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Abstract

This paper considers the regression model with a slowly varying (SV) re-

gressor in the presence of a unit root in serially correlated disturbances. This

regressor is known to be asymptotically collinear with the constant term; see

Phillips (2007). Under nonstationarity, we find that the estimated coefficients

of the constant term and the SV regressor are asymptotically normal, but nei-

ther is consistent. Further, we derive the limiting distribution of the unit root

test statistic. We may here observe that the finite sample approximation to the

limiting one is not monotone and it is poor due to the influence of the collinear

regressor. In order to construct a well-behaved test statistic, we recommend

dropping the constant term intentionally from the regression and computing

the statistics, which are still consistent under the true model having the con-

stant term. The powers and sizes of these statistics are found to be well-behaved

∗The author thanks Eiji Kurozumi and all the participants of the annual meeting of the Kansai

Econometric Society at Osaka University and the workshop at Hitotsubashi University for helpful

suggestions. The author also thanks Research Fellowships of the Japan Society for the Promotion of

Science for Young Scientists for financial support.
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through simulation studies. Finally, these results are extended to general Phillips

and Perron-type statistics.

1 Introduction

Considerable research papers on deterministic time-trending models have been pro-

duced. Even if we restrict our attention to the works that focus on problems related

to a (near) unit root, there are still many papers involved. Considering formulations of

trends in these papers, we observe that most of these studies employed a general vector

of time-trending regressors like polynomials, but ruled out trends that are asymptot-

ically collinear with a constant term or the other trends; see, for example, Vogelsang

(1998) and Bunzel and Vogelsang (2005).

In this background, Phillips (2007) established the theory on stationary models

possessing slowly varying (SV) regressors, which are asymptotically collinear. For

example, the typical model is the following logarithmic trend model

yt = α + β log t+ ut for t = 1, . . . , n, (1)

where {ut} is stationary and satisfies some conditions. If we letDn = diag[
√
n,

√
n log n]

and F−1
n = diag[

√
n log−1 n,

√
n], then the sample moment matrices of the regressors

Xt = [1, log t] and X = [X ′
1, . . . , X

′
n]

′ behave asymptotically so that

D−1
n (X ′X)D−1

n →

 1 1

1 1

 and F−1
n (X ′X)−1F−1

n →

 1 −1

−1 1

 (2)

from Phillips (2007) or Lemma 2.1 below. (2) implies the singularity of the asymptotic

covariance matrix of the OLS estimator (α̂, β̂) in the regression (1). Phillips (2007)

also revealed that the OLS estimator (α̂, β̂) is consistent and asymptotically normally

distributed, but the convergence rates of α̂ and β̂ are affected by the presence of the
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logarithmic trend. In view of asymptotic arguments in stationary cases, Phillips (2007)

relied on uniform strong approximation of partial sums by Brownian motions, but the

condition was rather restrictive. Mynbaev (2009), on the other hand, introduced the

“Lp-approximation” technique in this connection. The sophisticated idea is to approx-

imate sequences of deterministic weights with functions of a continuous argument and

apply the Central Limit Theorem (CLT). This enables us to establish the results of

Phillips (2007) under less stringent conditions.

The present paper extends the asymptotic theory for Phillips’ model to the inte-

grated case. In addition, unit root tests in the presence of such an SV regressor are

also investigated. Then, a few problems arise in the proceeding study. First, the OLS

estimator of the trend coefficient β̂ is inconsistent in addition to that of the constant

term α̂, so that the regression is almost meaningless if the errors are integrated; see

Section 3.1. This phenomenon might be understood that an SV regressor is classified

into a constant in the asymptotic sense and this feature is amplified under integrated

errors. Of course, an analysis like that of Canjels and Watson (1997) no longer makes

sense. Thus, we should emphasize the necessity of unit root tests when it comes to

employing an SV regressor. Second, another problem emerges when we derive asymp-

totic test statistics. If we construct Phillips and Perron (PP)-type test statistics, their

finite sample distributions hardly approach the limiting ones. This makes it difficult

to test a unit root that is based on the limiting critical values; see Section 4.1. Despite

the adversity, we present a solution to cope with this problem by using the misspecified

regression model in which we drop a constant term on purpose. Such an intentionally

misspecified procedure is asymptotically justified under the true model with a constant

term and brings about a significant improvement in terms of the size and power in

finite sample situations; see Section 4.2.
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The plan of the paper is as follows. Section 2 includes some assumptions and pre-

liminary theories for SV functions based on the results obtained by Phillips (2007).

Section 3 states the main results, namely the weak convergence of the regression coef-

ficients derived under integrated errors. We also calculate the limiting distributions of

the unit root coefficient and the corresponding t-statistic. Section 4 studies the prop-

erties of the unit root test statistics derived in Section 3 using simulations involving

a procedure to improve the performance of the tests. Section 5 concludes. Appendix

A gives a lemma used in the proofs. The proofs of the analytical results derived in

Sections 3 and 4 are presented in Appendix B.

2 Assumptions and Preliminary Results

Our main objective is to analyze the regression model with an SV regressor under a

unit root assumption. For this purpose, we start with the definition of SV functions.

