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Printed in Great Britain 

Regression with censored data 

BY RUPERT MILLER AND JERRY HALPERN 
Divi8ion of Bio8tati8tic8, Stanford Univer8ity Medical Center, California, U.S.A. 

SUMMARY 

There are four regression techniques currently available for use with censored data 
which do not assume particular parametric families of survival distributions. They are 
due to (i) Cox (1972), (ii) Miller (1976), (iii) Buckley & James (1979), and (iv) Koul, 
Susarla & Van Ryzin (1981). These four methods are described, and their performances 
compared on the updated Stanford heart transplant data. Conclusions on the usefulness 
of the four procedures are drawn. 

Some key words: Censored data; Linear model; Proportional hazards model; Regression. 

1. INTRODUCTION 

Within the past decade a variety of techniques have been proposed for handling 
regression problems in which the dependent variable is subject to censoring. Some of 
these techniques rely upon normal theory, but others make virtually no assumption 
about the underlying distribution. The purpose of this paper is to compare four methods 
of the latter type. 

One of these techniques (Cox, 1972) bases its approach on the proportional hazards 
model. If F(t; x) andf (t; x) are the underlying distribution and density functions for the 
survival time T when the vector of independent variables is x, the proportional hazards 
model assumes that the hazard rate A(t; x) = f(t; x)/{1 - F(t; x)} is given by 

A(t; x) = AO(t) eXP, 

where ,B is the vector of regression coefficients and AO(t) is the hazard rate when x = 0. 
This model is equivalent to assuming Lehmann alternatives for 1- F(t; x). 

The other three methods, due to Miller (1976), Buckley & James (1979) and Koul, 
Susarla & Van Ryzin (1981), are based on the standard linear model F(t; x) = F(t-oc-x,B) 
with 

E(TIx) = a?xfx, (1) 

where ox is the intercept and ,B is the vector of regression coefficients for the independent 
variables in x. If T is measured on a log scale so that T = log U where U is the actual 
survival time, then (1) corresponds to an accelerated time model. 

The four different estimators are described in ? 2. Mention is also made of other available 
regression estimators for censored data. The results of applying these estimators to the 
updated Stanford heart transplant data are given in ? 3. In ? 4 conclusions are drawn about 
these estimators based on their performances on this data set. 
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2. ESTIMATORS 
2 1. Generalitie8 

Let T1, ..., Tn be the survival times for n patients. These may not all be observable due 
to censoring times C1, ..., Cn for each of the patients. The observable quantities are 

YE Ti A Ci, (5i = I(Ti < QE, Xi = (Xi1, .., XiP) 

where ' A' denotes the minimum, I is the indicator function, and xi is the transposed 
vector of independent variables associated with patient i. The random censoring model 
adopted in this paper assumes that, given the xi, the Ti and Ci are independently 
distributed according to the continuous distributions F(t; xi) and G(t; xi), respectively. 

In the above framework the survival times Ti are censored on the right by the 
censoring times Ci. They could just as well be all left censored with Yi = Ti v Ci and 
$i = I(Ci < Ti), where ' v ' denotes the maximum. The direction of the time axis is simply 
reversed in all four estimators. However, the estimators of Cox and Koul et al. cannot be 
applied when there are both left and right censoring in the data. Miller's and Buckley & 
James's estimators can be extended to this situation by utilizing the distribution 
estimator of Turnbull (1974, 1976). 

2 2. Cox'8 e8timator 

Cox (1972, 1975) proposed a partial likelihood approach to estimating , since the 
function AO(t) being unknown prevents a full likelihood analysis. The patients in the risk 
set M (t) are those still alive and in the study at time t -. If it is known that a patient dies 
at time t, then the conditional probability that it is patient i among those at risk is 
exp (xi fl)/Xje_(t) exp (xj P). If Y(1) < ... < Y(n) are the ordered observations, then the partial 
likelihood is 

Lc= I ex(J Ey ex,3) (2) 
i =1 j 3 (Ym)) 

where x(i), b(i) are associated with Y(i). The value of , maximizing (2) is obtained by 
solving on a computer for the root of the equations a log Lc/a/3 = 0. 

