
The Annals of Statistics
1998, Vol. 26, No. 4, 1570�1613

REGRESSION-TYPE INFERENCE IN NONPARAMETRIC
AUTOREGRESSION

BY MICHAEL H. NEUMANN AND JENS-PETER KREISS

Humboldt-Universitat zu Berlin and Technische Universitat¨ ¨
Braunschweig

We derive a strong approximation of a local polynomial estimator
Ž .LPE in nonparametric autoregression by an LPE in a corresponding
nonparametric regression model. This generally suggests the application
of regression-typical tools for statistical inference in nonparametric au-
toregressive models. It provides an important simplification for the boot-
strap method to be used: It is enough to mimic the structure of a
nonparametric regression model rather than to imitate the more compli-
cated process structure in the autoregressive case. As an example we
consider a simple wild bootstrap, which is used for the construction of
simultaneous confidence bands and nonparametric supremum-type tests.

1. Introduction. Autoregressive models form an important class of pro-
cesses in time series analysis. A nonparametric version of these models was

Ž .introduced by Jones 1978 . To allow for heteroscedastic modelling of the
innovations, people often consider the model

1.1 X � m X , . . . , X � v X , . . . , X � ,Ž . Ž . Ž .t t�1 t�p t�1 t�q t

where the � are assumed to be i.i.d. with mean 0 and variance 1. Severalt
authors dealt with the interesting statistical problem of estimating the

Ž .autoregression function m nonparametrically. Robinson 1983 , Tjøstheim
Ž . Ž .1994 and Masry and Tjøstheim 1995 considered usual Nadaraya�Watson

Ž . Ž .estimators. Recently Masry 1996 and Hardle and Tsybakov 1997 investi-¨
gated local polynomial estimators in this context. For some particular pur-
poses of statistical inference like the construction of confidence sets and tests
of hypotheses, it is also important to get knowledge about the statistical

Ž .properties of the underlying estimator. Franke, Kreiss and Mammen 1997
consider time-series specific as well as regression-type bootstrap methods for

Ž .model 1.1 , and showed their consistency for the pointwise behavior of kernel
smoothers of m. One of our goals is to show the validity of one of these
bootstrap methods for statistics which concern the joint distribution of non-
parametric estimators. This is motivated by potential applications to simulta-
neous confidence bands and nonparametric tests. In this paper, we also try to
consider the situation from a more general point of view. We show first the

Ž .closeness, in an appropriate sense, of a model like 1.1 to a corresponding
regression model. To simplify notation, we restrict ourselves to the case of one
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lag; that is, p � q � 1. Without additional effort, we may allow the whole
distribution of � to depend on X . Accordingly, our basic assumption ist t�1
that X , . . . , X is a realization from a strictly stationary time-homogeneous0 T
Markov chain.

The validity of our regression-type bootstrap is based on a strong approxi-
� Ž .4mation of a certain nonparametric estimator m x , construed as aˆ h x � I

� Ž .4process in x, by a corresponding estimator m x in a regression model,˜ h x � I
where I is a certain interval of interest. As a typical nonparametric estima-
tor, we consider a local polynomial estimator. To this end, we construct first a
strong approximation of partial sums w.r.t. dyadic intervals, Z �j, k

� �1ŽŽ . �j . �1Ž �j ..Ý � , I � F k � 1 2 , F k2 , where F is the commont : X � I t j, k X X Xt� 1 j, k

cumulative distribution function of the X , by respective partial sums in at
regression model. Such a partial sum approximation w.r.t. dyadic intervals is
known to be a powerful tool to prove strong approximations in several
instances; the best-known example is the seminal paper by Komlos, Major´

Ž .and Tusnady 1975 . We achieve an approximate pairing of the random´
variables in the autoregressive model with the random variables in the
regression model by Skorokhod embedding of the innovations�errors in a
common set of Wiener processes assigned to the intervals I . Note that, inj, k

Ž . Ž .contrast to recent work of Brown and Low 1996 and Nussbaum 1996 who
provide approximations of nonparametric experiments by simpler ones, we
derive more practically oriented approximations of nonparametric estimators
by their counterparts in observation models of simpler structure.

There will be several interesting consequences of our strong approximation
result. Besides our particular use as a first step for proving the validity of a
certain regression-type bootstrap, one can immediately derive similarities
between properties of estimators in both models. For example, the pointwise
or the integrated risks of corresponding nonparametric estimators are asymp-
totically the same. Moreover, one may also consider this result as a character-
ization of some kind of asymptotic equivalence of nonparametric autoregres-
sion and nonparametric regression concerning statistical inference about the
autoregression�regression function. Accordingly, this provides a justification
for the use of regression-type methods in the context of nonparametric
autoregression, which has already been done for a long time.

The second step in proving the validity of the bootstrap proposal consists of
constructing a strong approximation of the stochastic part of the LPE in the
regression model and the bootstrap counterpart. Such an approximation has

Ž .already been derived in a similar context in Neumann and Polzehl 1995 ,
and we will borrow the corresponding result from there. Both strong approxi-
mations together yield the desired strong approximation of the stochastic

Ž .part of the LPE m x by the bootstrap process. We apply this result to theˆ h
construction of nonparametric confidence bands and supremum-type tests.
The good rate for the approximation error suggests that the wild bootstrap is

Ž .valid for several other purposes, too. Kreiss, Neumann and Yao 1998 prove
this for L -type tests similar to that developed by Hardle and Mammen¨2
Ž .1993 in the regression case.
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The paper is organized as follows. In Section 2 we present the strong
Ž .approximation result for partial sums on dyadic intervals Theorem 2.1 . This

implies a strong approximation of an LPE in nonparametric autoregression
by an LPE in nonparametric regression. Section 3 contains the wild bootstrap
proposal and the corresponding strong approximation. We describe the appli-
cation of the results to simultaneous bootstrap confidence bands and non-
parametric tests. Further, we briefly discuss the higher-dimensional case and
robustness properties against possible deviations from our structural model
assumption. In Section 4 we present some simulation results in order to
demonstrate the finite sample behavior of our proposal. All proofs are de-
ferred to a final Section 5.

2. Approximation of nonparametric autoregression by nonpara-
metric regression. Assume we observe a stretch X , . . . , X of a strictly0 T
stationary time-homogeneous Markov chain. We are interested in estimating

Ž . Ž .the autoregression function m x � E X � X � x . First, we write the datat t�1
generating process in the form of a nonparametric autoregressive model,

2.1 X � m X � � , t � 1, . . . , T ,Ž . Ž .t t�1 t

where the distribution of � is allowed to depend on X witht t�1

E � � X � 0,Ž .t t�1

E � 2 � X � v X .Ž .Ž .t t�1 t�1

Ž .The conditional variance v X is assumed to be bounded away from zerot�1
and infinity on compact intervals. Note that, in contrast to the frequently

Ž .used assumption of errors of the form � X e with i.i.d. e ’s, the errorst�1 t t
here can follow completely different distributions and are not necessarily
independent. Such a dependence may arise because the distribution of �t
depends, through X , on X and � , . . . , � . To ensure recurrence, wet�1 0 1 t�1
assume that

Ž . � 4 Ž .A1 X : t � 0 is a strictly stationary time-homogeneous Markov chain.t
We denote by F the common cumulative distribution function of theX
X , which is assumed to be continuous. Furthermore, we assume abso-t

Ž . � 4lute regularity i.e., �-mixing for X and that the �-mixing coefficientst
decay at a geometric rate.

REMARK 1. For the definition of mixing we refer to the monograph by
Ž . Ž .Doukhan 1994 , Chapter 1. Assumption A1 is, for example, fulfilled if we

assume the following explicit structure of the data-generating process:

2.2 X � m X � � X e� ,Ž . Ž . Ž .t t�1 t�1 t
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Ž . Ž � .where � : � � 0, � and e denote i.i.d. innovations with zero mean andt
unit variance. If one assumes further that

� � �E m x � � x eŽ . Ž . 1
lim sup � 1

� �x� �x ��

and that the distribution of e� possesses a nowhere vanishing Lebesgue1
� 4 Ž .density, then one may conclude that X defined according to 2.2 is geomet-t

� Ž . 	rically ergodic cf. Doukhan 1994 , pages 106, 107 , which implies geometri-
cal �-mixing if the chain is stationary, that is, X � F . Moreover, the0 X
assumption of an everywhere positive density of the innovations can be
relaxed. Besides a usual drift condition to a certain compact set K, it is

Ž . Ž .enough that LL X � X � x has a conditional density p y � x boundedt t�1 X � Xt t�1
� �away from zero for x, y � K and x � y 
 � for some � � 0; for details see

Ž .Franke, Kreiss, Mammen and Neumann 1998 .
The assumption that the chain is stationary may be avoided, since, for any

initial distribution, we have geometric convergence to the unique stationary
distribution by geometric ergodicity. Nevertheless, we assume throughout the
whole paper that the underlying Markov chain is stationary.

Ž .Assumption A1 will be used to show auxiliary results such as that sums
of random variables derived from the X behave similarly to the independentt
case; see Lemma 2.1 below. Hence, it becomes clear that other mixing
conditions are possible as well; geometric absolute regularity is merely
assumed for convenience.

Although it is perhaps more natural to approximate nonparametric autore-
gression by nonparametric regression with random design, we establish here
an approximation by nonparametric regression with nonrandom design. This
is done in view of the proposed bootstrap method, which mimics just nonpara-

� 4metric regression with nonrandom design. Let x , . . . , x be a fixed0 T�1
� 4 Ž .realization of X , . . . , X . As a counterpart to 2.1 we consider the0 T�1

nonparametric regression model
2.3 Y � m x � � , t � 1, . . . , T ,Ž . Ž .t t�1 t

Ž .where the � ’s are independent with � � LL � � X � x . Here we denotet t t t�1 t�1
the independent variables by small letters to underline the fact that we
consider the distribution of the Y ’s conditioned on a fixed realization oft
� 4X , . . . , X .0 T�1

Before we turn to the main result of this subsection, we introduce some
more notation and provide a useful auxiliary lemma. If we compare the
cumulative distribution functions of two random variables, then we can
expect that they are close to each other, if the difference between the random
variables is small with high probability. Because of the frequent use of this
fact we formalize it by introducing the following notion.

� 4 � 4DEFINITION 2.1. Let Z be a sequence of random variables and let �T T
� 4and � be sequences of positive reals. We writeT

˜Z � O � , � ,Ž .T T T
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if
� �2.4 P Z � C� 
 C�Ž . Ž .T T T

holds for T � 1 and some C � �.

This definition is obviously stronger than the usual O and it is well suitedP
for our particular purpose of constructing confidence bands and critical
values for tests; see the applications in Section 4.

˜Whenever we claim that O holds uniformly over a certain set, we mean
Ž .that 2.4 is true for the same constant C. Here and in the following we make

the convention that � denotes a positive but arbitrarily small, and 	 an
arbitrarily large constant.

Before we turn to the strong approximation for the partial sums, we state a
quite useful lemma about the stochastic behavior of sums of geometrically
�-mixing random variables.

Ž .LEMMA 2.1. Suppose that Z is geometrically �-mixing andt t�1, . . . , T
EZ � 0.t

Ž . � �i If Z 
 1 almost surely, thent

T
2 �	˜ 'Z � O min T log T , var Z log T � log T , T .Ž . Ž .Ý Ýt t½ 5(ž /

t�1 t

Ž .ii Under the weaker assumption that 
 M � � � C � � such thatM
� � ME Z 
 C , we havet M

T
� �	˜Z � O var Z log T � T , T .Ž .Ý Ýt tž /(

t�1 t

REMARK 2. If the Z were independent, we would obtain similar boundst
where some of the logarithmic factors were improved. In the first case,
Bernstein’s inequality would immediately yield a stochastic upper bound of

�	˜Ž . Ž .'order O Ý var Z log T � log T, T ; see, for example, Neumann 1996 .' Ž .t
˜ � �	� � �4 Ž .In the second case, since sup Z � O T , T , we would obtain that ÝZ �t t

� �	˜Ž .'O Ý var Z log T � T , T . The additional logarithmic terms arise be-' Ž .t
cause of the blocking technique used to handle the weak dependence.