A positively valued function on R+ is called slowly varying if it satisfies, for any r > 0,

L(rn)/L(n) → 1 as n → ∞. To deal with such an SV function L(n), the so-called

Karamata’s representation theorem is well-known and essential. That is, the function

L(n) varies slowly if and only if it is written in the form

L(n) = c(n) exp

(∫ n

a

ε(s)

s
ds

)
for n > a

for some a > 0, where c(t) → c ∈ (0,∞) and ε(n) → 0 as t → ∞. Considering

regression theory, however, we require a stronger assumption on L in terms of its

smoothness.

Assumption 2.1 (SSV) L is an SV function satisfying the conditions below:

(a) L(n) is a smoothly slowly varying (SSV) function with Karamata representation

L(n) = c exp

(∫ n

a

ε(s)

s
ds

)
for n > a
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for some a > 0, and where c > 0, ε ∈ C∞ and ε(n) → 0 as n → ∞.

(b) |ε(n)| is SSV, and ε has Karamata representation

ε(n) = cε exp

(∫ n

a

η(s)

s
ds

)
for n > a,

where cε > 0, η ∈ C∞, |η(n)| is SSV and η(n)2 = o(ε(n)) → 0 as n → ∞.

(c) L(n) is SV with remainder ϕ(n), that is, as n → ∞,

L(rn)

L(n)
= 1 +O

(
1

ϕ(n)

)
,

where ϕ is such that, for some α > 0 and n ≥ α,

1

αϕ(n)
≤ |ε(n)| ≤ α

ϕ(n)
.

Remark 2.1 Conditions (a) and (b) are more restrictive assumptions than in Kara-

mata’s representation. These conditions also appeared in Phillips (2007) and Mynbaev

(2009). Mynbaev (2009) introduced condition (c) to ensure that the asymptotic anal-

ysis of the regressions was more rigorous. Many SV functions, including all the L(n)

tabulated in Table 1, possess the remainder ϕ = ε. For further discussion of SV with a

remainder, see Mynbaev (2009) and Bingham, Goldie and Teugels (1987) in Sections

2.3 and 3.12. convenience.

Under Assumption 2.1, we have an important result that is useful for deriving

asymptotic results as follows:

ε(n) =
nL′(n)

L(n)
→ 0 and η(n) =

nε′(n)

ε(n)
→ 0 as n → ∞. (3)

This is easily obtained by the representation theorem. Consequently, (3) produces

some examples of L(t) in Table 1. Conversely, typical SV functions L in Table 1

satisfy Assumption 2.1. Another application of Assumption 2.1 leads to the following

lemma.
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Table 1: ε(t) and η(t) associated with some L(t). γ > 0.

L(t) ε(t) η(t)

logγ t γ/ log t −1/ log t

1/ logγ t −γ/ log t −1/ log t

log log t 1/(log t log log t) −1/(log t log log t)− 1/ log t

1/ log log t −1/(log t log log t) −1/(log t log log t)− 1/ log t

Lemma 2.1 (Phillips) If L(t) satisfies Assumption 2.1, then we have

1

n

n∑
t=1

L(t)k = L(n)k − kL(n)kε(n) + k2L(n)kε(n)2 + kL(n)kε(n)η(n)

− k3
[
L(n)kε(n)3 + 3L(n)kε(n)2η(n) + L(n)kε(n)η(n)2

]
+ o

(
L(n)kε(n)

[
ε(n)2 + ε(n)η(n) + η(n)2

])
.

This is used for asymptotic expansion of the sum of SV functions to evaluate the

limiting behavior of estimators and is frequently used in the proofs of our results.

Another tool for developing the asymptotic theory is obtained in de Haan and

Resnick (1998), and introduced in Phillips (2007) and Mynbaev (2009). This enables

us to replace a general SV function with a logarithmic function asymptotically, as in

Lemma A in Appendix A.

Lemma 2.2 (de Haan and Resnick) If L(t) satisfies Assumption 2.1, then, for all

r > 0,

L(rn) = L(n) + L(n)ε(n) log r[1 + o(1)]

uniformly in r ∈ [a, b] for any 0 < a < b < ∞.

In the remainder of this section, we review the weak convergence results under

stationary disturbances given by Phillips (2007). First, the following linear process

assumption for error terms is sufficient for the asymptotic theory.
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Assumption 2.2 (LP) For all t > 0, ut has Wold representation

ut = C(L)et =
∞∑
j=0

cjet−j,
∞∑
j=0

j|cj| < ∞, C(1) ̸= 0,

with et ∼ i.i.d.(0, σ2
e) and E|ut|2p < ∞ for some p > 2.

We let L̄ = n−1
∑n

t=1 L(t), St =
∑t

s=1 us and ū = n−1Sn. Then, under Assumption 2.2,

it is sufficient that the functional CLT for St works well so that n−1/2S[n · ] →d σw(·),

where w is a standard Wiener measure and the variance is σ2 = σ2
eC(1)2. However,

Phillips (2007) relied on the uniformly strong approximation by w(·) for his proofs. In

other words,

sup
1≤t≤n

∣∣∣∣ St−1

σ
√
n
− w

(
t− 1

n

)∣∣∣∣ = oa.s.

(
1

n1/2−1/p

)
(4)

is applied for some integer p > 2.