Expression (2) for the partial likelihood requires that the uncensored survival times be 
all distinct. Several modifications to account for ties have been suggested in the 
literature. The one used in this paper is the approximate likelihood called by Peto (1972) 
Prough' and also described by Kalbfleisch & Prentice (1972, (iv)) and Breslow (1974, (8)). 
Ties between uncensored and censored observations are handled by considering the 
uncensored survival times as preceding the censored ones. 

Tsiatis (1981) and K. Bailey in a 1979 University of Chicago doctoral dissertation have 
proved the asymptotic normality of ff, the value of /B maximizing (2). The asymptotic 
covariance matrix is the matrix of second partial derivatives of the logarithm (2) or its 
modification for ties. 

Efron (1977) and Oakes (1977) have established that Cox's estimator is nearly fully 
efficient. 

There have been various proposals for estimating the survival function 

S(t; x) = 1-F(t; x) = exp{_exflj'io(u)du}. (3) 



Regression with censored data 523 

The method adopted in this paper is to estimate AO(t) by Breslow's (1974) estimator 

lo(t)= du(i){(YU(i)-YU(i-i) Z eXj}- 

for Yu(i-) < t < Yu(i), where Yu(1) < Yu(2) < are the ordered distinct uncensored ob- 
servations and du(i) is the number of deaths at Yu(i), and then to substitute 20(t) and ,B into 
(3). This estimator S(t; x), which was proposed by C. Link in a 1979 Stanford University 
technical report and Tsiatis (1981), differs slightly from the Kaplan & Meier (1958) 
product-limit estimator if/ = 0. 

2 3. Miller'8 e8timator 

Miller (1976) suggested minimizing the sum of squares 

n e2 dF(e; a, b) (4) 

with respect to a and the vector b, where F(e; a, b) is the product-limit estimator based on 
e= ei(a,b) = yi-a-xib for i =1 ,...,n. Specifically, 

1-F(e; a,b) = H (1-d(i)/n(i))6(i), 
e(iS 

where e(1) < e(2) < ... are the ordered distinct values of Ai, n(i) is the number at risk at 
e(i) -, d(i) is the number dying at A(i), and b(i) = 1 if d(i) > 0, = 0 otherwise. Expression (4) 
is a generalization of the usual sum of squares I (yi - a - xi b)2 for uncensored data. 

It is difficult to locate the infimum of (4) because it is a discontinuous function of b. 
Therefore, Miller proposed using an iterative sequence to calculate the estimate of the 
regression coefficient vector /3: 

flk+1 = {(X-X) W(1k) (X-X )}l(X-Xw) W(k) Y, (5) 
where 

X = ((xii)), X = ((z w(k) Xj 

W(13k) = diag {wi(fk)}, Y = (Y )T-, Yn() 
The limit of the sequence &k for k = 0,1, ..., is the estimate of /3. Because of discontinu- 
ities in the weights as functions of 1k' the sequence may become trapped in a loop. If the 
values in the loop are not far apart, an average value over the loop can be used for the 
estimate. 

The weight wi(fk) in (6) is the size of the jump assigned to 0 = ei(O,/3k) = Yi-Xi Pk by 
the Kaplan & Meier estimator applied to e?, . .., eo. Inclusion of an intercept estimate Ak in 
the estimate of ei is unnecessary since the weights are invariant under location shifts in 
the data. If the largest A9 is censored, the mass 1- F( + oo; 0, fk) is unassigned to any ei. 
The convention which seems to work best for these estimators is to normalize the weights 
so that they sum to one in (6) and (8), but to assign the remaining mass 1 -F( ? oo; 0, f3k) 
to the largest A9 in (7). 

