃗⃗⃗⃗) (15)

 ⃗ ⃗ ⃗ (16)

 () () () () () (17)

In Eq. 17 first part of the equation reflects the decomposer represents the best solution

so far in this iteration the second term represents the movement in the direction of random

consumer which behave like direct search and third term is used for global exploration.

Experimental Setup

Experimental setup contributes significantly to evaluate the quality of any research, keeping

this in consideration. We have conducted the research experiments to evaluate the

performance of proposed algorithm. The algorithms and their control parameters considered

for this study is as follows:

Journal of Information Technology Management, 2021, Vol.13, No.1 31

Table 1. Control parameter setting for Experimental Setup

Algorithm / Control Parameters

MAEO Population size (N) No of Iterations a1

30 500 1

AEO Population size (N) No of Iterations

30 500

BAT No. of Bats Frequency Loudness Pulse Rate

30 75 0.75 0.25

CROW Population size (N) Awareness Probability Flight Length No of Iterations

30 0.1 2 500

HHO Population size (N) No of Iterations

 30 500

The proposed algorithm as well as existing approach is evaluated on benchmarked

dataset consisting of 12 versions of 5 open-source programs. These versions are retrieved

from benchmarked Software Artifact Repository in regression testing (Do et al., 2005) under

controlled experimental setting. Table 2 present summarized details of fault data.

Table 2. Dataset retrieved and their characteristics

Objects

flex
 v

1
 o

b
ject

flex
 v

2
 o

b
ject

flex
 v

3
 o

b
ject

flex
 v

4
 o

b
ject

flex
 v

5
 o

b
ject

G
rep

 o
b

ject

G
zip

 o
b

ject

n
a

n
o

-x
m

l v
1

o
b

ject

n
a

n
o

-x
m

l v
2

o
b

ject

n
a

n
o

-x
m

l v
3

o
b

ject

n
a

n
o

-x
m

l v
5

o
b

ject

x
m

l-secu
rity

o
b

ject

Total number of faults 19 20 17 16 9 18 16 5 7 7 9 5

Total number of test cases 567 567 567 567 567 199 214 15 214 216 216 15

The research questions and research hypothesis section discuss the research questions

and hypothesis formed to evaluate the performance of proposed approach over the existing

literature.

Research Questions

We have formulated following three research questions to compare the performance of

proposed and existing approaches available in literature.

Regression Test Suite Minimization Using Modified Artificial Ecosystem… 32

 Research Question 1: How is the performance of the MAEO algorithm as compared to the

rest of the algorithm adopted for regression test case minimization problem?

 Research Question 2: Is there any effect of the subject program on the performance of the

algorithms?

 Research Question 3: Does minimized test suite size effect fault revealing ability of

algorithms?

 Research Question 4: How the computational cost of the MAEO algorithm is as compared

to the rest of the algorithm adopted for regression test case minimization problem?

Research Hypothesis

The following hypothesis is designed to answer our research questions RQ1, RQ2 and RQ3

respectively:

Ho: Overall Performance of MAEO = Overall Performance of AEO = Overall Performance of

BA= Overall Performance of HHO= Overall Performance of CSA

Ha: Overall Performance of MAEO ≠ Overall Performance of AEO ≠ Overall Performance of
BA≠ Overall Performance of HHO ≠ Overall Performance of CSA

Ho: Algorithmic performance is independent of Subject Program

Ha: Algorithmic performance is dependent of Subject Program

Ho: RTM_5 = RTM_10 = RTM_15

Ha: RTM_5 ≠ RTM_10 ≠ RTM_15

Ho: Computational Cost of MAEO = Computational Cost of AEO = Computational Cost of

BA= Computational Cost of HHO= Computational Cost of CSA

Ha: Computational Cost of MAEO ≠ Computational Cost of AEO ≠ Computational Cost of
BA≠ Computational Cost of HHO ≠ Computational Cost of CSA

Results & Discussion

The experiment is conducted on subject programs under control parameters setting as shown

in Table 2 and 3. In this experiment 15 runs of each algorithm is evaluated and means of these

runs is utilized for performance evaluation. The values highlighted in bold are best from one

or the other viewpoint. Table 3 present the means of dependent variable fault covered.