Remark 2.2 Mynbaev (2009) pointed out that the Phillips assumption on distur-

bances is relatively restrictive, and relaxed it to the absolutely summable condition

with uniformly integrable innovations {et}. Under the condition, the results are de-

rived by the CLT based on “Lp-approximability” of SV regressors. We rely on the

Phillips way to provide the intuition for observing the influence of an SV regressor

under a nonstationary assumption.

Lemma 2.3 (Phillips) If L(t) satisfies Assumption 2.1 and ut satisfies Assumption

2.2, then, as n → ∞,

(i)
1√

nL(n)

n∑
t=1

L(t)ut
d−→ σw(1)

d
= N(0, σ2),

(ii)
1√

nL(n)ε(n)

n∑
t=1

(L(t)− L̄)ut
d−→ σ

∫ 1

0

(1 + log r)dw(r)
d
= N(0, σ2).
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Lemma 2.3 leads to the asymptotic results for a regression. If we consider the following

simple regression model

yt = α + βL(t) + ut for t = 1, . . . , n,

where ut is assumed to satisfy Assumption 2.2, then the asymptotic distribution of

the OLS estimator is obtained by Lemma 2.1 and 2.3.

Theorem 2.1 (Phillips) If L(t) satisfies Assumption 2.1 and ut satisfies Assump-

tion 2.2, then we have √
nε(n)(α̂− α)

√
nL(n)ε(n)(β̂ − β)

 d−→ N

0, σ2

 1 −1

−1 1


 .

We observe the singularity of the asymptotic covariance matrix. This is caused by the

asymptotic collinearity of the regressors such as (2).

Instead of Assumption 2.2, we adopt the following assumption in the rest of this

paper to consider a unit root case.

Assumption 2.3 (UR) The process {ut} possesses a unit root under the null hy-

pothesis ρ = 1 in ut = ρut−1 + vt, where {vt} is a linear process having the same

Wold representation given in Assumption 2.2 with the innovations et ∼ i.i.d.(0, σ2
e)

and E|vt|2p < ∞ for some p > 2.

Under Assumption 2.3, we let σ2
L = nVar(v̄) = σ2

eC(1)2 and σ2
S = Var(vt) = σ2

e

∑∞
j=0 c

2
j ,

called the long-run and short-run variance, respectively. If we suppose vt is i.i.d. ran-

dom variables, on the other hand, we know that nVar(ē) = Var(et) = σ2
e . This sim-

plification is used in simulation studies to exclude the effect of the long-run variance

estimation error and focus on the influence of an SV regressor.
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3 Analytical Results

The main purpose of this section is to reveal the asymptotic behavior of the regression

with an SV regressor in the presence of a unit root. In particular, the following simple

regression model is considered:

yt = α + βL(t) + ut, t = 1, . . . , n, (5)

where the SV regressor L(t) and disturbances {ut} are supposed to satisfy Assumptions

2.1 and 2.3, respectively.

3.1 Weak convergence of the regression coefficients

We also denote F1(r), the one-folded integrated Brownian motion defined by
∫ r

0
w(s)ds.

The derivation of the asymptotic distribution of the OLS estimator (α̂, β̂) in (5) re-

quires the following lemma:

Lemma 3.1 Under Assumption 2.1 and Assumption 2.3, we have, as n → ∞,

(i)
1

n
√
nL(n)

n∑
t=1

L(t)ut
d−→ σL

∫ 1

0

w(r)dr,

(ii)
1

n
√
nL(n)ε(n)

n∑
t=1

(L(t)− L̄)ut
d−→ σL

∫ 1

0

(
w(r)− F1(r)

r

)
dr.

We should note that the limiting distribution in Lemma 3.1 (i) is found to be identical

to N(0, σ2
L/3). Similarly, the limiting law in (ii) is N(0, 2σ2

L/27). According to Phillips

(2007) or Lemma 2.1, note, moreover, that
∑n

t=1(L(t)−L̄)2 = nL(n)2ε(n)2[1+O(ε(n))]

holds for large n. Thus, a direct application of Lemma 3.1 gives the next theorem.

Theorem 3.1 Under Assumption 2.1 and Assumption 2.3, the OLS estimator (α̂, β̂)
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is asymptotically distributed as follows:
ε(n)√

n
(α̂− α)

L(n)ε(n)√
n

(
β̂ − β

)


d−→ N

0,
2σ2

L

27


1 −1

−1 1



 .

It should be emphasized that, because any SV function L(n) possesses asymptotic

order o(
√
n), the OLS estimators, α̂ and β̂, cannot be consistently estimated in the

model (5). This result contrasts with the case where the simple trend t is employed.

Considering models with an SV regressor, we therefore remark that the existence

of a unit root leads to a meaningless regression and that testing for a unit root is

indispensable.