Only the uncensored yi received nonzero weights in (5). For this reason it makes sense 
to use as a starting value f3o the ordinary unweighted least squares estimator applied to 
just the uncensored data. 
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For the limiting value /3 the associated estimate of the intercept is 
n 

a = E w(/) Wi(yi-/Xi). (7) 
i = 1 

If the variation in ,i due to an estimate of /3 rather than the true /3 being used in the 
computation of the weights is ignored, then an estimate of the covariance matrix for ,I is 

{E w (fl) (yi - xi/x)2} {(X-X ) W(/) (X-Xw)} (8) 

For /# to be consistent it is necessary that the censoring distributions G(t; x) satisfy 

G(t; x) = G(t-oc-x,B). (9) 

This assumption requires that, as x changes, the censoring distributions shift along the 
same line as the survival distributions. 

2-4. Buckley & James's estimator 
The Buckley & James (1979) estimator exploits the following linear relationship: 

E{bi Yi + (I 1-bi) E(Ti I Ti > Yi) I Xi} = ax + xi P. ( 10) 

Buckley & James substitute an estimate for the conditional expectation E(Ti Ti > yi) 
based on the Kaplan & Meier estimator into the variable yi = bi yi + (1 - bi) E(Ti I Ti > yi) 
and then solve the usual least squares normal equations iteratively. 

Specifically, if bi = 1, let Yi(.ik) = yi, but if bi = 0, let 

Yi(Aik) = Xi/3k + Z wJ(/Ik) I {1-F(e; O,f3k)} . 
j ej > 

The convention in computing the Kaplan & Meier estimator F is to always assign the 
remaining mass to the largest e? if it is censored. The regression estimator /3k +1 at the 
(k + 1)st step is the usual least squares estimator 

/3k? = {(X-X)T(X-X)}'(X-X)Ti(/ ) (11) 
where the matrix X has elements n' Xi xij and ^ (/3k) = {I '(/3k)' ** A v n(/3k)}T. The iteration 
is continued until /3k converges to a limiting value / or becomes trapped in a loop like the 
Miller estimator. 

Since the estimator (11) uses a value for the dependent variable at every xi, it seems 
sensible to take for the starting /3& the least squares estimator 

{(X X)T(X-X)} - -T 

which treats all the observations as uncensored whether they are uncensored or not. 
For the limiting value / the associated estimate of the intercept is 

I n 
c= -E I y^(A)-X ij. 

In spirit this technique is a nonparametric version of the EM algorithm introduced by 
Dempster, Laird & Rubin (1977). The censored data points are replaced by their 
expectations and then the sum of squares is minimized. 
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In estimating the variability Buckley & James recommend using 

nu-2 i=l(e nu E =1 ?) 

where nu is the number of uncensored observations. Their estimator for the covariance 
matrix of /3 is 

au {(X-X)TA(X-Xu)}l, (12) 

where Xu is the matrix with elements n' 1 Iio ixij and A = diag (ki). There is no firm 
theoretical foundation for (12), but its validity has been empirically substantiated 
through Monte Carlo simulations. 

In unpublished work James & Buckley have compared the efficiency of their estimator 
to the maximum likelihood estimator for normal and nonnormal distributions. 

2 5. Koul, Su8arla & Van Ryzin's e8timator 
Koul et al. (1981) based an estimator on a linear relationship different from (10), 

namely 

E[i Yil- G(Y ; xi)} xi] = oc+xi (13) 
Under the assumption G(t; xi) _ G(t), Koul et al. substitute an estimate for G(t) into the 
variable yi = i yi{1 - G(yi)}-1 and then solve the usual least squares normal equations. 
The relation (13) does not require G(t; xi) to be independent of xi, but there is no way of 
estimating each G(t; xi) from the data without imposing assumptions on G(t; x) as a 
function of x. 

The product-limit estimator with the roles of ti and ci reversed could be used to 
estimate the common censoring distribution G(t). However, Koul et al. suggest the 
following estimator which emanates from Bayesian considerations: 

I-G(t) = t 2+n+(yi) (14) 

where n + (y) is the number of yj greater than y. Ties between censored and uncensored 
observations are handled in the usual fashion with the roles of censored and uncensored 
being reversed. 