To ensure the desired behavior of weighted sums of the � ’s and � ’s,t t
respectively, we impose the following condition:

Ž . � Ž � � MA2 For all M � � there exist finite constants C such that sup E �M x � � t
.4� X � x 
 C .t�1 M

Actually, it can be seen from the proofs that a certain finite number M of
uniformly bounded moments would suffice. However, it seems to be difficult to
get a minimal value for M, and therefore we do not make the attempt to give
a particular value for it.
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2.1. Approximation of partial sums w.r.t. dyadic intervals. The ultimate
goal in the present paper is to show the validity of the wild bootstrap for
statistics occuring with nonparametric estimators of the autoregression func-
tion m beyond the pointwise behavior of these estimators. To this end, we

Ž . Ž .show in this section that the joint in x distribution of an LPE m x can beˆ h
Ž .approximated by the joint distribution of an analogous estimator m x˜ h

defined in a corresponding nonparametric regression model.
Ž .It will be shown in the next subsection that m x can be well approxi-ˆ h

Ž . Ž . Ž .mated by m x � Ý w x, X X , where the weight function w x, Xt h t�1 t h t�1
depends only on the spatial position x and a single observation X . Thent�1
Ž . Ž .m x can be decomposed into a purely stochastic part Ýw x, X � , and anh t�1 t

Ž . Ž .essentially nonrandom part Ýw x, X m X . Whereas the treatment ofh t�1 t�1
the latter part will not cause any substantial problems, the approximation of

Ž . Ž .Ýw x, X � by its counterpart Ýw x, x � requires more work.h t�1 t h t�1 t
To formalize such an approximation, we construct, on a sufficiently rich

Ž � � � .probability space, a pairing of the random vector X , � , . . . , � with an-0 1 T
Ž � � .other vector � , . . . , � such that:1 T

Ž � � � . Ž .1. X , � , . . . , � � X , � , . . . , � ;0 1 T d 0 1 T
Ž � � . Ž .2. � , . . . , � � � , . . . , � ; and1 T d 1 T

� � �� � � Ž . Ž . 	 �43. sup Ý w x, X � � w x, x � is small with high probability,x � I h t�1 t h t�1 t
where I is a certain interval of interest.

To facilitate notation, we will not distinguish between the original random
variables X , � , � and their artificial counterparts X �, � � , �� , and simply uset t t t t t

Ž .the notation without prime. A first step toward an approximation as in 3 is
� 4an approximation of partial sums Ý � by Ý � , where I is ant : X � I t t : x � I t lt� 1 l t�1 l

appropriate set of intervals. Using Skorokhod embedding techniques as in the
proof of Theorem 2.1, it is rather straightforward to establish such an

�Ž . .approximation for nonoverlapping intervals I � l � 1 � , l� . This canl T T
Ž .imply a significant result for the difference in 3 if � tends to zero at aT

faster rate than the bandwidth of the LPE. However, as will be explained
below, one often gets a smaller approximation error by specific constructions
that yield simultaneously good approximations of partial sums w.r.t. intervals
of different lengths. The perhaps best-known example is the strong approxi-
mation for empirical processes of i.i.d. random variables by Komlos, Major´

Ž .and Tusnady 1975 . We establish first a multiscale approximation for partial´
� �1ŽŽ . �j . �1Ž �j .. Ž .sums w.r.t. dyadic intervals I � F k � 1 2 , F k2 , j, k � II ,j, k X X T

�Ž . j4 j* j*�1 � �1Ž .where II � j, k � 0 
 j 
 j*, 1 
 k 
 2 , 2 
 T � 2 . We set F 0T X
�1Ž . 	� �� and F 1 � �. This implies in particular a useful strong approxima-X

�Ž . �j �j.tion w.r.t. the ‘‘natural’’ dyadic intervals k � 1 2 , k2 . Let

Z � �Ýj , k t
t : X �It�1 j , k

and
Z� � �Ýj , k t

t : x �It�1 j , k
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Ž .be partial sums of the errors according to the autoregressive model 2.1 and
Ž .the regression model 2.3 , respectively.

Ž . Ž .The link between the two sampling schemes 2.1 and 2.3 will be reached
by Skorokhod embeddings of the � ’s and � ’s, respectively, in a common set oft t

Ž .Wiener processes. Such an embedding was introduced by Skorokhod 1965
for independent random variables and is known as a possible tool to derive

�strong approximations for partial sums of independent random variables cf.
Ž . 	Csorgo and Revesz 1981 , Chapter 2 . Later the technique has been extended¨ ˝ ´ ´

to martingales by several authors; a convenient description of the main ideas
Ž .can be found in Hall and Heyde 1980 , Appendix A.1.

Ž . Ž .THEOREM 2.1. Suppose that A1 and A2 are fulfilled. On an appropriate
Ž .probability space, there exists a pairing of the random variables from 2.1

Ž .with those from 2.3 such that
1�4� �j � �	� �P Z � Z � C T 2 log T � T for any j, k � II � O TŽ . Ž . Ž .½ 5j , k j , k 	 Tž /

Ž .holds uniformly in x , . . . , x �  for an appropriate set  with0 T�1 T T
ŽŽ . . Ž �	 .P X , . . . , X �  � O T .0 T�1 T

From this approximation w.r.t. the intervals I , we can immediatelyj, k
derive an analogous approximation for arbitrary intervals. This includes as

�Ž . �j �j.special cases the natural dyadic intervals k � 1 2 , k2 .

Ž . Ž .COROLLARY 2.1. Suppose that A1 and A2 are fulfilled, and let  be asT
Ž .in Theorem 2.1. Then there exists a pairing of the random variables from 2.1

Ž .and 2.3 such that

� �Ý � � Ý �t : X �� t t : x �� tt� 1 c , d . t� 1 c , d . �	P sup � C � O TŽ .	1�4 �½ 5ž /TP X � c, d log T � T��
c�d
� .Ž .0

Ž .holds uniformly in x , . . . , x �  .0 T�1 T

Using a Haar wavelet expansion of an arbitrary weighting function w we
Ž . Ž .can now establish a link between Ý w X � and Ý w x � . Such ant t�1 t t t�1 t

approximation will hold in a uniform manner and simultaneously in a whole
Ž .class WW of such weighting functions. We use TV w to denote the total

variation of w.

Ž . Ž .COROLLARY 2.2. Suppose that A1 and A2 are fulfilled, and let  be asT
in Theorem 2.1. Moreover, we assume that the stationary density p isX

Ž .bounded. Then there exists a pairing of the random variables from 2.1 and
Ž .2.3 such that

� �Ý w X � � Ý w x �Ž . Ž .t t�1 t t t�1 t �	P sup � C � O TŽ .	3�4 1�41�4 �½ 5ž /� �T TV w w log T � TV w TŽ . Ž .w�WW 1

Ž .holds uniformly in x , . . . , x �  .0 T�1 T
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2.2. Strong approximation for local polynomial estimators. We intend to
construct an asymptotic confidence band for the conditional mean function m.
This makes sense for a region where we have enough information about m.
To facilitate the technical calculations, we assume

Ž . Ž .A3 The stationary density p of X is bounded and satisfies p x � C � 0X t X
� 	for all x � a, b

� 	and construct a confidence band for this interval a, b .
We focus our attention to so-called local polynomial estimators. These

Ž . Ž .estimators were introduced in a paper by Stone 1977 . Tsybakov 1986 ,
�Ž . 	 Ž .Korostelev and Tsybakov 1993 , Chapter 1 , Fan 1992, 1993 and Fan and

Ž .Gijbels 1992, 1995 discussed the behavior of LPE for nonparametric regres-
Ž . Ž .sion in full detail. Recently Masry 1996 and Hardle and Tsybakov 1997¨

applied LPE to nonparametric autoregressive models. A pth order local
Ž . Ž . Ž .polynomial estimator m x of m x is given as a � a x, X , . . . , X ,ˆ ˆ ˆh 0 0 0 T

Ž .where a � a , . . . , a � minimizesˆ ˆ ˆ0 p�1

2qp�1T x � X x � Xt�1 t�1
2.5 M � K X � a .Ž . Ý Ýx t qž / ž /ž /h ht�1 q�0

At the moment we only assume that the bandwidth h of the local polynomial
Ž �� . �1 Ž 1�� .estimator satisfies h � O T and h � O T for some � � 0. We as-

sume that the kernel K is a nonnegative function of bounded total variation
Ž . � 	with supp K � �1, 1 , which is bounded away from zero on a set of positive

Lebesgue measure. We do not impose any further smoothness condition on K,
because only a particular choice of p, which makes a certain rate of conver-
gence possible, can be motivated from the estimation point of view. From
least-squares theory it is clear that m can be written asˆ h

T

� 4m x � w x , X , X , . . . , X XŽ . Ž .ˆ Ýh h t�1 0 T�1 t
t�12.6Ž .

�1� �� D K D D K X ,Ž .x x x x x 1

Ž .where X � X , . . . , X �,1 T

p�1x � X x � X0 0
1 ��� ž /h h
. . . .. . . .D � ,x . . . .

p�1x � X x � XT�1 T�1� 01 ��� ž /h h

x � X x � X0 T�1
K � Diag K , . . . , Kx ž / ž /h h
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� 	and � denotes the first entry of a vector. It is shown at the end of the proof1
Ž � .�1of Lemma 2.2 that D K D exists with a probability exceeding 1 �x x x

Ž �	 .O T .
On first sight the analysis of m seems to be quite involved, because theˆ h

Ž .X ’s are dependent and enter into the right-hand side of 2.6 several times.t
Ž . � Ž .To simplify the investigation of the deviation process in x , m x �ˆ h

Ž .4m x , we approximate it by an analogous deviation process defined byx �� a, b 	
Ž .observations according to the nonparametric regression model 2.3 .

Ž .In analogy to 2.6 we define a local polynomial estimator as

T

� 42.7 m x � w x , x , x , . . . , x Y .Ž . Ž . Ž .˜ Ýh h t�1 0 T�1 t
t�1

Before we turn to the main approximation step, we derive first some
approximations to m and m , which allow us to replace the local polynomialˆ ˜h h
estimators by quantities of a simpler structure.

Ž .According to 2.6 , the weights of the local polynomial estimator can be
written as

� 4w x , X , X , . . . , XŽ .h t�1 0 T�1

qp�1 x � X x � Xt�1 t�1� 4� d x , X , . . . , X K ,Ž .Ý q 0 T�1 ž / ž /h hq�0

2.8Ž .

Ž � 4. ŽŽ � .�1 . � Ž .where d x, X , . . . , X � D K D . M denotes the i, j thq 0 T�1 x x x 1, q�1 i j
	 � 4entry of a matrix M. The functions d depend on X , . . . , X in a smoothq 0 T�1

Žmanner ‘‘smooth’’ is meant in the sense of bounded total variation, which
.leads to appropriately decaying coefficients in a Haar series expansion and

yields the following nonrandom approximation.

Ž . Ž .LEMMA 2.2. Assume A1 and A3 . Then there exist nonrandom functions
Ž�.Ž . Ž�.Ž . ŽŽ � .�1 . ŽŽ .�1 .d x , d x � ED K D � O Th , such thatq q x x x 1, q�1

�3�2Ž�. �	˜� �� 4sup d x , X , . . . , X � d x � O Th log T , T .Ž . Ž .Ž .� 4 Ž .q 0 T�1 q
� 	x� a , b

Ž .This lemma allows us to introduce weights w x, X , which depend onlyh t�1
on a single value X , namelyt�1

qp�1 x � X x � Xt�1 t�1Ž�.2.9 w x , X � d x K .Ž . Ž . Ž .Ýh t�1 q ž / ž /h hq�0

Now we obtain the following assertions, which finally allow us to consider
Ž . Ž .the difference between Ý w x, X � and Ý w x, x � rather than thatt h t�1 t t h t�1 t

Ž . Ž .between the more involved quantities m x and m x .ˆ ˜h h
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Ž . Ž .PROPOSITION 2.1. Suppose that A1 to A3 are fulfilled. Then

� 4sup w x , X , X , . . . , X � w x , X �Ž .Ž .Ý h t�1 0 T�1 h t�1 t½ 5
� 	x� a , b t

�1 3�2 �	˜� O Th log T , T .Ž . Ž .Ž .
Analogously,

� 4sup w x , x , x , . . . , x � w x , x �Ž .Ž .Ý h t�1 0 T�1 h t�1 t½ 5
� 	x� a , b t

�1 3�2 �	˜� O Th log T , TŽ . Ž .Ž .
Ž .holds uniformly in x , . . . , x �  , where  is an appropriate set with0 T�1 T T

ŽŽ . . Ž �	 .P X , . . . , X �  � O T .0 T�1 T

For the next assertion concerning a term, which plays a role similar to the
usual bias term in nonparametric regression, we need the following assump-
tion:

Ž . � � Ž p.Ž . �4A4 Here m is p-times differentiable with sup m x � �, forx �� a�� , b�� 	
some � � 0.

Ž . Ž . Ž .PROPOSITION 2.2. Suppose that A1 , A3 and A4 are fulfilled. As an
approximation to the bias-type term we consider the nonrandom quantity

qp�1 x � X x � Xt�1 t�1Ž�.b x � d x E KŽ . Ž .Ý Ý� q ž / ž /½ h hq�0 t

p�1X � sŽ .X t�1t�1 Ž p.� m s ds .Ž .H 5p � 1 !Ž .x

Then
� � psup b x � O h� 4Ž . Ž .�

� 	x� a , b

and

� 4sup w x , X , X , . . . , X m X � m x � b xŽ . Ž . Ž .Ž .Ý h t�1 0 T�1 t�1 �½ 5
� 	x� a , b t

�1�2p �	˜� O h Th log T , T .Ž .Ž .
Ž .To establish now the desired approximation of Ý w x, X � byt h t�1 t

Ž .Ý w x, x � , we only have to find upper bounds to the total variation andt h t�1 t
Ž .the L -norm of w x, � . This leads to the following assertion.1 h

Ž . Ž .PROPOSITION 2.3. Suppose that A1 to A3 are fulfilled, and let  be asT
Ž .in Theorem 2.1. Then there exists a pairing of the random variables from 2.1
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Ž .and 2.3 such that

�3�4 �	˜sup w x , X � � w x , x � � O Th log T , TŽ . Ž . Ž .Ž .Ý Ýh t�1 t h t�1 t½ 5
� 	x� a , b t t

Ž .holds uniformly in x , . . . , x �  .0 T�1 T

The approximations given in the Propositions 2.1, 2.2 and 2.3 lead also to
the approximation of an LPE in nonparametric autoregression by an LPE in
nonparametric regression.