3.2 Weak convergence of the unit root coefficient

Using the results in Theorem 3.1, we derive the limiting distribution of the OLS

estimator ρ̂ in the residual-based regression ût = ρût+vt with ρ = 1 under Assumption

2.3. These residuals ût are obtained from the regression model (5), so that we have:

ût = ut − ū− (L(t)− L̄)
(
β̂ − β

)
for t = 1, . . . , n. (6)

From (6), the scaled OLS estimator ρ̂ is obtained by

n(ρ̂− 1) =
1

n

n∑
t=2

ût−1 (ût − ût−1)

/[
1

n2

n∑
t=2

û2
t−1

]

=

[
1

2n
(û2

n − û2
1)−

1

2n

n∑
t=2

(ût − ût−1)
2

]/[
1

n2

n∑
t=1

û2
t −

1

n2
û2
n

]
,

where the scale coefficient n is tentative. This asymptotic behavior depends on the four

terms û2
n, û

2
1,
∑n

t=2(ût − ût−1)
2 and

∑n
t=1 û

2
t . Their weak convergences are presented

in the following lemma.
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Lemma 3.2 Under Assumption 2.1 and Assumption 2.3, we have, as n → ∞,

(i)
1

n
û2
n = Op(1),

(ii− a)
L(n)2ε(n)2

n
û2
1

d−→ L(1)2σ2
LU1 if L(n) → 0,

(ii− b)
ε(n)2

n
û2
1

d−→ σ2
LU1 if L(n) → ∞,

(iii)
1

n

n∑
t=2

(ût − ût−1)
2 = Op(1),

(iv)
1

n2

n∑
t=1

û2
t

d−→ σ2
LV1,

where

U1 =

{∫ 1

0

(
w(r)− F1(r)

r

)
dr

}2

and

V1 =

∫ 1

0

w(r)2dr −
(∫ 1

0

w(r)dr

)2

−
{∫ 1

0

(
w(r)− F1(r)

r

)
dr

}2

.

Since the dominated term is found to be û2
1, by Lemma 3.2, we conclude that the

limiting distribution of the unit root coefficient test statistic, nε(n)2(ρ̂ − 1), is given

by the next theorem.

Theorem 3.2 Suppose that Assumption 2.1 and Assumption 2.3 are satisfied. If

L(n) → ∞ as n → ∞, then it follows that

nε(n)2 (ρ̂− 1)
d−→ − U1

2V1

.

This limiting distribution is free from the nuisance parameters, σ2
S and σ2

L, but it

turns out to be useless in that the finite sample approximation is poor; see Section

4.1. The corresponding scaled t-statistic ε(n)2tρ̂ = ε(n)2(ρ̂− 1)/s.e.(ρ̂) for testing the

null hypothesis, H0 : ρ = 1, is also obtained.

Corollary 3.1 Suppose that Assumption 2.1 and Assumption 2.3 are satisfied. If

L(n) → ∞ as n → ∞, then it follows that:

ε(n)2tρ̂
d−→ −σL

σS

U1

2
√
V1

.
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Remark 3.1 The test statistic, tρ̂, in Corollary 3.1 requires the computation of s.e.(ρ̂)

or σ̂2
S, which is a consistent estimator of σ2

S = Var(vt). However, the natural candidate

estimator, n−1
∑n

t=2(ût − ût−1)
2, is not consistent for σ2

S but has a nondegenerate

distribution, in the limit, as in Lemma 3.2 (iii). We suggest a method to construct a

consistent estimator, σ̂2
S, in Remark 4.1.

4 Properties of the Unit Root Test Statistics

Theorem 3.2 and Corollary 3.1 have yielded the limiting distributions of the unit

root regression coefficient and corresponding t-statistic. In this section, we examine

the effect of the SV regressor on these statistics by simulations. To observe this, we

employ Assumption 2.3, but restrict {vt} being i.i.d. random variables with mean zero

and variance unity to exclude the influence caused by the long-run variance estimation.

If we need to embody the form of the regressor L(t) for simulation studies, we

always use log t. The number of replications is 10, 000 unless otherwise noted.

4.1 Finite sample behaviors

In this subsection, we first observe the finite sample behaviors of the simulated cumu-

lative distribution functions (CDFs) in Theorem 3.2 and Corollary 3.1. Figures 1 and

2 show the finite sample and limiting CDFs of these statistics. For each figure, the

finite sample CDFs are expressed in dotted, dashed and solid lines for each sample

size 100, 500 and 50, 000, and the limiting CDF is expressed in bold lines.

These graphs indicate that the approaching manner of the finite sample CDFs

to the limiting ones is not monotonic. That is, finite sample CDFs approach the

limiting ones from the left to the right in their upper tails first. Then, in their lower
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Figure 1: CDFs of nε(n)2(ρ̂− 1).
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Figure 2: CDFs of ε(n)2tρ̂.

tails, the CDFs are attracted from below to the above limits more slowly. As a

consequence, fatal size distortions are provoked in a unit root testing based on the

limiting critical values in their lower tails. Table 2 shows the percentage points of the

limiting distributions. From these graphs and the limiting percentage points, we are

convinced that 5% empirical sizes are very close to zero and the tests based on them

are almost impossible.

Table 2: Percentage points of the limiting distributions.

Probability (%)

Statistic 1.0 2.5 5.0 10.0 90.0 95.0 97.5 99.0

nε(n)2(ρ̂− 1) -2.13 -1.69 -1.38 -1.05 -0.01 -0.00 -0.00 -0.00

ε(n)2tρ̂ -0.63 -0.50 -0.41 -0.31 -0.00 -0.00 -0.00 -0.00

So far we have certainly assumed that the regression model contains a constant

term. In this case, of course, the OLS estimator requires that the sum of the squared

deviations from the sample mean is such that n−1
∑n

t=1

(
L(t)− L̄

)2
= n−1

∑n
t=1 L(t)

2−

(L̄)2. Using Lemma 2.1, we observe that the first and second asymptotically leading

terms of the difference offset each other and only the third term survives. Therefore,

the asymptotic order of this is O(L(n)2ε(n)2), which fluctuates greatly. One solution

13



may be obtained by avoiding such computation.