The product-limit estimator and the estimator (14) can be unstable for large values of 
t, because the data are so sparse for large t. Therefore, Koul et al. suggest truncating the 
large observations by defining Yi = i yi{l - G(yi)} - 'I(yi < Mn), where I is the indicator 
function. They make some remarks on the selection of Mn in their paper. 

The great advantage of the estimator of Koul et al. is that no iteration is required. 
Specifically, 

3= {(X-X)T(X-X)} 1(X-X) , = -1 i(i-xi 
Standard least squares computer routines can be used once the vector y has been 
computed. 

Koul et al. derive complicated integral expressions for the asymptotic covariance 
matrix of,/:. 
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2 6. Other e8timator8 

A computer routine which minimizes the sum of squares for all the uncensored 
observations and only the censored ones falling above the estimated regression line has 
been introduced by J. Friedman and W. Stuetzle in a 1981 Stanford University technical 
report. 

For normal linear models Schmee & Hahn (1979) introduced an estimator which is 
identical in spirit to Buckley & James's estimator. The difference is that Schmee & 
Hahn base the computation of the conditional expectation E(T I T > y) in (10) on the 
assumption of a normal distribution. Nelson & Hahn (1972, 1973) treated the case where 
there are replicate observations for each value of the independent variable. Linear 
combinations of order statistics are used to estimate the normal parameters. Amemiya 
(1973) applied maximum likelihood theory to the normal linear model with censoring at 
a fixed upper, or lower, level, type I censoring. Amemiya extended earlier work by Tobin 
(1958) and Glasser (1965). Heckman (1976) gave an ad hoc two-stage estimator in the 
normal linear model. 

Regression estimators with censored data have also been proposed for the exponential 
distribution where A(t; x) _ i(x) for t > 0. Zippin & Armitage (1966) treated the linear 
model A(x) = (oc + xf,) - 1 in the special case p = 1, and Mantel & Myers (1971) studied the 
multidimensional case. Glasser (1967) considered the proportional hazards model 
i(x) = AO eXfl in the special case p = 1. All three papers are based on the maximum 
likelihood approach. 

3. RESULTS 

The Stanford heart transplantation program was begun in October 1967. By February 
1980, 184 patients had received heart transplants. A few of these had multiple 
transplants. Their survival times, uncensored or censored in February 1980, are 
displayed in Table 1 along with their ages at the time of the first transplant. The 
patients' T5 mismatch scores which measure the degree of tissue incompatability 
between the initial donor and recipient hearts with respect to HLA antigens are also 
included in Table 1. 

The data on patients who were admitted to the program but did not receive 
transplants and the pretransplant waiting times for patients who did receive transplants 
were not collected for this study. Because of this there is no analysis of whether or not 
transplantation prolongs survival. 

In analysing the T5 mismatch scores on the data up to March 1974 Miller (1976) 
and Crowley & Hu (1977) made a distinction between deaths primarily due to rejection 
of the donor heart by the recipient's immune system and nonrejection related deaths. 
This distinction is no longer maintained because histological information is not always 
available and the judgement of rejection death is largely subjective. 

For 27 of the 184 transplant patients the T5 mismatch scores are missing because the 
tissue typing was never completed. For the regression analyses reported here just the 157 
patients with complete records were used. Of these 157 patients 55 were still alive, i.e. 
were censored as of February 1980, and 102 were deceased, i.e. were uncensored. 

Table 2 gives the estimated coefficients and their estimated standard deviations in the 
multiple regression of the base 10 logarithm of the time to death against age and T5 
mismatch score. For the Buckley-James and Miller estimators the initial estimates, SBo 
the one-step estimates, ,:1 and the final estimates, /3f, are all given. No truncation was 
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used in computing the estimates of Koul et al. and no standard deviations could be 
calculated for them. 

Due to its nonsignificance the T5 mismatch score was deleted from the analysis. The 
estimated regression coefficients and standard deviations with age alone for the different 
methods are practically identical to those for age in Table 2. 

Figure 1(a) graphs the survival times against the ages of the patients at transplant. 
The dashed line is the Buckley-James estimated regression line. The solid line is the 
estimate of the median survival time from Cox's method. That is, at each x the value of t 
for which S(t; x) equals 2 is plotted. The median estimator was selected because it is 
much easier to compute at each point than the mean estimator. Also, since the time scale 
is irrelevant to Cox's method the median estimator seems more appropriate. 