Journal of Information Technology Management, 2021, Vol.13, No.1 33

Table 3. Mean value of Faults Covered by proposed and adopted algorithms on different test suite sizes

and subject programs

Subject

Program
Test suite size

% Test Cases Covered

MAEO AEO BA HHO CSA

flex v1

5 100 100 96 100 100

10 100 100 100 100 100

15 100 100 100 100 100

flex v2

5 98 95 75 89 87

10 100 95 81 92 90

15 100 98 82 93 92

flex v3

5 98 93 59 92 90

10 100 100 74 99 98

15 100 100 79 100 99

flex v4

5 100 100 100 100 100

10 100 100 100 100 100

15 100 100 100 100 100

flex v5

5 100 100 100 100 100

10 100 100 100 100 100

15 100 100 100 100 100

Grep

5 100 100 58 98 100

10 100 100 71 100 100

15 100 100 80 100 100

Gzip

5 100 100 52 88 98

10 100 100 78 98 100

15 100 100 78 99 100

nano v1

5 100 100 100 100 100

10 100 100 100 100 100

15 100 100 100 100 100

nano v2

5 100 100 100 100 100

10 100 100 100 100 100

15 100 100 100 100 100

nano v3

5 100 100 100 100 100

10 100 100 100 100 100

15 100 100 100 100 100

nano v5

5 100 99 75 88 99

10 100 100 82 97 100

15 100 100 89 99 100

xmlSec

5 100 100 99 100 100

10 100 100 100 100 100

15 100 100 100 100 100

Regression Test Suite Minimization Using Modified Artificial Ecosystem… 34

 Answer to Research Question 1:

The bold highlighted mean values reflect the fault coverage by different approaches on

different subject programs and different minimized test suites. The highlighted means reflect

that the proposed MAEO performs superior to other compared approaches. However, to

confirm the claim of superiority a two- way ANOVA test is performed. The test results will

show the effect of independent variables separately and in combination on dependent variable

fault coverage. The tests are conducted in SPSS 20 tool and results are shown in Table 4

below.

Table 4. Two-way ANOVA of independent variables (Algorithm, Test suite size, subject program) and

their combined effects on fault coverage at 95% Confidence Interval (α = 0.05)

Tests of Between-Subjects Effects

Dependent Variable: Fault_Coverage

Source Type III Sum of Squares Df Mean Square F Sig.

Corrected Model 36997.683a 179 206.691 3247.265 0

Intercept 155283.917 1 155283.917 2439622.637 0

Algo 237.613 4 59.403 933.266 0

Subject 36259.461 11 3296.315 51787.486 0

TS_Size 23.490` 2 11.745 184.52 0

Algo * Subject 392.076 44 8.911 139.996 0

Algo * TS_Size 17.325 8 2.166 34.024 0

Subject * TS_Size 39.079 22 1.776 27.907 0

Algo * Subject * TS_Size 28.639 88 0.325 5.113 0

Error 160.4 2520 0.064

Total 192442 2700

Corrected Total 37158.083 2699

All the significance values listed in column 6 of table 4 are lesser than α, so we can
claim that all the approaches are statistically significant from each other. Further we have

conducted the post –hoc test Tukey’s HSD at 95% confidence interval to perform a pair wise
comparative analysis of approaches for fault coverage and the results are shown in table 5

below:

Journal of Information Technology Management, 2021, Vol.13, No.1 35

Table 5. Pair wise Comparison of different algorithms with respect to Fault Coverage at α = 0.05