4.2 Improvement of the finite sample performance

In this subsection, we consider the regression without the constant term. The model

having no constant term is defined as:

yt = βL(t) + ut for t = 1, . . . , n, (7)

with the errors satisfying Assumption 2.3. The following results are parallel to those

in the preceding section.

Theorem 4.1 Under Assumption 2.1 and 2.3, the OLS estimator of (7) is asymptot-

ically distributed as follows:

L(n)√
n

(
β̂ − β

)
d−→ N

(
0,

σ2
L

3

)
.

Lemma 4.1 Under Assumption 2.1, 2.3 and the model (7), we have, as n → ∞,

(i)
1

n
û2
n

d−→ σ2
LU2,

(ii− a)
L(n)2

n
û2
1 = Op(1) if L(n) → 0,

(ii− b)
1

n
û2
1 = op(1) if L(n) → ∞,

(iii)
1

n

n∑
t=2

(ût − ût−1)
2 p−→ σ2

S,

(iv)
1

n2

n∑
t=1

û2
t

d−→ σ2
LV2,

where

U2 =

{
w(1)−

∫ 1

0

w(r)dr

}2

and V2 =

∫ 1

0

w(r)2dr −
(∫ 1

0

w(r)dr

)2

.
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Theorem 4.2 Under Assumption 2.1, 2.3 and the model (7), if we further suppose

L(t) → ∞ as n → ∞, then it follows that, as n → ∞,

n (ρ̂− 1)
d−→ U2 − σ2

S/σ
2
L

2V2

.

Corollary 4.1 Under Assumption 2.1, 2.3 and the model (7), if we further suppose

L(t) → ∞ as n → ∞, then it follows that, as n → ∞,

tρ̂
d−→ σL

σS

U2 − σ2
S/σ

2
L

2
√
V2

.

Unfortunately, it may seldom be appropriate to suppose that the true process has

no constant term. However, it is worth analyzing the situation where the true process

is given by (5), which possesses a constant term, but the no-constant model (7) is

employed for regression. Then, we find that it works well asymptotically from the

following fact.

Theorem 4.3 Under Assumption 2.1 and Assumption 2.3, we suppose that the true

data-generating process (DGP) is given by (5), but (7) is employed for regression.

then we still have the same asymptotic result given in Theorem 4.1 with the effect of

a constant term declining at the rate O(n−1/2).

We note that under the assumptions in Theorem 4.3, the test statistics constructed

by the same way also have the same asymptotic behavior as in Theorem 4.2 and

Corollary 4.1. This suggests that, even if the true process includes a nonzero constant

term, regression without it may still be beneficial under integrated errors, and may

provide a good test statistic. We study the properties of such a test statistic in the

rest of this subsection.

Remark 4.1 If we let σ̂2
S = n−1

∑n
t=2(ût− ût−1)

2 in Lemma 4.1, which is constructed

based on the philosophy of Theorem 4.3, σ̂2
S is used for a consistent estimator of σ2

S.
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Remark 4.2 If we use the regression model yt = α+ ut against the true process (5),

a similar result is obtained. In this case, however, the declining rate of the irrelevant

constant term becomes Op(L(n)n
−1/2), which is slightly slower than that obtained in

Theorem 3.5, Op(n
−1/2).

Using the no-constant model (7) for regression with (5) being the DGP (α is set to

unity for the simulation), we have Figures 3 and 4 and Table 3 under Assumption 2.3

with vt i.i.d., just as in the preceding subsection. In this case, we can see that their

finite sample approximation seems to be significantly improved.
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Figure 3: CDF of n(ρ̂− 1) based on (7).
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Figure 4: CDF of tρ̂ based on (7).

Table 3: Percentage points of the limiting distributions.

Probability (%)

Statistic 1.0 2.5 5.0 10.0 90.0 95.0 97.5 99.0

n(ρ̂− 1) -19.69 -15.88 -12.91 -10.02 -0.15 0.45 0.95 1.45

tρ̂ -3.07 -2.75 -2.48 -2.17 -0.08 0.27 0.55 0.91

We see that we obtain good performances for the powers and sizes of these test

statistics. Table 4 indicates the empirical sizes and Figures 5 and 6 show the size-

adjusted powers. They illustrate that these tests are suitable for practical use, despite
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a little size distortion remaining. Hence, we conclude that the influence of an SV

regressor on the test statistics can be removed and such statistics are recommended.

Table 4: Empirical size of tests (%).

# observations

Statistic 100 200 300 500

n(ρ̂− 1) 8.8 8.6 8.1 7.6

tρ̂ 11.3 9.6 8.9 8.2
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Figure 5: Power of DF-ρ̂ with (7).
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Figure 6: Power of DF-t with (7).

4.3 Generalization of the unit root test statistics

The weak convergence results in the preceding section have nuisance parameters in

their limit. Finally, we introduce Phillips and Perron (1988) (PP)-type statistics under

assumption 2.3 based on the discussion in the preceding subsection.