From Table 2 and other analyses not presented here we concluded that the Cox and 
Buckley-James estimators are the superior estimators. Full discussion of this will be 
given in the next section. However, the fits of these two models to the data are not ideal. 
This is particularly evident in Fig. l(a) for Cox's model at low values of x where the 
median estimator exceeds all the data. Also, the Cox and Buckley-James estimators do 
not agree on the statistical significance of the age effect. The estimated slope from Cox's 
method is more than 2-5 standard deviations away from zero, whereas that for Buckley & 
James's method is less than 2 standard deviations. Note that the two estimators have 
opposite signs because of the parameterizations. 

In an attempt to achieve better fit a quadratic age model fB1 (age)+ ?/2(age)2 was tried. 
In this analysis the 5 patients with survival times less than 10 days were deleted. The 
logarithmic transformation was not perfect in symmetrizing the data, and it was felt 
that these few very low values might have distorted the Buckley-James regression 
estimates and inflated the error variance. The results for the Cox and Buckley-James 
methods applied with the quadratic model are presented in Table 3. The data and the 
fitted regression functions are displayed in Fig. 1(b). 

The agreement between the two estimation methods is very much better for the 
quadratic model. The degrees of significance of the linear and quadratic regression 
coefficients are very similar for the two estimators. Also, the mean and the median 
regression functions fit the data very much better. The estimates for the extreme 
younger and older ages are more reasonable. 

Can any distinction be drawn between the proportional hazards model and the linear 
model? Does one fit the data better than the other? To examine this question we plotted 
the ordinary residuals for the linear model and the generalized residuals for the 
proportional hazards model. Neither graph indicated any serious model deficiency. The 
linear residuals have a nonpronounced U-shape, which indicates some slight model 
irregularity, but both models fit rather well. 

4. DISCUSSION 

From their performances on the updated Stanford heart transplant data we feel that 
the Cox and Buckley & James estimators are the two most reliable regression estimators 
for use with censored data. The other two estimators, those of Koul et al. and of Miller, 
have methodological weaknesses. 

The estimator of Koul et al. is based on the assumption that the censoring distribution 
G(t) does not vary with x. The peculiarity of the dependent variable values used in this 
technique makes it sensitive to departures from this assumption. Each censored 
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Table 1. Stanford heart transplant data February 1980;first column, patient number; second 
column, T, survival time (days); third column, dead = 1, alive = 0; fourth column, age at 

time of first transplant; fifth column, T5 mismatch score 

Dead/ Dead/ Dead/ 
No. T alive Age T5 No. T alive Age T5 No. T alive Age T5 

1 15 1 54 1 11 51 1384 1 46 141 101 1393 0 46 095 
2 3 1 40 1-66 52 544 1 52 1-94 102 1202 1 38 9999 
3 46 1 42 0-61 53 29 1 53 1-08 103 1378 0 41 1-65 
4 623 1 51 1-32 54 48 1 53 3 05 104 1373 0 41 1-38 
5 126 1 48 0-36 55 297 1 42 0-60 105 274 1 31 0-58 
6 64 1 54 1-89 56 1318 1 48 1-44 106 31 1 33 0-36 
7 1350 1 54 0-87 57 1352 1 54 0-68 107 1341 0 50 1-13 
8 23 1 56 2-05 58 50 1 46 2-25 108 42 1 19 0-63 
9 279 1 49 1-12 59 547 1 49 0-81 109 381 1 45 0-98 