Dependent Variable: Fault_Cov

 Tukey HSD

(I) Algo Mean Difference (I-J) Std. Error Sig.
95% Confidence Interval

Lower Bound Upper Bound

MAEO

AEO .05* 0.015 0.01 0.01 0.09

BA .82* 0.015 0 0.77 0.86

HHO .17* 0.015 0 0.13 0.22

CSA .14* 0.015 0 0.1 0.18

AEO

MAEO -.05* 0.015 0.01 -0.09 -0.01

BA .77* 0.015 0 0.72 0.81

HHO .12* 0.015 0 0.08 0.17

CSA .09* 0.015 0 0.05 0.13

BA

MAEO -.82* 0.015 0 -0.86 -0.77

AEO -.77* 0.015 0 -0.81 -0.72

HHO -.64* 0.015 0 -0.68 -0.6

CSA -.67* 0.015 0 -0.72 -0.63

HHO

MAEO -.17* 0.015 0 -0.22 -0.13

AEO -.12* 0.015 0 -0.17 -0.08

BA .64* 0.015 0 0.6 0.68

CSA -0.03 0.015 0.242 -0.07 0.01

CSA

MAEO -.14* 0.015 0 -0.18 -0.1

AEO -.09* 0.015 0 -0.13 -0.05

BA .67* 0.015 0 0.63 0.72

HHO 0.03 0.015 0.242 -0.01 0.07

The results observed from table 5 above shows that the pair wise algorithms is

significantly different among others in term of their fault coverage as all the P-values are

lesser than α. The result evident from homogenous subset of fault coverage of different

algorithms in table 6 answers the Research question1 that proposed MAEO works better than

other adopted Algorithms. The MAEO is superior then BA, HHO, CSA and AEO algorithm.

Table 6 Homogenous Subsets of Mean Fault Coverage of Algorithms

Fault_Coverage

Tukey HSD

Algo N
Subset

1 2 3 4

BA 540 7

HHO 540 7.65

CSA 540 7.68

AEO 540 7.77

MAEO 540 7.82

Sig. 1 0.242 1 1

Regression Test Suite Minimization Using Modified Artificial Ecosystem… 36

 Answer to Research Question 2

Table 3 and Figure 3 also help us to answer our Research Question 2. The figure 3 shows that

except flex v4, nano v3 and xmlSec, there is a significant difference in the performance of

algorithm. Table 3 also strengthen the claim of research question 2. So, we can conclude that

a test suite size of 10 test cases is fair enough to perform regression testing without

significantly affecting the fault detection effectiveness of RTM approaches.

Figure 3. Algorithm Performance vs

Subject program

Figure 4. Algorithm Performance vs

Test Suite size

Journal of Information Technology Management, 2021, Vol.13, No.1 37

 Answer to Research Question 3

Table 3, 7 and Figure 4 answer the 3
rd

 research question. It can be clearly seen from figure 4

that on 5 test suite size the algorithm performance is less as compare to 10 and 15 test suite

size. It can be clearly seen from table 3and 7 that the algorithm performance varies with

minimized size of test suite.

Table 7. Homogenous Subsets of Mean Fault Coverage of Test Suite Size

Fault_Coverage

Tukey HSD

TS_Size N
Subset

1 2 3

5 900 7.45

10 900

7.63

15 900

7.67

Sig.

1.000 1.000 1.000

 Answer to Research Question 4

Table 8 and 9 answers the 4
th

 research question. Table 7 shows that the execution time of

MAEO is lesser than AEO and HHO but it is taking much time in comparison to BA and CSA

approach. Table 8 also confirm the claim and reject the null hypothesis.

So, it is clear from the table 6, 8 and 9 MAEO is providing better fault coverage as

compare to other algorithms and computationally costlier as compare to CSA and BA but

better than AEO and HHO.