Theorem 4.4 Construct the following two statistics based on the regression model (7)

against the natural DGP (5):

Zρ̂ = n(ρ̂− 1)− n2(σ̂2
L − σ̂2

S)

2
∑n

t=1 û
2
t−1

and Zt =
σ̂S

σ̂L

tρ̂ −
n(σ̂2

L − σ̂2
S)

2σ̂L

√∑n
t=1 û

2
t−1

,
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where

σ̂2
S =

1

n

n∑
t=2

(∆ût)
2 and σ̂2

L = σ̂2
S +

2

n

k∑
j=1

(
1− j

k + 1

) n∑
t=j+1

∆ût∆ût−j

with k = o(n1/4). Then, under Assumption 2.1 and 2.3, it follows that, as n → ∞,

Zρ̂
d−→ U2 − 1

2V2

and Zt
d−→ U2 − 1

2
√
V2

.

These limiting distributions have the same percentage points of n(ρ̂ − 1) and tρ̂, re-

spectively, in Table 3.

Remark 4.3 It may be possible to reduce the size distortion caused by the estimation

of the long-run variance by using a method such as that of Perron and Ng (1996).

However, this is beyond the scope of this paper, and is left to future studies.

5 Conclusions

We have studied the model with an SV regressor in the presence of integrated errors

and found three main results. First, regression coefficients are asymptotically normally

distributed, but they are not consistent. We thus observe that there is a contrast

between a simple trend and an SV trend. Second, ordinal unit root test statistics

based on AR(1) errors behave badly due to the existence of an SV regressor, and it is

not recommended that tests of hypotheses be based on them. This may be caused by

asymptotic collinearity of the regressors. Third, in spite of this difficulty, correction

of sizes is possible by eliminating the constant term from the regression model. It is

shown that the statistics constructed by this approach are still consistent even when

the DGP has a constant term. Applying this result, we finally give PP-type test

statistics.
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APPENDIX A: A Lemma for Proofs

Lemma A Assume that L(t) satisfies assumption SSV. For sufficiently large n, it

follows that

n∑
t=2

(L(t)− L(t− 1))2 < L(n)2ε(n)2[1 + o(1)].

Proof of Lemma A We start with the fact called second-order SV in Phillips (2007,

eq. (10)) and, more precisely, in de Haan and Resnick (1996). This implies that for

sufficiently large n,

L(nr) = L(n) + L(n)ε(n) log r[1 + o(1)] (8)

for arbitrary r > 0. If we set r = (t− 1)/n and r = t/n in (8), (L(t)− L(t− 1))2 can

be evaluated as

(L(t)− L(t− 1))2 = L(n)2ε(n)2[1 + o(1)]2
(
log

(
t

n

)
− log

(
t− 1

n

))2

= L(n)2ε(n)2[1 + o(1)] log2
(
1− 1

t

)
The last logarithmic function has the representation so that

log2
(
1− 1

t

)
=

(
−1

t
− 1

2t2
− 1

3t3
− . . .

)2

=
1

t2
+

1

t3
+

11

12t4
+

5

6t5
+ · · · <

∞∑
k=2

1

tk
=

1

t(t− 1)
.

Hence, we have:

(L(t)− L(t− 1))2 < L(n)2ε(n)2[1 + o(1)]
1

t(t− 1)

for sufficiently large n, so that

n∑
t=2

(L(t)− L(t− 1))2 < L(n)2ε(n)2[1 + o(1)]
n∑

t=2

1

t(t− 1)

= L(n)2ε(n)2[1 + o(1)]

(
1− 1

n

)
= L(n)2ε(n)2[1 + o(1)]. ■
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APPENDIX B: Proofs for Sections 3 and 4

Proof of Lemma 3.1 For (i), we make a decomposition as:

1

n
√
nL(n)

n∑
t=1

L(t)ut =
1

n

n∑
t=1

ut√
n
− 1

nL(n)

n∑
t=2

t∑
s=1

us√
n
(L(t)− L(t− 1)). (9)

Assumption 2.3 enables us to use the strong approximation of ut/
√
n for Brownian

motion as in (4). Hence, the first term of (9) is

1

n

n∑
t=1

ut√
n
= σL

∫ 1

0

w(s)ds+ op(1). (10)

The second term of (9) is

1

nL(n)

n∑
t=2

t∑
s=1

us√
n

(
L

(
n
t

n

)
− L

(
n
t− 1

n

))
=

σL

L(n)

∫ 1

0

∫ r

0

w(s)ds dL(nr) + op(1)

=
σL

L(n)

∫ 1

0

F1(r)

r

nrL′(nr)

L(nr)
L(nr)dr + op(1)

=
σL

L(n)

∫ 1

0

F1(r)

r
L(nr)ε(nr)dr + op(1)

= ε(n)σ

∫ 1

0

F1(r)

r
dr + op(1) = Op(ε(n)) + op(1) = op(1),

(11)

where F1(r) is a one-fold integrated Brownian motion defined by
∫ r

0
w(s)ds. Note

that the fourth equality in (11) holds from the fact in Phillips (2007, eq. (74)). In

consequence, (10) and (11) give the result.