Ž . Ž .THEOREM 2.2. Suppose that A1 to A4 are fulfilled, and let  be as inT
Ž .Theorem 2.1. Then there exists a pairing of the random variables from 2.1

Ž .and 2.3 such that

�1�2 �3�4p �	˜� �sup m x � m x � O h Th log T � Th log T , TŽ . Ž . Ž . Ž .� 4ˆ ˜ Ž .h h
� 	x� a , b

Ž .holds uniformly in x , . . . , x �  .0 T�1 T

Besides the technical quantification of a certain upper bound of the rate of
Ž . Ž .approximation of m x by m x , the more important fact is that theˆ ˜h h
Ž . Ž .difference between m x and m x is of smaller order than the stochasticˆ ˜h h

Ž . ŽŽ .�1�2 .fluctuations of m x , which are O Th . This can be interpreted asˆ h P
some kind of asymptotic equivalence of nonparametric autoregression and
nonparametric regression. It is the first step in proving the validity of a
regression-type bootstrap, the so-called wild bootstrap, in nonparametric
autoregression. With a simple extra argument, it can also be used for proving
asymptotic equivalence of the mean squared error of nonparametric estima-

Ž . Ž .tors in models 2.1 and 2.3 .

REMARK 3. As was already mentioned, it perhaps would have been more
natural to approximate nonparametric autoregression by nonparametric re-

Ž .gression with random design. That is, instead of 2.3 we consider the
nonparametric regression model

2.10 Z � m Y � � , t � 1, . . . , T ,Ž . Ž .t t t

Ž .where the pairs Y , Z are i.i.d. according to the stationary distribution oft t
Ž . Ž . Ž .the vector X , X in model 2.1 . Let m x be the local polynomialˇt�1 t h

Ž . Ž .estimator in model 2.10 , which is defined analogously to 2.7 . It is easily
seen that the statement in Theorem 2.1 implies the asymptotic equivalence of

Ž . Ž . Ž . Ž .LPE’s in models 2.1 and 2.10 . Strictly speaking, under A1 to A4 there
Ž . Ž .exists a pairing of the random variables from 2.1 with those of 2.10 such

that

�1�2 �3�4p �	˜� �sup m x � m x � O h Th log T � Th log T , T .Ž . Ž . Ž . Ž .� 4ˆ ˘ Ž .h h
� 	x� a , b
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3. The bootstrap. To motivate the particular resampling scheme pro-
posed here, first note the different nature of the stochastic and the ‘‘bias-type’’
term. Even if the current value of the stochastic term is unknown, its
distribution can be consistently mimicked by the bootstrap. In contrast, the
bias can only be handled if some degrees of smoothness of m are not used by

Ž .m x . In nonparametric regression and density estimation, there exist twoˆ h
main approaches to handle the bias problem: undersmoothing and explicit
bias correction.

We mimic only the stochastic term of the LPE in the bootstrap world, and
we will use separate adjustments for the bias. In view of the possibly
inhomogeneous conditional variances, we use here the wild bootstrap tech-

Ž .nique, which has been introduced by Wu 1986 . A detailed description of this
Ž .resampling scheme can be found in the monograph by Mammen 1992 . It has

successfully been used in nonparametric regression in the already mentioned
Ž . Ž .paper by Hardle and Mammen 1993 . Let x , . . . , x be the realization of¨ 0 T

Ž .X , . . . , X at hand. We generate independent bootstrap innovations0 T
��, . . . , �� with1 T

22� � 2E*� � 0, E* � � � � x � m x .Ž . Ž .Ž .ˆ ˆt t t t h t�1

The notation E* is used to underline the conditional character of the distri-
Ž � � . Ž .bution LL � , . . . , � � X , . . . , X . An appropriate counterpart to model 2.31 T 0 T

in the bootstrap world is given by

X� � m x � �� , t � 1, . . . , T .Ž .ˆt h t�1 t

Ž � 4.Since we mimic the stochastic term Ý w x, X , X , . . . , X � of thet h t�1 0 T�1 t
local polynomial estimator only, we do not use the X� ’s explicitly.t

3.1. A strong approximation for the bootstrap process. In order to be able
to apply devices such as Lemma 2.1, we have to ensure that for all integers M
there exists a finite constant C � 0 such thatM

� � � M � � ME* � 
 C � .ˆt M t

This can be ensured if we assume that �� � � �� for a sequence of i.i.d.ˆt t t
� � � Ž � .2 � � � Mrandom variables � , . . . , � with E*� � 0, E* � � 1, and E* � � �,1 T 1 1 1

for all integers M.
ŽFor getting the desired strong approximation of Ý w x, X ,t h t�1

� 4. Ž � 4. �X , . . . , X � by Ý w x, x , x , . . . , x � , it remains to establish a0 T�1 t t h t�1 0 T�1 t
Ž . Ž �connection between the latter process in x and Ý w x, x , x , . . . ,t h t�1 0

4.x � . This can be achieved by a construction along the lines of the proof ofT�1 t
Ž .Theorem 2.1 in Neumann and Polzehl 1995 . In contrast to the strong

approximation of nonparametric autoregression by nonparametric regression,
where we had to devise an embedding scheme which takes the consecutive
order of the observations into account, we have to combine two models with

Ž .independent observations. Based on Sakhanenko’s 1991 strong approxima-
tion result for partial sums of independent random variables, we can derive a
strong approximation with a smaller error than in our Theorem 2.1.
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Ž .LEMMA 3.1. Suppose that A2 is fulfilled. On a sufficiently rich probabil-
ity space, there exists a pairing of � , . . . , � with ��, . . . , �� such that1 T 1 T

� 4sup w x , x , x , . . . , x �Ž .Ý h t�1 0 T�1 t½
� 	x� a , b t

�� 4� w x , x , x , . . . , x �Ž .Ý h t�1 0 T�1 t 5
t

�1 � �	˜� O Th T , TŽ .Ž .
Ž .holds uniformly in x , . . . , x �  .0 T�1 T

In conjunction with Proposition 2.1 and 2.3, we obtain the following
theorem.

Ž . Ž .THEOREM 3.1. Suppose that A1 to A3 are fulfilled. On a sufficiently
rich probability space, there exists a pairing of X , � , . . . , � with ��, . . . , ��

0 1 T 1 T
such that

� 4sup w x , X , X , . . . , X �Ž .Ý h t�1 0 T�1 t½
� 	x� a , b t

�� 4� w x , x , x , . . . , x �Ž .Ý h t�1 0 T�1 t 5
t

�3�4 �	˜� O Th log T , TŽ .Ž .
Ž .holds uniformly in x , . . . , x �  .0 T�1 T

Ž .Theorem 3.1 basically says that the stochastic part of m x can beˆ h
successfully mimicked by its wild bootstrap analogue. Hence, one can apply
the bootstrap to approximate, besides the pointwise distribution of nonpara-
metric estimators which was already shown in Franke, Kreiss and Mammen
Ž .1997 , supremum-type functionals of the LPE. The perhaps most often
studied problem in this context are confidence bands for a certain function to
be estimated nonparametrically. In addition, we may also employ the wild
bootstrap for determining critical values for nonparametric supremum-type
tests. We study both problems in the following.

3.2. Bootstrap confidence bands. The construction of nonparametric con-
fidence bands is a classical field of application for bootstrap methods. It is
well known that first-order asymptotic theory for the supremum of an approx-
imating Gaussian process leads to an error in coverage probability of order
Ž .�1 Ž .log T ; see Hall 1991 . In contrast, we can obtain an algebraic rate of
convergence by using the bootstrap.

In contrast to confidence intervals for the global mean, in nonparametric
statistics one always encounters a serious problem due to the bias. The point
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is that an optimal tuning of nonparametric estimators is achieved by forcing
the magnitude of the stochastic term and the bias term to be of the same
order. Although one can sufficiently well estimate the behavior of the stochas-
tic term, there remains the uncertainty about the bias term. Hence, without
some extra information, it is indeed impossible to construct confidence inter-
vals or bands with an asymptotically correct coverage probability whose
length decreases with the rate of optimal estimators. This is quite obvious in
the case of pointwise confidence intervals where the stochastic fluctuations of
the estimator are just of the same order as its standard deviation. In the case
of simultaneous confidence bands, one has to consider the supremum devia-
tion, which is known to be degenerate. The size of the stochastic part is

'actually by a factor of order log T larger than the pointwise standard
deviation; however, the stochastic fluctuations of the supremum deviation is
nevertheless of smaller order of magnitude than the pointwise standard
deviation. There are several options for handling this problem. In the regres-
sion context, some authors constructed conservative confidence bands for the
mean function m on the basis of some prior information about the maximal

Ž .roughness of m; see Knafl, Sacks and Ylvisaker 1985 , Hall and Titterington
Ž . Ž . Ž .1988 and Sun and Loader 1994 . As Hall and Titterington 1988 mention,
such prior knowledge may sometimes arise from physical considerations or
previous empirical evidence. However, this approach is clearly restricted to
the case where such prior information is indeed available.

If this is not the case, there does not exist an entirely satisfactory strategy
for the construction of confidence bands. The perhaps cleanest solution is to
consider bands for a smoothed version of m,

� 4K m x � w x , X , X , . . . , X m X ,Ž . Ž . Ž .Ž .Ýh h t�1 0 T�1 t�1
t

rather than for m itself. Now the problem is much easier to deal with, and
with bands for K m, we have also more freedom to choose h. Note that K mh h
itself is random; however, it can be interpreted as some local average of m.

Let 1 � � be the nominal coverage probability. We develop simultaneous
bands as opposed to confidence bands which attain pointwise a certain
coverage probability. To construct a confidence band of uniform size, we
consider the quantity

� �� 4U � sup w x , x , x , . . . , x � ,Ž .ÝT h t�1 0 T�1 t½ 5
� 	x� a , b t

which is introduced to mimic
� �U � sup m x � K m x .Ž . Ž . Ž .� 4ˆT h h

� 	x� a , b
� �Let t be the random, because it depends on the sample X , . . . , X in model� 0 T

Ž .	 Ž . �2.1 1 � � -quantile of U . ThenT
� � �3.1 I x � m x � t , m x � tŽ . Ž . Ž . Ž .ˆ ˆ� h � h �

is supposed to form an asymptotic confidence band for K m to the prescribedh
level 1 � � .
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A more reasonable and perhaps more natural alternative are simultaneous
confidence bands whose size is proportional to an estimate of the standard

Ž . �deviation of m x . Whereas the size of I is essentially driven by the worstˆ h �

Ž . Ž Ž ..case, that is, by the supremum of V x � var m x , a variable confidenceˆ h
Ž .band follows in size the local variability of m x . It can be expected that theˆ h

area of such a confidence band is smaller than that of a band of uniform size.
Moreover, it can serve as a visual diagnostic tool to detect regions where
there are difficulties for the estimator�either because of large variances of
the � ’s or because of too sparse a design.t

Now we describe the construction of a confidence band of variable size in
Ž .detail. The residuals � can also be used to estimate the variance of m x ,ˆ ˆt h

Ž .V x , by

ˆ 2 2� 43.2 V x � w x , x , x , . . . , x � .Ž . Ž . Ž .ˆÝ h t�1 0 T�1 t
t

�� Ž .Let t be the 1 � � -quantile of the distribution of�

� � ˆ'� 4V � sup w x , x , x , . . . , x � � V x ,Ž .Ž .ÝT h t�1 0 T�1 t½ 5
� 	x� a , b t

which mimics

ˆ� � '3.3 V � sup m x � K m x � V x .Ž . Ž . Ž . Ž . Ž .ˆ½ 5T h h
� 	x� a , b

This leads to a confidence band of the form

�� �� ��ˆ ˆ' '3.4 I x � m x � V x t , m x � V x t .Ž . Ž . Ž . Ž . Ž . Ž .ˆ ˆ� h � h �

Ž . Ž .Ž .We already know from Theorem 3.1 that the process m x � K m x isˆ h h
Ž � 4. � Žpathwise close to the conditional process Ý w x, x , x , . . . , x � con-t h t�1 0 T�1 t

.ditioned on X , � , . . . , � on an appropriate probability space. In order to0 1 T
get statistically relevant results, we have to show that the approximation
error is in magnitude below the size of the fluctuations of the supremum
functional. If, for example, V had a density p , then the consistency of theT VT

bootstrap confidence bands would follow from a relation like

�3�4� �p Th log T � o 1 .Ž . Ž .�V PT

Since the existence of such a density is not guaranteed, we formulate the
following assertion, which provides a lower bound for probabilities that U�

T
and V � fall into small intervals.T

Ž . Ž .LEMMA 3.2. Suppose that A1 to A3 are fulfilled. Then:

Ž . Ž � � 	. ŽŽ .Ž .1�2Ž .1�2 Ž .�1�2 � .i P U � c , c � O c � c Th log T � Th T ;T 1 2 2 1
Ž . Ž � � 	. ŽŽ .Ž .1�2 Ž .�1 � .ii P V � c , c � O c � c log T � Th TT 1 2 2 1

Ž .hold uniformly in x , . . . , x �  .0 T T
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Ž .Part i of this lemma follows immediately from Lemma 2.2 in Neumann
Ž . Ž . Ž .and Polzehl 1995 , and part ii is an immediate consequence of i and

�3�2 �	ˆ ˆ� �3.5 sup V x � V x � O Th log T , T .Ž . Ž . Ž . Ž .� 4 Ž .
� 	x� a , b

In conjunction with Theorem 3.1, we now obtain an upper bound to the error
in coverage probability for I� and I��, respectively.� �

Ž . Ž .THEOREM 3.2. Suppose that A1 to A3 are fulfilled. Then:
� � � 	i P K m x � m x � t , m x � t for all x � a, bŽ . Ž . Ž . Ž . Ž .ˆ ˆŽ .h h � h �

�1�4 3�2� 1 � � � O Th log T ;Ž . Ž .Ž .
�� ��ˆ ˆ' 'ii P K m x � m x � V x t , m x � V x tŽ . Ž . Ž . Ž . Ž . Ž . Ž .ˆ ˆh h � h �ž

� 	for all x � a, b /
�1�4 3�2� 1 � � � O Th log T .Ž . Ž .Ž .