Table 8. Execution time of adopting algorithm on Regression Test Case Minimization

Report

Exe_Time

Algo Mean N Std. Deviation Variance Skewness

MAEO 3.78514065 540 0.362517888 0.131 2.826

AEO 4.17900657 540 0.549269359 0.302 1.799

BA 1.3497452 540 0.236788935 0.056 4.605

HHO 4.08997542 540 1.129432657 1.276 2.447

CSA 0.70746535 540 0.185845226 0.035 3.558

Total 2.82226664 2700 1.601025632 2.563 0.135

Regression Test Suite Minimization Using Modified Artificial Ecosystem… 38

Table 9. Tukey HSD test on adopting algorithm for Regression Test Case Minimization

Exe_Time

Tukey HSD

Algo N
Subset for alpha = 0.05

1 2 3 4

CSA 540 0.707465349

BA 540 1.349745202

MAEO 540 3.78514065

HHO 540 4.08997542

AEO 540 4.179006573

Sig. 1 1 1 0.105

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 540.000.

Threats to Validity

Threats to external validity limit the capability to generalize the results beyond the experiment

settings which can be reduced by taking the more realistic experimental setup. To overcome

such issues, we have adopted benchmarked subject programs from SIR repository to perform

the experiment.

Threat to internal validity mainly affects the independent variables such as algorithms,

subject programs and minimized size of test suite in our case. To overcome this threat we

adopted algorithms available in literature, similarly subject programs and minimized test suite

size. Threat to construct validity reflects the degree up to that the experiment setting imitates

the theory. In our case stochastic nature of Meta heuristic algorithms has been addressed by

running our experiment 15 times with 500 iterations each to collect the results. Means of these

15 runs has been considered.

Conclusion

Regression test suite minimization is very challenging problem under software maintenance.

In each maintenance cycle running all the test cases is costly affair. To these issues this paper

proposes an effective Modified Artificial Ecosystem optimization-based approach for test

suite minimization. The proposed MAEO with updated formulation maintains optimal

balance in exploration and exploitation for test case minimization problem. All the three

research questions are answered through empirical study:

Answer to Research Question 1: The proposed Modified AEO based RTM approach is

significantly superior to other adopted approaches.

Journal of Information Technology Management, 2021, Vol.13, No.1 39

Answer to Research Question 2: Yes, there is significant impact of subject program on

performance of algorithms.

Answer to Research Question 3: Yes, there is impact of minimized test suite size on fault

revealing ability of algorithms. The Test suite size of 10 test cases is sufficient in mostly

cases.

Answer to Research Question 4: Yes, the computational cost of different metaheuristics is not

same. Computational cost of MAEO is higher as compare to BA and CSA but lesser than

AEO and HHO.

In future we will focus to generalize this approach to various domains of applications and

generalize the approach to select the minimum required test case in suite automatically.

References

Agrawal, A. P., Choudhary, A., Kaur, A., & Pandey, H. M. (2019). Fault coverage-based test suite

optimization method for regression testing: learning from mistakes-based approach. Neural

Computing and Applications, February. https://doi.org/10.1007/s00521-019-04098-9

Ahmad Khan, F., Bora, D. J., & Gupta, A. K. (2017). An Efficient Heuristic Based Test Suite

Minimization Approach. Indian Journal of Science and Technology, 10(29), 1–8.

https://doi.org/10.17485/ijst/2017/v10i29/106374

Ahmed, B. S. (2015). Test case minimization approach using fault detection and combinatorial

optimization techniques for configuration-aware structural testing. Engineering Science and

Technology, an International Journal, 6(2), 189–213. https://doi.org/10.1007/s10479-005-3971-

7

Augustsson, A. (2012). A Framework for Evaluating Regression Test Selection Techniques in

Industry. Proceedings of 16th International Conference on Software Engineering, April, 201–
210.

Black, J., Melachrinoudis, E., & Kaeli, D. (2004). Bi-criteria models for all-uses test suite reduction.