For (ii), we basically take the same manipulation as (i). Decomposing the product
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L(t)ut as in (9) and remembering the asymptotic expansion of L̄, we have:

1

n
√
n

n∑
t=1

(L(t)− L̄)ut

=
L(n)

n

n∑
t=1

ut√
n
− 1

n

n∑
t=2

t∑
s=1

us√
n
(L(t)− L(t− 1))

− [L(n)− L(n)ε(n) +O(L(n)ε(n)2)]
1

n

n∑
t=1

ut√
n

= − 1

n

n∑
t=2

t∑
s=1

us√
n
(L(t)− L(t− 1)) + L(n)ε(n)[1 +O(ε(n))]

1

n

n∑
t=1

ut√
n
.

(12)

From (i), (12) leads asymptotically to

− σL

∫ 1

0

F1(r)dL(nr) + L(n)ε(n)

(
σL

∫ 1

0

w(r)dr +Op(ε(n))

)
+ op(1)

= L(n)ε(n)σL

(
−
∫ 1

0

F1(r)

r
dr +

∫ 1

0

w(r)dr +Op(ε(n))

)
+ op(1)

= L(n)ε(n)σL

∫ 1

0

(
w(r)− F1(r)

r

)
dr[1 +Op(ε(n))] + op(1).

Note that F1 is differentiable in mean square, so that we have:

σL

∫ 1

0

F1(r)

r
dr = −σL

∫ 1

0

log r w(r)dr.

Thus, we conclude that (12) divided by L(n)ε(n) reduces asymptotically to:

σL

∫ 1

0

(
w(r)− F1(r)

r

)
dr = σL

∫ 1

0

(log r + 1)w(r)dr

= −σL

∫ 1

0

r log rdw(r)
d
= N

(
0, σ2

L

∫ 1

0

r2 log2 rdr

)
= N

(
0,

2σ2
L

27

)
. ■

Proof of Lemma 3.1 The marginal limiting distribution of β̂ is clear from Lemma

3.1. The remaining claim is the distribution of α̂ and their joint behavior. It is easy

to see that:

ε(n)√
n
(α̂− α) =

ε(n)

n
√
n

n∑
t=1

ut −
ε(n)√

n

L̄
∑n

t=1 L(t)ut − L̄2
∑n

t=1 ut∑n
t=1(L(t)− L̄)2

= Op(ε(n))−
ε(n)L̄√

n
(β̂ − β)

= op(1)−
L(n)ε(n)√

n
(β̂ − β)[1 +O(ε(n))]

= −L(n)ε(n)√
n

(β̂ − β) + op(1).
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Thus, symmetry on the origin of the limiting normal distribution of β̂ − β implies the

desired result. ■

Proof of Lemma 3.2 (i) From (6) and Theorem 3.1, applying the functional Central

Limit Theorem, together with the continuous mapping theorem, yields:

1

n
û2
n =

{
un√
n
−

(
1

n

n∑
t=1

ut√
n

)
− (L(n)− L̄)(β̂ − β)

}2

=

{
un√
n
−

(
1

n

n∑
t=1

ut√
n

)
− L(n)ε(n)[1 +O(ε(n))]√

n
(β̂ − β)

}2

d−→ σ2
L

{
w(1)−

∫ 1

0

w(r)dr −
∫ 1

0

(
w(r)− F1(r)

r

)
dr

}2

.

as stated. ■

(ii) By a similar manner to the proof of Lemma 3.2, we obtain:

1

n
û2
1 =

{
u1√
n
−

(
1

n

n∑
t=1

ut√
n

)
− L(1)− L̄√

n
(β̂ − β)

}2

=

{
Op

(
1√
n

)
−Op(1)−

L(1)− L(n) + L(n)ε(n)[1 +O(ε(n))]√
n

(β̂ − β)

}2

.

(13)

This rate of convergence depends on the asymptotic behavior of L(n). That is, if

L(n) → 0, (13) times L(n)2ε(n)2 is Op(1) so that

L(n)2ε(n)2

n
û2
1 =

{
op(1)− L(1)

L(n)ε(n)√
n

(β̂ − β)(1 + op(1))

}2

d−→ L(1)2σ2
L

{∫ 1

0

(
w(r)− F1(r)

r

)
dr

}2

.

(14)

If L(n) → ∞ to the contrary, (13) times ε(n)2 is Op(1). In fact, we obtain:

ε(n)2

n
û2
1 =

{
op(1) +

L(n)ε(n)√
n

(β̂ − β)(1 + op(1))

}2

d−→ σ2
L

{∫ 1

0

w(r)dr −
∫ 1

0

F1(r)

r
dr

}2

.

(15)
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Hence, (14) and (15) give the conclusion. ■

(iii) We have:

1

n

n∑
t=2

(ût − ût−1)
2

=
1

n

n∑
t=2

v2t −
2(β̂ − β)√

n

n∑
t=2

vt√
n
∆L(t) +

(
β̂ − β√

n

)2 n∑
t=2

(∆L(t))2.