Although the construction of confidence intervals or bands for the un-
smoothed function m is more problematic, there is nevertheless great inter-
est in such methods. This is reflected by a large amount of literature, mostly
in the context of nonparametric density estimation and regression; for a

Ž .recent survey see Neumann and Polzehl 1995 . There are two main routes to
deal with the notorious bias problem: undersmoothing and a subsequent bias
correction. Undersmoothing means that we choose h such that the bias-type

Ž � 4. Ž . Ž . Ž p.term Ýw x, X , X , . . . , X m X � m x , which is O h , is ofh t�1 0 T�1 t�1
smaller order of magnitude than the stochastic fluctuations of U�. Accord-T
ingly, the additional condition

�1�2 �1�2p3.6 h � o Th log TŽ . Ž . Ž .Ž .
would imply that I� and I�� are confidence bands for m with an asymptoti-� �

cally correct simultaneous coverage probability; for details see Neumann and
Ž .Kreiss 1996 . Alternatively, we may employ an explicit bias correction. Let

ˆ Ž . Ž . Ž � 4. Ž .B x be any estimate of B x � Ýw x, X , X , . . . , X m X �T T h t�1 0 T�1 t�1
Ž .m x with

�1�2 �1�2ˆ� �3.7 sup B x � B x � o Th log T .Ž . Ž . Ž . Ž . Ž .� 4 Ž .T T P
� 	x� a , b

Then the bias-corrected bands

� � �ˆ ˆI � m x � B x � t , m x � B x � tŽ . Ž . Ž . Ž .ˆ ˆ� , c h T � h T �

and

�� �� ��ˆ ˆ ˆ ˆ' 'I � m x � B x � V x t , m x � B x � V x tŽ . Ž . Ž . Ž . Ž . Ž .ˆ ˆ� , c h T � h T �
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are asymptotic confidence bands for m with an asymptotic coverage probabil-
ity 1 � � . Another possibility for handling the bias problem for bootstrap
confidence bands is to use an oversmoothed estimator m , g � h, as theˆ g
underlying conditional mean function in the bootstrap world. That is, we

Ž .define an appropriate counterpart to model 2.3 by

X� � m x � �� , t � 1, . . . , T .Ž .ˆt g t�1 t

Ž .Such a proposal has been used in Hardle and Mammen 1993 for regression¨
Ž .and in Franke, Kreiss and Mammen 1997 for autoregression. In view of an

expansion like the one given in Proposition 2.2 for the bias-term in the
bootstrap situation it has to be ensured that the pth derivative mŽ p. esti-ˆ g
mates mŽ p. consistently.

Ž . � , � � � � Ž . Ž . �4If we denote the 1 � � -quantiles of U � sup m x � m xˆ ˆT x �� a, b 	 h g
� � �� , � , �� ,ˆ� � Ž . Ž . � 4'and V � sup m x � m x � V x by t , t , respectively,Ž .ˆ ˆT x �� a, b 	 h g � �

then we again obtain bias-corrected confidence bands for m with an asymp-
totic coverage probability 1 � � . These bands take exactly the form of I� and�

�� � Ž . Ž .	 � �� � , � �� , �I cf. 3.1 and 3.4 , where t , t have to be replaced by t , t ,� � � � �

respectively. For the simulations in Section 4 we make use of this last
proposal; that is, we report on simulation results for

� � ��� , �� , �� ,ˆ ˆ' '3.8 I � m x � V x t , m x � V x t .Ž . Ž . Ž . Ž . Ž .ˆ ˆ� h � h �

Both of the latter methods have the practical advantage that one may use a
bandwidth h of optimal order, which in particular allows choosing it auto-
matically by any of the popular criteria. In all cases, however, we have to
admit that one has to give up optimality considerations for the confidence
bands. In the case of undersmoothing, one has to use a suboptimal band-
width, whereas we have to reserve some additional degrees of smoothness for
the bias-correction step of the second and third method.

We do not dwell on the effect of a data-driven bandwidth choice which is
important for a real application of this method. Usually data-driven band-

ˆwidths h are intended to approximate a certain nonrandom bandwidth h . IfT
ˆŽ .h � h �h converges at an appropriate rate, then the estimators m andˆ ˆT T h

m are sufficiently close to each other, such that the results obtained in thisˆ hT
Ž .paper remain valid; see Neumann 1995 for a detailed investigation of these

effects for pointwise confidence intervals in nonparametric regression.

3.3. A supremum-type test. Another classical field of application of boot-
strap methods is the determination of critical values for tests. In our non-
parametric context, it might be of interest to test the appropriateness of a
certain parametric model for m. The theory developed in this paper can be
readily applied to certain nonparametric tests, as will be shown in the
following.

We allow a composite hypothesis, that is,

H : m � MM ,0
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where the only requirement is that the function class MM allows a faster rate
of convergence than the nonparametric model. We will assume that

ˆŽ .A5 There exists an estimator m of m such thatˆ
T x � Xt�1 ˆsup K m X � m XŽ . Ž .ˆÝ t�1 t�1ž /½ 5hx�� t�1

1�2 �1�2� o Th log T .Ž . Ž .Ž .P

ˆŽ .A sufficient condition for A5 is obviously that m itself converges in theˆ
Ž .�1�2Ž .�1�2supremum norm to m with a faster rate than Th log T , which can

� 4be expected to hold in certain parametric models, MM � m � � � � . For the�

particular purpose of testing, there is no reason to use an LPE which
automatically adapts to irregularities in the design. Rather, one may choose
the test statistic under the aspect of convenience; for example,

T x � Xt�1 ˆ3.9 W � sup K X � m X .Ž . Ž .ˆÝT t t�1ž /½ 5hx�� t�1

This roughly corresponds to a contrast function which weights the difference
Ž . Ž .between m x and m x with a factor proportional to the stationary density�

Ž .� x .
In principle, it is also possible to look at the difference of a nonparametric

ˆŽ .estimator to a smoothed version of m directly. This would lead to a testˆ
statistic like

T
� ˆ� 4W � sup w x , X , X , . . . , X X � m X g X ,Ž . Ž .Ž . ˆÝT h t�1 0 T�1 t t�1 t�1½ 5

x�� t�1

where g is an appropriate function which downweights contributions from
regions where the stationary density is low, and where, therefore, any
nonparametric estimator necessarily deteriorates. In the sequel, we restrict
our considerations to the technically simpler, and not less natural, test

W Ž . Ž .statistic W . Let t be the 1 � � -quantile of the random distribution ofT �

T x � Xt�1� �3.10 W � sup K � .Ž . ÝT tž /½ 5hx�� t�1

By analogous considerations as above, one may prove the following theorem.

Ž . Ž . Ž .THEOREM 3.3. Suppose that A1 and A3 to A5 are fulfilled. Then, for
arbitrary m � MM,

P W � tW � � � o 1 .Ž .Ž .m T �

REMARK 4. It seems that L -tests such as those proposed by Hardle and¨2
Ž .Mammen 1993 in the regression set-up, are the most popular ones among

nonparametric statisticians. Such tests can be optimal for testing against
smooth alternatives, where supremum-type tests have less power in such a
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situation. On the other hand, supremum-type tests can also outperform
L -tests for testing against local alternatives having the form of sharp peaks;2

Ž . Ž .see Konakov, Lauter and Liero 1995 and Spokoiny 1996 for more details.¨
Theory for L -tests in nonparametric autoregression is developed in Kreiss,2

Ž .Neumann and Yao 1998 .

3.4. Some additional remarks. Generalization to higher dimensions. It is
quite straightforward to generalize our results to the higher-dimensional
case. Suppose that we observe X , . . . , X which obey the model1�d T

3.11 X � m X , . . . , X � � ,Ž . Ž .t t�1 t�d t

Ž . Ž . Žwhere LL � � X , . . . , X � LL � � X , . . . , X and E � �t t� 1 1� d t t� 1 t� d t
. Ž .X , . . . , X 	 0. An appropriate counterpart to 3.11 is given byt�1 t�d

3.12 Y � m x , . . . , x � � ,Ž . Ž .t t�1 t�d t

Ž . Žwhere x , . . . , x is a fixed realization of 3.11 , and � � LL � �1�d T t t
Ž . Ž ..X , . . . , X � x , . . . , x are independent.t�1 t�d t�1 t�d

We define a hierarchical set of intervals
�j �j �j �jI � k � 1 2 , k 2 � ��� � k � 1 2 , k 2 ,Ž . Ž .. .j ; k , . . . , k 1 1 d d1 d

and corresponding partial sums

Z � � ,Ýj ; k , . . . , k t1 d
Ž .t : X , . . . , X �It�1 t�d j ; k , . . . , k1 d

Z� � � .Ýj ; k , . . . , k t1 d
Ž .t : x , . . . , x �It�1 t�d j ; k , . . . , k1 d

Following the lines of the proof of Theorem 2.1, we can construct a pairing of
Ž . Ž .the random variables from 3.11 with those from 3.12 , such that

� � �Z � Zj ; k , . . . , k j ; k , . . . , k1 d 1 d

3.13Ž . 1�4
� �	˜� O TP X , . . . , X � I log T � T , T .Ž .Ž .t�1 t�d j ; k , . . . , kž /1 d

If we intend, for example, to devise a test as described in the previous
subsection, we have to analyze the difference between

T y � X y � X1 t�1 d t�d
K � ��� � K �Ý tž / ž /h ht�1

and
T y � x y � x1 t�1 d t�d

K � ��� � K � ,Ý tž / ž /h ht�1

Ž �� . �d Ž 1�� .where we choose h such that h � O T and h � O T for some
� � 0. We approximate these sums by corresponding truncated Haar series

Ž . Ž �Ž . �j �j.. Ž . Žexpansions. Let � x � I x � k � 1 2 , k2 and � x � I x �j, k j, k
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�Ž . �j Ž . �j .. Ž �Ž . �j �j..k � 1 2 , k � 1�2 2 � I x � k � 1�2 2 , k2 . Define

y � z y � z1 1 d d
� � ��� K � ��� � K � z � ��� �Ž .H Hk , . . . , k 0, k 1ž / ž /1 d 1h h

� z dz ��� dz ,Ž .0, k d 1 dd

and

y � z y � z1 1 d dŽ i , . . . , i . Ž i .1 d 1� � ��� K � ��� � K � z � ��� �Ž .H Hj ; k , . . . , k j , k 1ž / ž /1 d 1h h

�
Ž i d . z dz ��� dz ,Ž .j , k d 1 dd

where � Ž1. � � and � Ž0. � � . If we assume that K is compactly sup-j, k j, k j, k j, k
ported and Lipschitz, then

� � d� � O hŽ .Ý k , . . . , k1 d
k , . . . , k1 d

and

1
Ž i , . . . , i . jd �2 d1 d� �� � O 2 h � 1 .Ý j ; k , . . . , k j1 d ž /ž /h2k , . . . , k1 d

Ž .By 3.13 , we obtain, for the difference at the scale j, that

� Ž i1 , . . . , i d .Ý Ý j ; k , . . . , k1 d
d k , . . . , kŽ . � 4 Ž .i , . . . , i � 0, 1  0, . . . , 0 1 d1 d

Ž i . Ž i .1 d� � X � ��� � � X �Ž . Ž .Ý j , k t�1 j , k t�d t1 d
t

Ž i . Ž i .1 d�� x � ��� � � x �Ž . Ž .j , k t�1 j , k t�d t1 d

3.14Ž .