Proceedings. 26th International Conference on Software Engineering, 106–115.

https://doi.org/10.1109/ICSE.2004.1317433

Chaudhary, A., Agarwal, A. P., Rana, A., & Kumar, V. (2019). Crow Search Optimization Based

Approach for Parameter Estimation of SRGMs. Proceedings - 2019 Amity International

Conference on Artificial Intelligence, AICAI 2019, 583–587.

https://doi.org/10.1109/AICAI.2019.8701318

Chen, T. Y., & Lau, M. F. (1998a). A new heuristic for test suite reduction. Information and Software

Technology, 40(5–6), 347–354. https://doi.org/10.1016/S0950-5849(98)00050-0

Chen, T. Y., & Lau, M. F. (1998b). A simulation study on some heuristics for test suite reduction.

Information and Software Technology, 40(13), 777–787. https://doi.org/10.1016/S0950-

5849(98)00094-9

Chen, T. Y., & Lau, M. F. (2003). On the divide-and-conquer approach towards test suite reduction.

Information Sciences, 152(SUPPL), 89–119. https://doi.org/10.1016/S0020-0255(03)00060-4

Regression Test Suite Minimization Using Modified Artificial Ecosystem… 40

Chung, C. G., & Lee, J. G. (1997). An enhanced zero-one optimal path set selection method. Journal

of Systems and Software, 39(2), 145–164. https://doi.org/10.1016/S0164-1212(96)00169-0

Do, H., Elbaum, S., & Rothermel, G. (2005). Supporting controlled experimentation with testing

techniques: An infrastructure and its potential impact. Empirical Software Engineering, 10(4),

405–435. https://doi.org/10.1007/s10664-005-3861-2

Drake, J. H., Turner, A. J., White, D. R., & Drake, J. H. (2016). Multi-objective Regression Test Suite

Minimisation for Mockito. 1–6. https://doi.org/10.1007/978-3-319-47106-8

Faramarzi, A., Heidarinejad, M., Stephens, B., & Mirjalili, S. (2020). Equilibrium optimizer: A novel

optimization algorithm. Knowledge-Based Systems, 191.

https://doi.org/10.1016/j.knosys.2019.105190

Gupta, A., Mishra, N., & Kushwaha, D. S. (2014). Rule based test case reduction technique using

decision table. Souvenir of the 2014 IEEE International Advance Computing Conference, IACC

2014, 1398–1405. https://doi.org/10.1109/IAdCC.2014.6779531

Gupta, N., Sharma, A., & Pachariya, M. K. (2020). Multi-objective test suite optimization for

detection and localization of software faults. Journal of King Saud University - Computer and

Information Sciences, xxxx. https://doi.org/10.1016/j.jksuci.2020.01.009

Haider, A A, Rafiq, S., & Nadeem, A. (2012). Test suite optimization using fuzzy logic. Proceedings -

2012 International Conference on Emerging Technologies, ICET 2012, September, 340–345.

https://doi.org/10.1109/ICET.2012.6375440

Haider, Aftab Ali, Nadeem, A., & Rafiq, S. (2013). Computational intelligence and safe reduction of

test suite. ICET 2013 - 2013 IEEE 9th International Conference on Emerging Technologies, 1–
6. https://doi.org/10.1109/ICET.2013.6743502

Harris, P., & Raju, N. (2015). A greedy approach for coverage-based test suite reduction. International

Arab Journal of Information Technology, 12(1), 17–23.

Harrold, M., Gupta, R., & Jean, M. (1993). A Methodology for Controlling the Size of a Test Suite. 3,

270–285. https://doi.org/10.1145/152388.152391

Jeffrey, D., & Gupta, N. (2007). by Selectively Retaining Test Cases during Test Suite Reduction.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 33(2), 108–123.