(16)

The first term converges to σ2
S in probability. For the second term, its absolute value

is less than or equal to:

2

∣∣∣∣∣ β̂ − β√
n

∣∣∣∣∣
(
1

n

n∑
t=2

v2t

)1/2( n∑
t=2

(∆L(t))2
)1/2

= Op(1) (17)

by Schwarz inequality and Lemma A. The last term in (16) is similarly found to be

Op(1). We therefore conclude that (16) is Op(1). ■

(iv) If we use
∑n

t=1 L(t) = nL(n)[1 + O(ε(n))],
∑n

t=1 L(t)
2 = nL(n)2[1 + O(ε(n))]

and Lemma 3.1 (i), it follows that:

1

n2

n∑
t=1

û2
t =

1

n

n∑
t=1

(
ut√
n
−

(
1

n

n∑
s=1

us√
n

)
− β̂ − β√

n
(L(t)− L̄)

)2

=
1

n

n∑
t=1

(
ut√
n

)2

+

(
1

n

n∑
s=1

us√
n

)2

+

(
β̂ − β√

n

)2
1

n

n∑
t=1

(L(t)− L̄)2

− 2

(
1

n

n∑
t=1

ut√
n

)2

− L(n)ε(n)(β̂ − β)√
n

2

n
√
nL(n)ε(n)

n∑
t=1

(L(t)− L̄)ut

=
1

n

n∑
t=1

(
ut√
n

)2

−

(
1

n

n∑
s=1

us√
n

)2

−

(
L(n)ε(n)(β̂ − β)√

n

)2

[1 +O(ε(n))]

d−→ σ2
L

∫ 1

0

w(r)2dr − σ2
L

(∫ 1

0

w(r)dr

)2

− σ2
L

(∫ 1

0

(
w(r)− F1(r)

r

)
dr

)2

,

which completes the proof. ■
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Proof of Theorem 3.2 and Corollary 3.1 It is clear from Lemma 3.2. ■

Proof of Theorem 4.1 The result follows from Lemma 3.1. ■

Proof of Lemma 4.1 (i) Note that

ût = ut − (β̂ − β)L(t)

under the model (7). Following from Theorem 3.3, the result can be derived:

1

n
û2
n =

(
1√
n
un −

L(n)√
n

(
β̂ − β

))2
d−→ σ2

L

(
w(1)−

∫ 1

0

w(r)dr

)2

. ■

(ii) It follows from u0 = 0 and Theorem 3.3 that:

1

n
û2
1 =

(
1√
n
u1 −

L(1)√
n

(
β̂ − β

))2

=
(
Op

(
n−1/2

)
−Op

(
L(n)−1

))2
.

Hence, this converges to zero in probability if L(n) tends to infinity, whereas if L(n) →

0, we have:

L(n)2

n
û2
1 =

(
L(n)√

n
u1 −

L(1)L(n)√
n

(
β̂ − β

))2
d−→ σ2

L

(
−L(1)

∫ 1

0

w(r)dr

)2

. ■

(iii) Since β̂ is not Op(
√
n/(L(n)ε(n))) but Op(

√
n/L(n)) under the model (7), the

second term of (16) becomes Op(ε(n)) by Schwarz inequality, as in (17). The third

term of (16) is similarly found to be Op(ε(n)
2). Therefore, we have:

1

n

n∑
t=2

(ût − ût−1)
2 p−→ σ2

S. ■

(iv) It follows from Lemma 3.1 (i) and Theorem 3.1 that:

1

n2

n∑
t=1

û2
t =

1

n

n∑
t=1

(
ut√
n

)2

− 2
L(n)√

n

(
β̂ − β

) 1

n
√
nL(n)

n∑
t=1

L(t)ut

+
L(n)2

n

(
β̂ − β

)2
[1 +O(ε(n))]

d−→ σ2
L

∫ 1

0

w(r)2dr − 2σ2
L

(∫ 1

0

w(r)dr

)2

+ σ2
L

(∫ 1

0

w(r)dr

)2

.
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Collecting terms gives the result. ■

Proof of Theorem 4.2 and Corollary 4.1 It is clear from Lemma 4.1. ■

Proof of Theorem 4.3 We consider the following situation:

True DGP : yt = α + βL(t) + ut,

Regression : yt = βL(t) + ut.

Then, the OLS estimator is:

β̂ =

∑n
t=1 L(t)yt∑n
t=1 L(t)

2
= α

∑n
t=1 L(t)∑n
t=1 L(t)

2
+ β +

∑n
t=1 L(t)ut∑n
t=1 L(t)

2

= α
nL(n)[1 +O(ε(n))]

nL(n)2[1 +O(ε(n))]
+ β +Op

( √
n

L(n)

)
= α

1 + o(1)

L(n)[1 + o(1)]
+ β +Op

( √
n

L(n)

)
,

by Lemma 3.1 and Theorem 3.1. Collecting terms and scaling by L(n)/
√
n, we have

n−1/2L(n)(β̂ − β) = O(n−1/2) + Op(1). Thus, it leads to the same limiting result as

in Theorem 3.1 (i). The conclusions for the other statistics in this situation are also

derived in the same way via Lemma 4.1. ■

Proof of Theorem 4.4 It suffices to prove the consistency of the estimated long-run

variance σ̂2
L. Because the last three terms of

1

n

n∑
t=j+1

∆ût∆ût−j =
1

n

n∑
t=j+1

{vtvt−j − (β̂ − β)vt∆L(t− j)

− (β̂ − β)vt−j∆L(t) + (β̂ − β)2∆L(t)∆L(t− j)}

are op(1) from Schwarz inequality as in Lemma 3.2 (iii). Therefore, we have

1

n

n∑
t=j+1

{∆ût∆ût−j −∆ut∆ut−j} = op(1).
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Combining the fact that σ̂2
S − σ2

S = op(1), we conclude that σ̂2
L is consistent for σ2

L

from Theorem 2 in Newey and West (1987). ■
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