1 1�4jd d �jd � �	˜� O 2 h � 1 T 2 log T � T , T .Ž .jž /ž /h2

In contrast to the one-dimensional case, this upper estimate diverges as
j � �. Hence, we have to choose the finest scale of our truncated Haar series
expansion more carefully. Let j* be chosen such that both

3.15 2�j* � O T�� hŽ . Ž .
and

1 1�4 1�2j*d d �j*d � �� d3.16 2 h � 1 T 2 log T � T � O T ThŽ . Ž . Ž .ž /j*ž /h2

hold for some � � 0.
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Ž . Ž .According to 3.14 and 3.16 , the difference between the truncated Haar
series expansions is

� Z � Z�Ž .Ý k , . . . , k 0; k , . . . , k 0; k , . . . , k1 d 1 d 1 d
k , . . . , k1 d

� � Ž i1 , . . . , i d .Ý Ý Ý j ; k , . . . , k1 d
d0
j
j* k , . . . , kŽ . � 4 Ž .i , . . . , i � 0, 1  0, . . . , 0 1 d1 d

Ž i . Ž i .1 d� � X � ��� � � X �Ž . Ž .Ý j , k t�1 j , k t�d t1 d
t

Ž i . Ž i .1 d�� x � ��� � � x �Ž . Ž .j , k t�1 j , k t�d t1 d

1�2�� d �	˜� O T Th , T ,Ž .ž /

3.17Ž .

T ŽŽwhich is below the magnitude of pointwise fluctuations of Ý K y �t�1 1
. . ŽŽ . . ŽŽ d .1�2 .X �h � ��� � K y � X �h � , which are O Th . Because of thet�1 d t�d t

additional factor T�� , it is also below the magnitude of fluctuations of the
supremum functional.

The truncation errors, that is, the differences between the statistics of
interest and the corresponding truncated Haar series expansion, can be
treated as follows. Because of

� y , . . . , y ; z , . . . , zŽ .1 d 1 d

y � z y � z1 1 d d� K � ��� � Kž / ž /½ h h

� � � z � ��� � � zŽ . Ž .Ý k , . . . , k 0, k 1 0, k d1 d 1 d
k , . . . , k1 d

� � Ž i1 , . . . , i d .Ý Ý Ý j ; k , . . . , k1 d
d0
j
j* k , . . . , kŽ . � 4 Ž .i , . . . , i � 0, 1  0, . . . , 0 1 d1 d

Ž i . Ž i .1 d� � z � ��� � � zŽ . Ž .Ý j , k 1 j , k d1 d 5
t

� O 2�j*h�1 ,Ž .

Ž .we obtain, for any fixed y , . . . , y , that1 d

T

� y , . . . , y ; X , . . . , X �Ž .Ý 1 d t�1 t�d t
t�13.18Ž .

1�2�� d � �	˜� O T Th log T � T , T .Ž .ž /
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Analogously, we can show for the pointwise sums corresponding to the
Ž .regression model 3.12 that

T

� y , . . . , y ; x , . . . , x �Ž .Ý 1 d t�1 t�d t
t�13.19Ž .

1�2�� d � �	˜� O T Th log T � T , T .Ž .ž /
Ž . Ž .By establishing 3.18 and 3.19 on a sufficiently fine grid, we obtain finally,

Ž .in conjunction with 3.16 , the desired approximation for the supremum
deviation:

T y � X y � X1 t�1 d t�d
sup K � ��� � K �Ý tž / ž /½ h hy , . . . , y t�11 d

T y � x y � x1 t�1 d t�d� K � ��� � K �Ý tž / ž / 5h ht�1

3.20Ž .

1�2�� d � �	˜� O T Th log T � T , T .Ž .ž /
Note that the approximation error is below the magnitude of the fluctuations

ŽŽ d .1�2Ž .�1�2 .of the supremum deviation, which are O Th log T .P
Robustness against deviations from the model assumptions. Although au-

thors often avoid, for obvious reasons, such a discussion, robustness against
any kind of deviations from structural model assumptions is an important
issue for the reliability of a method in practical applications. Our proofs are
clearly based on the Markov property of the time series, since the application

Ž .of the Skorokhod embedding requires that E � � X , . . . , X 	 0. On thet 0 t�1
other hand, even if the data generating process does not obey a structural

Ž .model like 2.1 , it makes sense nevertheless to fit such a nonparametric
autoregressive model. It would be interesting to know whether the wild
bootstrap remains valid in such a case of an inadequate model. Under mixing

Ž .and some extra condition on the joint densities, Robinson 1983 showed that
the effect of weak dependence vanishes asymptotically for nonparametric

Ž .estimators. Hart 1995 coined the term ‘‘whitening by windowing’’ for this
effect. It is generally connected with rare events as, for example, the event
that a certain X falls into the range of a compactly supported kernel, scaledt
with a bandwidth h tending to zero. In our context of supremum-type
statistics, we need an appropriate version of the whitening by windowing
principle beyond the pointwise properties of nonparametric estimators. Using

Žtechniques completely different from those applied here, Neumann 1997,
.1998 derived such results in the context of nonparametric density estimation

and nonparametric estimation of the autoregression function, respectively,
from weakly dependent random variables. The rate for the approximation in
this general context is of course worse than that obtained in the present
paper.
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4. Simulations. In this section we present the results of a simulation
study. The first part deals with simulated simultaneous confidence bands for

Ž . Ž .the conditional mean function m x cf. Section 3.2 . For this purpose let us
consider the following two models:

4.1 X � 4sin X � �Ž . Ž .t t�1 t

and
2'4.2 X � 0.8 X � 1 � 0.2 X �Ž . t t�1 t�1 t

The latter model is a usual linear first order autoregression with so-called
ARCH-errors.

The innovations � are assumed to be i.i.d. with zero mean and unitt
Ž .variance. For the innovations in model 4.1 we assume a double exponential

Ž .distribution, while model 4.2 is assumed to have normally distributed
errors. Based upon T � 500 observations X , . . . , X we simulate simultane-1 T

� Ž .	 Ž . Ž .ous confidence bands of variable size cf. 3.4 for m x � 4sin x and1
Ž .m x � 0.8 x. This is done by simulating the 90%-quantile t of2 0.90

ˆ� � Ž . Ž . � 4'sup m x � m x � V x from 1000 Monte Carlo replications. TheŽ .ˆx �� a, b 	 h

ˆ� Ž . Ž .'actual 90%-confidence bands of the form I � m x � V x t , m xŽ .ˆ ˆ0.10 h 0.90 h

ˆ ˆ	 � Ž . Ž . 	'� V x t cf. 2.6 , 3.2 for the definition of m , V, respectively to-Ž . ˆ0.90 h
� Ž .	gether with corresponding bootstrap confidence bands cf. 3.8 are shown in

Ž .Figures 1a�d and 2a�d. Figure 1a�d corresponds to model 4.1 while Figure
Ž .2a�d shows results for model 4.2 . In both situations we report on four

replications, that is, four different underlying sets of data, which result in
Ž .different estimators m and different 1 � � -quantiles in the bootstrapˆ h

world.
The thick lines in all figures represent bootstrap confidence bands, while

thin lines are used for actual confidence bands. Broken lines in all figures
indicate the LPE estimates m for each underlying data set of the corre-ˆ h
sponding figure.

Then m is estimated by a local linear estimator m , while for m weˆ1 h 2
make use of a usual Nadaraya�Watson type kernel estimator, that is, a local
constant smoother. The bandwidth h in all cases is chosen according to a
cross validation criterion.

Although the above simulation results are qualitative only, it is indicated
that the bootstrap offers a practicable tool in order to construct not only
pointwise but also simultaneous confidence bands for nonparametric estima-
tors in nonlinear autoregression.

The following part is devoted to simulation results for the supremum-type
test proposed in Section 3.3. As underlying true models we choose an ordinary
first order linear autoregression

4.3 X � 0.9X � � , � � normalŽ . t t�1 t t

and

4.4 X � 0.9sin X � � , � � double exponential.Ž . Ž .t t�1 t t
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Ž . Ž .FIG. 1. Bootstrap confidence bands thick based on LPE estimator broken and actual band
Ž .thin .

Table 1 reports upon simulated values of the power function of a statistical
� Ž .	test based on the test statistic W cf. 3.10 , for the hypothesis of aT

first-order linear autoregression with unknown parameter � . That is, we
Ž . Ž .expect for model 4.3 values around the level � , while for model 4.4 we

obtain an impression of the power of the testing procedure.
As values for the sample size T we use 100 and 200. Again, a cross-valida-

tion technique is used for the selection of the bandwidth h, which is in
Žaccordance with the theoretical results of the paper cf. the discussion at the

.end of Section 3.2 . The number of Monte Carlo replications both for the
bootstrap and the testing procedure is chosen equal to 500. Table 2 contains

� Ž .similar results for a statistical test of the hypothesis H: m � MM � � sin � � �
4� � , where � is not known. The results presented in Table 2 are for just the

Ž .opposite situation to Table 1. Now the hypothesis is the nonlinear model 4.4
with unknown coefficient � . The bootstrap distribution mimics the stochastic

Ž � 4.term Ý w x, X , X , . . . , X � , only, which ensures that even undert h t�1 0 T�1 t
the alternative a reasonable approximation of the distribution of the test
statistic under the hypothesis is achieved. This guarantees reasonable power
values of the proposed sup-type test, as can be seen from Tables 1 and 2. It
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Ž . Ž .FIG. 2. Bootstrap confidence bands thick based on LPE estimator broken and actual band
Ž .thin .

� Ž . 4can also be seen from these tables that the test on H: m � � sin � � � � �
Ž . Ž .� unknown for model 4.3 has much more power than the test on linearity

Ž .for model 4.4 . This can be explained through the much more widely spread
Ž .stationary distribution of model 4.3 . This implies essentially that deviations

from the underlying conditional mean function over a larger interval will be
Ž .taken into account by the sup-distance cf. Section 3.3 .

TABLE 1
Simulated power values for testing on first-order linear autoregression

Model Theoretical level Sample size Simulated power

Ž .4.3 0.05 100 0.046
200 0.044

0.10 100 0.091
200 0.088

Ž .4.4 0.05 100 0.422
200 0.764

0.10 100 0.600
200 0.872
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TABLE 2
Simulated power values for testing on first-order nonlinear autoregression

Model Theoretical level Sample size Simulated power

Ž .4.4 0.05 100 0.034
200 0.036

0.10 100 0.068
200 0.058

Ž .4.3 0.05 100 0.986
200 1.000

0.10 100 0.984
200 1.000

To obtain an impression of the quality of the approximation of the boot-
Ž � . Ž .strap distribution LL W , cf. 3.11 , for the distribution of the test statisticT

� Ž .	W , cf. 3.10 , we include in Figures 3 and 4 slightly smoothed plots for theT
Ž . Ž .density of LL W thick line and five randomly chosen bootstrap approxima-T

Ž . Ž .tions of this distribution thin lines . The bootstrap approximation of LL WT
is used to compute critical values for the testing procedure. From Figures 3
and 4 it can be seen that the distribution of the test statistic is rather skewed.

All presented plots are based on 1000 Monte Carlo replications.

5. Proofs.

PROOF OF LEMMA 2.1. To handle the dependence, we consider blocks of
� 4 �Ž . 4consecutive observations Z , t � TT , where TT � i � 1 � � 1, . . . , i� � Tt i i T T

� 	and � � C log T . Without loss of generality, we consider the blocks withT 	

Ž . Ž .FIG. 3. T � 100, model 4.3 . Distribution of test statistic thick with five bootstrap approxima-
Ž .tions thin .
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Ž . Ž .FIG. 4. T � 200, model 4.4 . Distribution of test statistic thick with five bootstrap approxima-
Ž .tions thin .

Ž .odd numbers. By Proposition 2 in Doukhan, Massart and Rio 1995 , there
� � 4exists a sequence of independent blocks Z , t � TT , i odd, with the propertyt

5.1 P Z� , t � TT 
 Z , t � TT for any odd i � O T�	 ,Ž . Ž . Ž . Ž .Ž .t i t i

where we have to choose the value of C in dependence of 	.	

After this reduction to the independent case, we will obtain the assertion
from Bernstein’s inequality, which we quote for the reader’s convenience from

�Ž . 	Shorack and Wellner 1986 , page 855 : Let U , . . . , U be independent1 n
� �random variables with EU � 0 and U 
 K almost surely. Then, for U �i i n

ÝU ,i
c2�2

P U � c 
 exp �Ž . ž /var U � K c �3Ž . Ž .n

c2 3c

 exp � � exp �ž /ž /4 var U 4KŽ . n

holds for arbitrary c � 0.
Setting

' 'c � var U 4	 log n � 4�3 K 	 log nŽ . Ž . Ž . Ž .	 n

we get
� �P U � c 
 4 exp �	 log n .Ž .Ž .Ž .	

In other words, we have that

�	˜ ' '5.2 U � O var U log n � K log n , n .Ž . Ž . Ž . Ž .ž /n



REGRESSION APPROXIMATES AUTOREGRESSION 1597

Ž .From Davydov 1970 we get, for p, q, r � 1 and 1�p � 1�q � 1�r � 1, that

var Z� � cov Z� , Z�Ž .Ý Ýt s tž /
t�TT s, t�TTi i

1�r� � � � � �
 8� s � t Z Z � O log T .Ž . Ž .Ý p qs t
s, t�TTi

5.3Ž .