Jeffrey, D., & Gupta, N. (2005). Test Suite Reduction with Selective Redundancy. IEEE International

Conference on Software Maintenance, 549–558.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.1071&rep=rep1&type=pdf

Kaur, Amandeep. (2020). An Approach To Extract Optimal Test Cases Using AI. 649–654.

https://doi.org/10.1109/confluence47617.2020.9058244

Kaur, Arvinder. (2017). A Comparative Study of Bat and Cuckoo Search Algorithm for Regression

Test Case Selection. 2017 7th International Conference on Cloud Computing, Data Science&

Engineering – Confluenc.

Kumar, N., Mishra, B., & Bali, V. (2018). A Novel Approach for Blast-Induced Fly Rock Prediction

Based on Particle Swarm Optimization and Artificial Neural Network. In Lecture Notes in

Networks and Systems (Vol. 34). Springer Singapore. https://doi.org/10.1007/978-981-10-8198-

9_3

Lee, J. G., & Chung, C. G. (2000). An optimal representative set selection method. Information and

Software Technology, 42(1), 17–25. https://doi.org/10.1016/S0950-5849(99)00052-X

Journal of Information Technology Management, 2021, Vol.13, No.1 41

Littlewood, B., & Sofer, A. (1987). A Bayesian modification to the Jelinski-Moranda software

reliability growth model. Software Engineering Journal, 2(2), 30–41.

https://doi.org/10.1049/sej:19870005

Loiola, C., & Maia, B. (2009). a Multi-Objective Approach for the Regression Test Case Selection

Problem. XLI Brazilian Symposium of Operational Research, XLI SBPO 2009., 1824–1835.

Sprenkle, S., Sampath, S., Gibson, E., Pollock, L., & Souter, A. (2005). An empirical comparison of

test suite reduction techniques for user-session-based testing of web applications. IEEE

International Conference on Software Maintenance, ICSM, 2005, 587–600.

https://doi.org/10.1109/ICSM.2005.18

Suri, B., Mangal, I., & Srivastava, V. (2011). Regression Test Suite Reduction using an Hybrid

Technique Based on BCO And Genetic Algorithm. Special Issue of International Journal of

Computer Science & Informatics, 2, 2231–5292.

https://www.researchgate.net/publication/228460782

Weiguo, Wang, L., & Zhang, Z. (2019). Artificial ecosystem-based optimization: a novel nature-

inspired meta-heuristic algorithm. In Neural Computing and Applications (Vol. 0123456789).

Springer London. https://doi.org/10.1007/s00521-019-04452-x

Yang, X. (n.d.). Nature-Inspired Optimization Algorithms.

Yoo, S., & Harman, M. (2007). Pareto efficient multi-objective test case selection. Proceedings of the

2007 International Symposium on Software Testing and Analysis - ISSTA ’07, 140.

https://doi.org/10.1145/1273463.1273483

Yoo, S., & Harman, M. (2010). Using Hybrid Algorithm For Pareto Effcient Multi-Objective Test

Suite Minimisation. Journal of Systems and Software, 83(4), 689–701.

https://doi.org/http://dx.doi.org/10.1016/j.jss.2009.11.706

You, L., & Lu, Y. (2012). A genetic algorithm for the time-aware regression testing reduction

problem. Proceedings - International Conference on Natural Computation, Icnc, 596–599.

https://doi.org/10.1109/ICNC.2012.6234754

Zhang, L., Marinov, D., Zhang, L., & Khurshid, S. (2011). An empirical study of JUnit test-suite

reduction. Proceedings - International Symposium on Software Reliability Engineering, ISSRE,

4, 170–179. https://doi.org/10.1109/ISSRE.2011.26

Bibliographic information of this paper for citing:

Verma, Abhishek Singh; Choudhary, Ankur & Tiwari, Shailesh (2021). Regression Test Suite Minimization

Using Modified Artificial Ecosystem Optimization Algorithm. Journal of Information Technology Management,

13(1), 22-41.

Copyright © 2021, Abhishek Singh Verma, Ankur Choudhary and Shailesh Tiwari.