On the other hand, we obtain by Jensen’s inequality that

5.4 var Z� 
 � var Z .Ž . Ž .Ý Ýt T tž /
t�TT t�TTi i

Ž . Ž . Ž . � � � Ž .Assertion i now follows from 5.1 to 5.4 as well as Ý Z � O log T .�t � TT ti
Ž .Under the hypothesis of ii , we have in particular that

˜ � � �	� �5.5 sup Z � O T , T� 4Ž . Ž .t
t�1, . . . , T

Ž . � Ž � �holds for any � � � 0, � . Using the truncated random variables Z � Z I Zt t t
� . Ž . Ž . Ž . Ž . Ž .� T � instead of Z , we obtain ii from 5.1 , 5.2 , 5.4 and 5.5 . �t

PROOF OF THEOREM 2.1.
Ž .i General idea. The pairing of the observations in the autoregression

Ž . Ž .model 2.1 with those in the regression model 2.3 , which provides a close
connection between Z and Z� , is made via a Skorokhod embedding of thej, k j, k
� ’s and � ’s, respectively, in a common set of Wiener processes. This tech-t t
nique makes use of the well-known fact that any random variable Y with
EY � 0 and EY 2 � � can be represented as the value of a Wiener process
stopped at an appropriate random time. Moreover, such a representation is
also possible for the partial sum process of independent random variables as
well as for a discrete time martingale; see, for example, Hall and Heyde
Ž .1980 , Appendix A.1 for a convenient description. In particular, one can show
asymptotic normality for a martingale with this approach.

However, here we have a different task. We are not interested in a close
connection of the two global partial sum processes S � Ýn � and S� �n t�1 t n
Ýn � , but we are interested in a close connection of the sums of those � ’st�1 t t
and � ’s which correspond to X ’s and x ’s, respectively, that fall into at t�1 t�1
particular interval. A quite obvious modification of the usual Skorokhod
embedding in one Wiener process would be to relate the sets of random

� 4 � 4variables � , . . . , � and � , . . . , � to independent Wiener processes W ,1 T 1 T k
which correspond to the intervals I on the finest resolution scale underj*, k

� 4consideration. This would lead to such a pairing of � , . . . , � with1 T
� 4 �� , . . . , � , which provides a close connection between Z and Z . If j* is1 T j*, k j*, k

�j* Ž . Ž .chosen fine enough, that is if 2 � h, then we also get m x � m x �ˆ ˜h h
ŽŽ .�1�2 .o Th . However, although this monoscale approximation is quite goodP

for the differences between Z and Z� for j close to j*, it is not optimal atj, k j, k
coarser scales j � j*. In view of this inefficiency we apply here a refined,
truly multiscale approximation scheme. Accordingly we will relate the � ’st

Ž .and � ’s to Wiener processes W for j, k � II .t j, k T
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In the following we describe this construction in detail for the autoregres-
Ž . Ž .sive process 2.1 . The construction in the regression setting 2.3 is com-

pletely analogous, and will only be mentioned briefly. Then we draw conclu-
sions for the rate of approximation of Z by Z� , which will complete thej, k j, k
proof.

Ž . Ž .ii Embedding of � . Let W , j, k � II , be independent Wiener pro-1 j, k T
cesses. We will use each of these processes only on a certain time interval
� 	 Ž .0, T , where the values of the T ’s will be specified in part v below. Atj, k j, k
the moment it is only important to know that T � �.0, k

Let k be that random number with X � I . Now we represent � by1 0 j*, k 11

the Wiener process W . This should be done with the aid of a stopping timej*, k1Ž1. Ž .� , which is constructed according to Lemma A.2 in Hall and Heyde 1980 ,
Appendix A.1. However, since we want to use W up to some time Tj*, k j*, k1 1

only, it might happen that this is not enough for representing � . In this case1
we use additionally a certain stretch of the process W , and so on.j*�1, � k �2	1

To formalize this construction, let k Ž j. be such that

I � I Ž j*�1. � ��� � I Ž0. ,j* , k j*�1, k 0, k

Ž j. � j� j*	 � 	that is, k � k2 , where a denotes the largest integer not greater than
a. According to the above description we represent � by the following1
Wiener process:

�W s , if 0 
 s 
 T ,Ž .j* , k j* , k1 1

Ž j�1. Ž j�1.W T � ��� �W TŽ . Ž .j* , k j* , k j�1, k j�1, k1 11 1Ž1. �W s �Ž . Ž j�1.
Ž j.�W s � T � ��� �T ,Ž .j , k j* , k j�1, k111

Ž j.� Ž j�1.if T � ��� �T � s 
 T � ��� �T .j* , k j�1, k j* , k j , k11 1 1

Ž Ž1. � . .W is indeed a Wiener process on 0, � , since T � �.0, k
Ž .According to Lemma A.2 in Hall and Heyde 1980 , we have

LL � � X � x � W Ž1. � Ž1.Ž . Ž .1 0 0

for an appropriate stopping time � Ž1..
To explain the following steps in a formally correct way, we introduce

stopping times � Ž t . , t � 0, . . . , T, assigned to the corresponding Wiener pro-j, k
cesses W . Definej, k

� Ž0. � 0 for all j, k � II .Ž .j , k T

To get � Ž1. we redefine all those � Ž0. ’s, which are assigned to Wiener processesj, k j, k
W that were needed to represent � . According to the above constructionj, k 1
we set

� Ž1. � � Ž1. � T .j* , k j* , k1 1
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We redefine further
Ž1. Ž j�1. Ž j.� � � T � ��� �T � T ,j* , k j�1, k j , k1 11

Ž1.Ž j. � Ž j�1. Ž1.� �j , k if T � ��� �T � � ,1 j* , k j�1, k11�
0, otherwise.

The remaining stopping times � Ž1. with l 
 k Ž j. keep their preceding valuej, l 1
� Ž0. � 0. This procedure will be repeated for all other � ’s, with the modifica-j, l t
tion that we use only stretches of the Wiener processes, which are still
untouched by the previous construction steps.

Ž .iii Embedding of � . Let k be that random number with X � I .t t t�1 j*, k t

We represent � by means of parts of W , W Ž j*�1., . . . , W Ž0., whicht j*, k j*�1, k 0, kt t t

have not been used to far.
First note that, because of the strong Markov property, these remaining

Ž Ž t�1.. Ž Ž t�1..Ž j. Ž j. Ž j. Ž j.parts W s � � � W � are again Wiener processes. Hence,j, k j, k j, k j, kt t t t� Ž t�1. Ž t�1. Ž t�1.W s � � � W � , if 0 
 s 
 T � � ,Ž . Ž .j* , k j* , k j* , k j* , k j* , k j* , kt t t t t t

Ž t�1.W T � W �Ž . Ž .ž /j* , k j* , k j* , k j* , kt t t t

Ž t�1.
Ž j�1. Ž j�1. Ž j�1. Ž j�1.� ��� � W T � W �Ž . Ž .ž /j�1, k j�1, k j�1, k j�1, kt t t t

Ž t�1.
Ž j.� W s � T � �Ž .žž j , k j* , k j* , kt t tŽ t . �W s �Ž .

Ž t�1. Ž t�1.
Ž j�1. Ž j�1. Ž j.� ��� � T � � � �Ž . /j�1, k j�1, k j , kt t t

Ž t�1.
Ž j. Ž j.�W � ,Ž . /j , k j , kt t

Ž t�1. Ž t�1.
Ž j�1. Ž j�1.if T � � � ��� � T � � � sŽ . Ž .j* , k j* , k j�1, k j�1, kt t t t

Ž t�1. Ž t�1.� Ž j. Ž j.
 T � � � ��� � T � �Ž . Ž .j* , k j* , k j, k j , kt t t t

� .is again a Wiener process on 0, � .
Now we take, according to the construction in Lemma A.2 in Hall and

Ž . Ž t .Heyde 1980 , a stopping time � with

LL � � X � x � W Ž t . � Ž t . .Ž . Ž .t t�1 t�1

To get � Ž t . , we redefine those stopping times � Ž t�1., which are assigned toj, k j, k
Wiener processes W that were used to represent � . We setj, k t

Ž t�1. Ž t . Ž t�1. Ž t�1.� Ž j. Ž j�1. Ž j�1.� � � � T � � � ��� � T � �Ž . Ž .ž /j , k j* , k j* , k j�1, k j�1, kt t t t t

Ž j.�T ,j , k tŽ t . �
Ž j.� �j , k t Ž t�1. Ž t�1. Ž t .

Ž j�1. Ž j�1.if T � � � ��� � T � � � � ,Ž . Ž .j* , k j* , k j�1, k j�1, kt t t t

Ž t�1.� Ž j.� , otherwise.j , k t

Ž . Ž j.For all j, l with l 
 k we definet

� Ž t . � � Ž t�1. .j , l j , l

After embedding � , . . . , � we arrive at stopping times � ŽT ..1 T j, k
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Ž .iv Embedding of � , . . . , � . We embed � , . . . , � in complete analogy to1 T 1 T
Ž .the embedding of � , . . . , � in the same Wiener processes W , j, k � II .1 T j, k T

In this way, we arrive at stopping times � Ž t . , which play the same role as thej̃, k
� Ž t . ’s.j, k

Ž .v Choice of the values for T . To motivate our particular choice of thej, k
T ’s we consider first two extreme cases. If T � �, then Z and Z�

j, k j*, k j*, k j*, k
are both completely represented by W . This will lead to a close connectionj*, k
of Z and Z� . However, this choice is not favorable for scales j withj*, k j*, k
j � j*. If, for simplicity, T � � for all k, then the representations of Zj*, k j, k
and Z� , for j � j*, depend very much on the particular values ofj, k
� 4 � 4X , . . . , X and x , . . . , x . In general, in the case of too large a T0 T�1 0 T�1 j*, k
there will be a tendency that for the representation of Z and Z� too manyj, k j, k
different stretches of the Wiener processes W with I � I are used,j*, m j*, m j, k
which leads to a suboptimal connection of Z and Z� .j, k j, k

On the other hand, if T is quite small, then Z and Z� will bej*, k j*, k j*, k
represented in large parts by stretches of Wiener processes W , j � j*,j, m
which correspond to intervals I � I . Moreover, these stretches used forj, m j*, k
Z will be mostly different from those used for Z� , and therefore wej*, k j*, k
would get a suboptimal connection of Z and Z� .j*, k j*, k

To find a good compromise between these two conflicting aims, we choose
the T ’s as large as possible, but with the additional property that thej, k

� 	 � 4stretches 0, T , j 
 0, are used up in the representation of � , . . . , � andj, k 1 T
� 4� , . . . , � with high probability. Strictly speaking, we choose the T ’s in1 T j, k
such a way that

P � Ž t .I X � IŽ .Ý t�1 j , kž
t

� T for any j, k � II  0, k � O T�	� 4Ž . Ž . Ž .Ý l , m T /
Ž .l , m : I �Il , m j , k

5.6Ž .

and

P � Ž t .I x � I˜ Ž .Ý t�1 j , kž
t

� T for any j, k � II  0, k � O T�	 .� 4Ž . Ž . Ž .Ý l , m T /
Ž .l , m : I �Il , m j , k

5.7Ž .

To achieve this, we study first the behavior of the above sums of the stopping
times assigned to the interval I .j, k

Recall that the conditional distribution of � depends only on X . Byt t�1
taking a closer look at the construction of the Skorokhod embedding de-

Ž . Ž t .scribed in Hall and Heyde 1980 , one can see � depends only on � andt
� Ž t .Ž . Ž t .4 � Ž t .Ž . Ž t .4 � Ž t �.Ž .W s , 0 
 s 
 � . Since, for t 
 t�, W s , 0 
 s 
 � and W s , 0

Ž t �.4
 s 
 � correspond to disjoint stretches of the Wiener processes Wj, k
Ž t . Ž .separated by stopping times, the random variables � I X � I aret�1 j, k
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Ž .geometrically �-mixing. Hence, we obtain by Lemma 2.1 ii that
T

Ž t . Ž t .P � I X � I � E � I X � IŽ . Ž .½ 5Ý t�1 j , k t�1 j , kž
t�1

5.8Ž .
�j � �	'� C T 2 log T � T � O TŽ .	 /

and, analogously,
T

Ž t . Ž t .P � I x � I � E � I x � I˜ ˜Ž . Ž .½ 5Ý t�1 j , h t�1 j , kž
t�1

5.9Ž .
�j � �	'� C T 2 log T � T � O TŽ .	 /

Ž .holds uniformly in x , . . . , x �  , where  is an appropriate set of0 T�1 T T
Ž . ŽŽ .‘‘not too irregular’’ realizations of X , . . . , X with P X , . . . , X �0 T�1 0 T�1

. Ž �	 . � O T . DefineT

T
Ž t . �j �'S � E� I X � I � C T 2 log T � T .Ž .Ýj , k t�1 j , k 	

t�1

Further, we define

T � S � S .Ýj , k j , k l , m
Ž .l , m : I �Il , m j ,k

Ž � Ž .Then S � Ý T ; that is, T is chosen such that W s , s �j, k Ž l, m.: I � I l, m j, k j, kl, m j, k� 	4 .0, T is actually used up with a high probability.j, k

Ž . Ž . Ž . Ž .By 5.8 and 5.9 we obtain 5.6 and 5.7 .
Ž . � � � Ž .vi Conclusions for Z � Z . By 5.6 we obtain with a probabilityj, k j, k

Ž �	 .exceeding 1 � O T that

Z � W TŽ .Ýj , k l , m l , m
Ž .l , m : I �Il , m j , k

� W � Ž t . � W � Ž t�1. ,Ž . Ž .Ý Ý l , m l , m l , m l , m
t : X �I Ž .l , m : I �It�1 j , k j , k l , m

5.10Ž .

Ž .and, by 5.7 ,

Z� � W TŽ .Ýj , k l , m l , m
Ž .l , m : I �Il , m j , k

� W � Ž t . � W � Ž t�1. ,˜ ˜Ž . Ž .Ý Ý l , m l , m l , m l , m
t : x �I Ž .l , m : I �It�1 j , k j , k l , m

5.11Ž .

Ž �	 .which holds again with a probability exceeding 1 � O T , under the condi-
Ž .tion x , . . . , x �  . At this point we see why our particular pairing of0 T�1 T

� , . . . , � with � , . . . , � provides a close connection between Z and Z� :1 T 1 T j, k j, k
most of the randomness of Z and Z� is contained in the first terms on thej, k j, k

Ž . Ž .right-hand side of 5.10 and 5.11 , respectively. These terms are random, but
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T Ž t . Ž .identical to each other. Assume now that both Ý � I X � I � St�1 t�1 j, k j, k
T Ž t . Ž .4 Ž . Ž .and Ý � I x � I � S are satisfied. By 5.8 and 5.9 we have˜t�1 t�1 j, k j, k

that

� Ž t . � � Ž t�1. � � Ž t . � SÝ Ý Ýl , m l , m j , k
t : X �I Ž . t : X �Il , m : I �It�1 j , k t�1 j , kj , k l , m

�j � �	'˜� O T 2 log T � T , TŽ .
and

� Ž t . � � Ž t�1. � � Ž t . � S˜ ˜ ˜Ý Ý Ýl , m l , m j , k
t : x �I Ž . t : x �Il , m : I �It�1 j , k t�1 j , kj , k l , m

�j � �	'˜� O T 2 log T � T , T .Ž .
� Ž . Ž t�1.Note that, for fixed t and under X � I , the pieces W s , � 
 s 
t�1 j, k l, m l, m

Ž t . 4� of the Wiener processes W corresponding to intervals I � I canl, m l, m l, m j, k
be composed to a piece of a new Wiener process W res, t on the intervalj, k
� res, t 	 res, t Ž Ž t . Ž t�1..0, � , where � � Ý � � � . This is achieved by set-j, k j, k Ž l, m.: I � I l, m l, mj, k l, m

ting

W res, t sŽ .j , k

� Ž t�1. Ž t�1.W s � � � W � ,Ž . Ž .j�1, � k �2	 j�1, � k �2	 j�1, � k �2	 j�1, � k �2	
Ž t . Ž t�1.if 0 
 s 
 � � � ,j�1, � k �2	 j�1, � k �2	

Ž t . Ž t�1.W � � W �Ž . Ž .j�1, � k �2	 j�1, � k �2	 j�1, � k �2	 j�1, � k �2	

Ž t .
l� 1� j l�1� j� ��� � W �Ž .l�1, � k 2 	 l�1, � k 2 	��

Ž t�1.
l� 1� j l�1� j�W �Ž .l�1, � k 2 	 l�1, � k 2 	

Ž t�1. Ž t . Ž t�1.
l� j l� j l� j� W u � W � , if s � � � �Ž . Ž . Ž .l , � k 2 	 l , � k 2 	 l , � k 2 	 j�1, � k �2	 j�1, � k �2	

Ž t . Ž t�1. Ž t�1.
l� 1� j l�1� j l� j� ��� � � � � � u � �Ž . Ž .l�1, � k 2 	 l�1, � k 2 	 l , � k 2 	

Ž t .� l� jand u 
 � .l , � k 2 	

Ž res, t .In the case of X � I we simply set � � 0.t�1 j, k j, k
� res, tŽ . res, t4Note that W s , 0 
 s 
 � is FF -measurable. By the strong Markovj, k j, k t

� Žproperty, the remaining parts of the Wiener processes W , that is, W s �j, k j, k
Ž t . . Ž Ž t . . 4� � W � , 0 
 s � � , form again independent Wiener processes, whichj, k j, k j, k

are also independent of FF . Hence, we can compose all these parts of W res, t
t j, k

considered above to a Wiener process W res by settingj, k

� res, 1 res, 1W s , if 0 
 s 
 � ,Ž .j , k j , k

res, 1 res, 1 res, u�1 res, u�1W � � ��� �W �Ž . Ž .j , k j , k j , k j , kres �W s �Ž .j , k res, u res, 1 res, u�1�W s � � � ��� �� ,Ž .j , k j , k j , k

res, 1 res, u�1 res, 1 res, u� if � � ��� �� � s 
 � � ��� �� .j , k j , k j , k j , k
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An analogous construction can be made for the � Ž t . ’s, leading to a Wienerl̃, m
˜ resprocess W .j, k

Note that � res, 1 � ��� �� res, T � Ý � Ž t . � S . Now we obtain byj, k j, k t : X � I j, kt� 1 j, k�Ž . 	Lemma 1.2.1 in Csorgo and Revesz 1981 , page 29 , that¨ ˝ ´ ´
� Ž t . Ž t�1.� �Z � Z 
 W � � W �Ž . Ž .Ý Ýj , k j , k l , m l , m l , m l , m

t : X �I Ž .l , m : l�j, I �It�1 j , k j , k l , m

Ž t . Ž t�1.� W � � W �˜ ˜Ž . Ž .Ý Ý l , m l , m l , m l , m
t : x �I Ž .l , m : l�j , I �It�1 j , k j , k l , m

res Ž t . res Ž t .˜� W � � S � W � � S˜Ý Ýj , k j , k j , k j , kž / ž /
t : X �I t : x �It�1 j , k t�1 j , k

1�4�j � �	˜ � 	� O T 2 log T � T , T ,ž /
which completes the proof. �

Ž .PROOF OF COROLLARY 2.1. Let x , . . . , x �  . We assume through-0 T�1 T
out the proof that

1�4� �j �� �5.12 Z � Z 
 C T 2 log T � TŽ . Ž .½ 5j , k j , k 	

Ž .is fulfilled for all j, k � II , which holds true by Theorem 2.1 with aT
Ž �	 .probability of 1 � O T .

� .Let c, d be an arbitrary interval. Beginning from the coarsest scale, we
� .approximate c, d from below by a union of as large as possible intervals.

Ž . Ž .There exist indices, j , k , . . . , j , k , such that1 1 m m

I � ��� � I � c, d ,.j , k j , k1 1 m m

where j � ��� � j 
 j 
 j*. Here we choose j* such that1 m�1 m
Ž �j*.1�4 �T 2 log T � T .

On the other hand, if we add two suitable intervals from the finest scale,
� .say I and I , then we can approximate c, d from above, that is,j*, l j*, l1 2

c, d � I � ��� � I � I � I .. j , k j , k j* , l j* , l1 1 m m 1 2

Ž .Now we obtain, under 5.12 , that

� � �Ý Ýt t
� . � .t : X � c , d t : x � c , dt�1 t�1

m
� � �� � � � � � � � � �
 Z � Z � Z � Z � Z � ZÝ j , k j , k j* , l j* , l j* , l j* , li i i i 1 2 1 2

i�1

m
1�4�j � �i� O T 2 log T � T � TŽ .Ýž /

i�1

1�4�j �1� O T 2 log T � TŽ .ž /
1�4 �� O TP X � c, d log T � T . �.Ž .ž /0
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PROOF OF COROLLARY 2.2. We approximate w by a truncated Haar wavelet
series expansion

5.13 w z � � � z � � � z ,Ž . Ž . Ž . Ž .˜ Ý Ý Ýk k j , k j , k
k 0
j�j* k

Ž . Ž . Ž . Ž . Ž . Žwhere � � H� z w z dz, � � H� z w z dz and � z � I k � 1 
k k j, k j, k k
.z � k ,

� j�2 �j �j2 , if k � 1 2 
 z � k � 1�2 2 ,Ž . Ž .� j�2 �j �j� z �Ž . �2 , if k � 1�2 2 
 z � k2 ,j , k Ž .�
0, otherwise.

In view of the following calculations, we choose j* such that T 2�j* � T �. It
holds that

� � � �5.14 � � O wŽ . Ž .Ý 1k
k

and

� � � � � � � �� � O min � w , � TV wŽ .� 4Ý � 1 1Ž .j , k j , k j, k
k5.15Ž .

j�2 � � �j �2� O min 2 w , 2 TV w .� 4Ž .Ž .1

˜ �j �j �̃Ž �Ž . ..This implies, with Z � Ý I X � k � 1 2 , k2 � and Z �j, k t t�1 t j, k
Ž �Ž . �j �j..Ý I x � k � 1 2 , k2 � , thatt t�1 t

T T

w X � � w x �Ž . Ž .˜ ˜Ý Ýt�1 t t�1 t
t�1 t�1

�˜ ˜
 � Z � ZÝ k 0, k 0, k
k

� � � X � � � x �Ž . Ž .Ý Ý Ýj , k j , k t�1 t j , k t�1 t
0
j�j* k t

˜ 1�4 �	� �
 O w T log T , TŽ .15.16Ž .
˜ �̃� � � � � �� � � max Z � ZÝ Ý � ½ 5j , k j , k j�1, l j�1, l

l0
j�j* k

˜ 1�4 �	� �� O w T log T , TŽ .1

1�4j�2 �j�2 j�2 �j �	˜ � �� O min 2 w , 2 TV w 2 T 2 log T , T� 4Ž . Ž .Ý 1ž /
0
j�j*

3�4 1�41�4 �	˜ � �� O T TV w w log T , T .Ž .Ž .Ž .1
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Further, we have

� � �j * � j*w � w 
 TV w ,Ž .˜Ý L Ž� Žk�1.2 , k 2 ..�

k

which implies that

w X � w X �Ž . Ž .Ž .˜Ý t�1 t�1 t
t

� w X � w X �Ž . Ž .Ž .˜Ý Ý t�1 t�1 t
�j* � j*k �Ž . .t : X � k�1 2 , k 2t�1

5.17Ž .

˜ �j* � �2 �	� O T 2 TV w T , T ,Ž .Ž .

and, analogously,

˜ �j* � �2 �	5.18 w x � w x � � O T 2 TV w T , T .Ž . Ž . Ž . Ž .Ž .˜ Ž .Ý t�1 t�1 t
t

Ž . Ž .The assertion follows now from 5.16 to 5.18 .

PROOF OF LEMMA 2.2. First we investigate how well the random quantity
Ž � . Ž � .D K D is approximated by its expectation. We have D K D �x x x i j x x x i j

Ž . Ž . ŽŽ . .ŽŽ . .i� j�2Ýg X , where g z � K x � z �h x � z �h . Note that, for x �t�1
� 	 � 	a, b , g is supported on a � h, b � h . We approximate g by a truncated
Haar wavelet series expansion

5.19 g z � � � z � � � z ,Ž . Ž . Ž . Ž .˜ Ý Ý Ýk k j , k j , k
k 0
j�j* k

Ž . Ž . Ž . Ž .where � � H� z g z dz, � � H� z g z dz. In view of the followingk k j, k j, k
�j* 'calculations we choose j* such that T 2 � Th . It holds that

� � � �5.20 � 
 g � O hŽ . Ž .Ý Lk 1

k

and

� � � � � � � �� � O min � g , � TV gŽ .� 4Ý � 1 1Ž .j , k j , k j , k
k5.21Ž .

� j�2 �j�2 4� O min 2 h , 2 .Ž .
Ž . T Ž . Ž�. Ž .Define F z � Ý I X � z and F � TP X � z . As an immediateT t�1 t�1 T t�1

consequence of Lemma 2.1 we obtain that

�j �j �j �j� t : X � k � 1 2 , k2 � TP X � k � 1 2 , k2Ž . Ž .� 4. .Ž .t�1 t�1

5.22Ž .
2�j �	'˜ '� O min T 2 log T � log T , T log T , TŽ .½ 5ž /
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Ž . Ž . Ž . Ž .holds uniformly in j, k � II . Then, by 5.20 , 5.21 and 5.22 ,T

T T

g X � Eg XŽ . Ž .˜ ˜Ý Ýt�1 t�1
t�1 t�1

Ž�.� g z dF z � g z dF zŽ . Ž . Ž . Ž .˜ ˜H HT T

Ž�. Ž�.� �
 � F k � F k � 1 � F k � F k � 1Ž . Ž . Ž . Ž .Ž . Ž .Ý k T T T T
k

Ž�.� �� � � z dF z � dF zŽ . Ž . Ž .Ý Ý Hj , k j , k T T
0
j�j* k5.23Ž .

�	˜ '� O h T log T , TŽ .
j�2 j�2 �j �	'˜� O 2 h O 2 O T 2 log T , TŽ . Ž . Ž .Ý

j �1j: 2 
h

�j �2 j�2 �j �	'˜� O 2 O 2 O T 2 log T , TŽ . Ž . Ž .Ý
j �1j: j�j* , 2 �h

�	˜ '� O Th log T , T .Ž .
Ž .Since g is the best piecewise constant approximation to g, that is g z �˜ ˜

�j* k 2 j* Ž . �Ž . �j* �j*.�j *2 H g z dz if z � k � 1 2 , k2 , we getŽk�1.2

� � �j * � j*g � g 
 TV g � O 1 .Ž . Ž .˜Ý L Ž� Žk�1.2 , k 2 ..�

k

This implies that

g X � g XŽ . Ž .˜Ý t�1 t�1
t

� g X � g XŽ . Ž .˜Ý Ý t�1 t�1
�j* � j*k �Ž . .t : X � k�1 2 , k 2t�1

� � �j * � j* *
 g � g � t : X � I� 4˜Ý L Ž� Žk�1.2 , k 2 .. t�1 j , k�

k

5.24Ž .

�j* �j* �	'˜� O T 2 � T 2 log T , T ,Ž .
and, analogously,

5.25 Eg X � Eg X � O T 2�j* .Ž . Ž . Ž . Ž .˜Ý t�1 t�1
t

Ž . Ž .From 5.23 to 5.25 we obtain that
� � �	˜ '� �D K D � E D K D � O Th log T , T ,Ž . Ž . Ž .i j i jx x x x x x

which implies
� � �	˜ '� �5.26 D K D � ED K D � O Th log T , T .Ž . Ž .x x x x x x
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Ž .According to Lemma 1 of Tsybakov 1986 , we have

1� i�j�25.27 ED K D � CTh K z z dz ,Ž . Ž .Hx x x ž /ž /�1 i , j�1, . . . , p

ŽŽŽ 1 Ž . i� j�2 .. .where 	 H K z z dz � 0. Hence,min �1 i, j�1, . . . , p

�1 �1� �� �D K D � ED K DŽ . Ž .x x x x x x

�1 �1� � � �� � � � � �
 D K D D K D � ED K D ED K DŽ . Ž .x x x x x x x x x x x x5.28Ž .
�3�2 �	˜� O Th log T , T ,Ž .Ž .

which proves the assertion.

� ŽŽ . .ŽŽ . .q � Ž .PROOF OF PROPOSITION 2.1. By K x � � �h x � � �h � O h and1
Ž ŽŽ . .ŽŽ . .q. Ž .TV K x � � �h x � � �h � O 1 , we conclude from Corollary 2.2 that

qx � X x � Xt�1 t�1
K �Ý tž / ž /h ht5.29Ž .

qx � x x � xt�1 t�1 1�4 � �	˜� K � � O Th T , TŽ .Ž .Ý tž / ž /h ht

Ž .holds for x , . . . , x �  ,  according to Theorem 2.1.0 T�1 T T
Ž . Ž .For x , . . . , x �  we obtain by Theorem 4 in Amosova 1972 that0 T�1 T

� �j �	'˜ ˜ 'Z � � � O T 2 log T , T ,Ý ž /j , k t
�j � j� Ž . .t : x � k�1 2 , k 2t�1

which implies, by calculations similar to those in the proof of Corollary 2.2
below, that

qx � x x � xt�1 t�1 �	˜ ' '5.30 sup K � � O Th log T , T .Ž . Ž .Ý tž / ž /½ 5h h� 	x� a , b t

Ž . Ž .Using now Lemma 2.2, 2.8 and 2.9 we obtain the assertions. �

PROOF OF PROPOSITION 2.2. According to Lemma 1.4.2 of Korostelev and
Ž . �Tsybakov 1993 , we have in the case that D K D is regular thatx x x

Ž � 4. Ž � 4.ŽÝ w x, X , X , . . . , X � 1 and Ý w x, X , X , . . . , X X �t h t�1 0 T�1 t h t�1 0 T�1 t�1
.q Žx � 0 for q � 1, . . . , p � 1. Provided this is true which is actually the case

Ž �	 ..with a probability exceeding 1 � O T , we get from a Taylor series expan-
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sion with integral remainder that

� 4w x , X , X , . . . , X m X � m xŽ . Ž .Ž .Ý h t�1 0 T�1 t�1
t

p�1X � sŽ .X t�1t�1 Ž p.� 4� w x , X , X , . . . , X m s dsŽ .Ž .Ý Hh t�1 0 T�1 p � 1 !Ž .xt

qp�1 x � X x � Xt�1 t�1� 4� d x , X , . . . , X KŽ .Ý Ýq 0 T�1 ž / ž /h hq�0 t

p�1X � sŽ .X t�1t�1 Ž p.� m s ds.Ž .H p � 1 !Ž .x

Ž . ŽŽ . .ŽŽ . .q zŽŽ . p�1 Ž . . Ž p.Ž .Since g z � K x � z �h x � z �h H z � s � p � 1 ! m s ds sat-x
� � Ž p�1. Ž . Ž p. Ž .isfies g � O h and TV g � O h , we obtain analogously to 5.26q

that

p�1qx � X x � X X � sŽ .Xt�1 t�1 t�1t�1 Ž p.K m s dsŽ .Ý Hž / ž /h h p � 1 !Ž .xt

p�1qx � X x � X X � sŽ .Xt�1 t�1 t�1t�1 Ž p.� E K m s dsŽ .Ý Hž / ž /h h p � 1 !Ž .xt

p �	˜ '� O h Th log T , T .Ž .

ŽŽ . .ŽŽ . .q X t� 1ŽŽ . p� 1 ŽSince EÝ K x � X �h x � X �h H X � s � p �t t� 1 t� 1 x t� 1
. . Ž p.Ž . Ž p�1.1 ! m s ds � O Th , we obtain, in conjunction with Lemma 2.2, that

� 4sup w x , X , X , . . . , X m X � m x � b xŽ . Ž . Ž .Ž .Ý h t�1 0 T�1 t�1 �½ 5
� 	x� a , b t

�1�2p �	˜� O h Th log T , T . �Ž .Ž .

�1 �1� � Ž . Ž . ŽŽ . .PROOF OF PROPOSITION 2.3. By w � O T and TV w � O Th ,1h h
the assertion follows immediately from Corollary 2.2. �

PROOF OF LEMMA 3.1. This proof is similar to that of Theorem 2.1 in
Ž .Neumann and Polzehl 1995 . In order to prove the assertion we introduce

Ž Ž ..independent random variables � � N 0, var � as well as a second set oft t
� Ž Ž � ..independent random variables in the bootstrap domain � � N 0, var � ,t t

whose relationship among each other as well as to the � ’s and the �� ’s ist t
described below.
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We split up as follows:
�w x , x � � w x , x �Ž . Ž .Ý Ýh t�1 t h t�1 t

t t

�� w x , x � � � � w x , x � � �Ž . Ž . Ž . Ž .Ý Ýh t�1 t t h t�1 t t
t t5.31Ž .

� �� w x , x � � �Ž . Ž .Ý h t�1 t t
t

� S x � S x � S x .Ž . Ž . Ž .1 2 3

First we pair the random variables � , . . . , � with the random variables1 T
� � Ž .� , . . . , � in such a way that S x is as small as possible. Some motivation1 T 2

for the particular construction used here is given in Neumann and Polzehl
Ž .1995 .

Ž . Ž � � .We decompose the error vectors � � � , . . . , � � and � * � � , . . . , � �1 T 1 T
into � � h�1 packages of length d � Th, respectively, that is,j

5.32 � � � , . . . , � , . . . , � , . . . , � �.Ž . Ž .11 1d �1 � d1 �

Ž .� * is split up analogously.
� � 22 Ž . Ž .Let v � E� , v � E� and w x � w x, x , if t corresponds tojk jk jk jk jk h t�1

Ž . Ž . d j � d j � Ž .j, k in 5.32 . Further, let V � Ý v , V � Ý v j � 1, . . . , � . Wej k�1 jk j k�1 jk
define

t � v , t� � v� ,Ý Ýjk jl jk jl
l
k l
k

s � j � 1 � t �V , s� � j � 1 � t� �V � .Ž . Ž .jk jk j jk jk j

Now we represent the � ’s as well as the � � ’s by one and the same Wienert t
Ž .process W t ; namely, we set

� � V 1�2 W s � W sŽ . Ž .Ž .jk j jk j , k�1

and
� � � V �1�2 W s� � W s� .Ž . Ž .Ž .jk j jk j , k�1

It is clear that the � ’s as well as the � � ’s are independent and have thet t
desired distributions.

Ž .Now we decompose S x in a ‘‘coarse structure’’ term2

S x � V 1�2 � V �1�2 w x W s� � W s�Ž . Ž . Ž . Ž .Ž .Ý Ýž /21 j j jk jk j , k�1
j k

and a ‘‘fine structure’’ term
� �1�2S x � V w x W s �W s � W s �W s .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ý Ý22 j jk jk j , k�1 jk j , k�1

j k

We can easily show that

� � � 2 2 2max t � t � � � v � � � �� 4 ˆŽ . Ž .Ý Ýjk jk jl jl jl jl
j, k l
k l
k5.33Ž .

1�2 � �	˜� O Th T , T ,Ž .Ž .
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which implies V � V � � Th andj j

� � �V � Vj j�1�21�2 � �	˜� �max V � V � max � O T , T .Ž .½ 5j j �1�21�2½ 5j j V � Vj j

Therefore we have
�1 � �	˜� �5.34 sup S x � O Th T , T .� 4Ž . Ž . Ž .Ž .21

x

We rewrite
�s sjk jk1�2S x � V w x dW t � dW tŽ . Ž . Ž . Ž .Ý Ý H H22 j jk

�s sj, k�1 j , k�1j k

j �1�2 � 	� V w � w dW t ,Ž .Ý Hj t t
j�1j

Ž . Ž 	 � Ž . Ž � � 	where w � w x , if t � s , s , and w � w x , if t � s , s .t j, k j, k�1 jk t j, k j, k�1 jk
Ž . Ž . Ž . ŽŽ .�2 . � � � �4By 5.33 and w x � w x � O Th we acquire sup w � wj, k j, k�1 t t t

˜ �3�2 � �	ŽŽ . .� O Th T , T , which implies that
�1 � �	˜5.35 S x � O Th T , T .Ž . Ž . Ž .Ž .22

To get a favorable pairing of the � ’s with the � ’s we consider the partial sumt t
processes

˜P � � and P � � .Ý Ýt s t s
s
t s
t

�Ž . 	According to Corollary 4 in Sakhanenko 1991 , page 76 , there exists a
pairing of the � ’s and � � ’s, on a sufficiently rich probability space, such thatj j

˜ ˜ � �	� �max P � P � O T , T ,Ž .� 4t t
1
t
T

�1Ž Ž .. ŽŽ . .which implies by TV w x, � � O Th thath

T�1
˜� � � � � �sup S x 
 sup w x , x � w x , x P � P� 4Ž . Ž . Ž .Ý1 h t�1 h t t t½

x� 	x� a , b t�1

˜� � � �� w x , x P � PŽ .h T�1 T T 55.36Ž .

�1 � �	˜� O Th T , T .Ž .Ž .
� ˆAnalogously we can find a pairing of the � ’s with the � ’s such thatt t

�1 � �	˜� �5.37 sup S x � O Th T , T .� 4Ž . Ž . Ž .Ž .3
� 	x� a , b

Ž . Ž . Ž .The assertion follows now from 5.31 and 5.34 to 5.37 . �

PROOF OF THEOREM 3.2. By Theorem 3.1, there exists a pairing of
X , � , . . . , � with ��, . . . , �� such that0 1 T 1 T

�3�4� �	˜U � U � O Th log T , TŽ .Ž .T T
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Ž .holds, if X , . . . , X �  . This implies, in conjunction with Lemma 3.2,0 T�1 T
that

� � �sup P U � t � P U � t � X , . . . , X� 4Ž . Ž .T T 0 T
t

�1�4 3�2 �1�2 �� O Th log T � Th TŽ . Ž . Ž .Ž .
5.38Ž .

Ž .holds uniformly in X , . . . , X �  . Hence, we obtain in particular that0 T T

�1�4 3�2� �
�P U � t � � P U � t � X , . . . , X �O Th log TŽ . Ž . Ž . Ž .Ž .T t�t T � 0 T�5.39Ž . �1�4 3�2� 1 � � � O Th log T ,Ž . Ž .Ž .

Ž . Ž . �again for X , . . . , X �  . In other words, for X , . . . , X �  , t is0 T T 0 T T �

Ž .between two nonrandom bounds t and t with P U � t � 1 � � �� , 1 � , 2 T � , i
ŽŽ .�1�4Ž .3�2 . Ž .O Th log T , i � 1, 2. This implies i .

Ž .The proof of ii follows from the same reasoning and the fact that

�3�2� �	ˆ ˜� �sup V x � V x � O T Th , T . �Ž . Ž . Ž .� 4 Ž .
� 	x� a , b
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