10 1024 1 43 1-13 60 431 1 47 0-33 110 1264 0 52 0-64 

11 10 1 56 2-76 61 68 1 51 1P33 111 1262 0 34 1-68 
12 39 1 42 1-38 62 26 1 52 0-82 112 1261 0 47 0-82 
13 730 1 58 0-96 63 161 1 43 1-20 113 47 1 36 0-16 
14 1961 1 33 1-06 64 )[4 1 40 9999 114 1193 0 24 1-15 
15 136 1 52 1-62 65 2313 0 26 0-46 115 626 1 53 1-74 
16 1 1 54 0*47 66 1634 1 23 1-78 116 48 1 51 0.99 
17 836 1 44 1-58 67 146 1 45 0-16 117 1150 1 32 2-25 
18 60 1 64 0-69 68 48 1 28 0 77 118 45 1 48 0-65 
19 3695 0 40 0-38 69 2127 1 35 0-67 119 1116 0 14 0 54 
20 1996 1 49 0-91 70 263 1 49 0-48 120 1107 0 18 0-25 

21 0 1 41 0-87 71 2106 0 40 0-86 121 1102 0 39 1-35 
22 47 1 62 0-87 72 293 1 43 0 70 122 195 1 39 0 73 
23 54 1 49 2-09 73 2025 0 30 1-44 123 30 1 34 0-84 
24 51 1 50 9999 74 2006 0 15 1-26 124 1040 0 43 0 50 
25 2878 1 49 0 75 75 2000 0 45 1P46 125 993 0 30 0 95 
26 3410 0 45 0-98 76 1995 0 47 1-65 126 950 0 46 9999 
27 44 1 36 00 77 1945 0 38 1-28 127 729 1 49 1 10 
28 994 1 48 0-81 78 65 1 55 0-69 128 121 1 45 9999 
29 51 1 47 1-38 79 731 1 38 0-42 129 202 1 48 1-24 
30 1478 1 36 1-35 80 1866 0 49 0-51 130 841 0 48 0-86 

31 254 1 48 1-08 81 538 1 49 2-76 131 834 0 49 9999 
32 897 1 46 9999 82 1846 0 44 0-83 132 265 1 49 1-22 
33 148 1 47 9999 83 68 1 35 0-85 133 1 1 21 0 47 
34 51 1 52 1-51 84 1778 0 27 0 70 134 793 0 19 1-98 
35 323 1 48 1-82 85 1722 0 40 0 95 135 328 1 34 1-02 
36 3021 0 38 0-98 86 928 1 50 1-12 136 781 0 20 1-12 
37 66 1 49 0-66 87 1718 0 39 1-77 137 752 0 43 1-50 
38 2984 0 32 0-19 88 22 1 27 1-64 138 738 0 41 0 53 
39 2723 1 32 1-93 89 40 1 42 1-59 139 86 1 12 1-26 
40 550 1 48 0-12 90 7 1 28 1 00 140 132 1 46 1-09 

41 66 1 51 1-12 91 1638 0 48 0 43 141 663 0 36 0 47 
42 65 1 45 1-68 92 1612 0 51 1-25 142 660 0 42 0 75 
43 227 1 19 1-02 93 25 1 52 0-53 143 221 1 35 104 
44 2805 0 48 1-20 94 1534 1 44 1-71 144 90 1 38 1P00 
45 25 1 53 1-68 95 1547 0 50 0-18 145 619 0 47 0 90 
46 631 1 26 1-46 96 1271 1 32 1-05 146 618 0 50 0-82 
47 2734 0 47 0 97 97 44 1 46 1-71 147 576 0 53 2-25 
48 12 1 29 0-61 98 1247 1 41 0 43 148 563 0 41 9999 
49 63 1 56 2-16 99 1232 1 18 0 70 149 36 1 45 0-20 
50 2474 1 52 IL70 100 191 1 42 1-74 150 549 0 40 2-53 
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Table 1 (cont.) 
Dead/ Dead/ Dead/ 

No. T alive Age T5 No. T alive Age T5 No. T alive Age T5 

151 548 0 30 0 47 161 136 1 55 9999 171 231 0 52 9999 
152 541 0 47 0 43 162 406 0 39 1-18 172 145 1 50 0-96 
153 534 0 20 9999 163 391 0 27 1-17 173 188 0 52 9999 
154 169 1 51 1-89 164 374 0 47 9999 174 176 0 29 1-72 
155 122 1 51 1-33 165 50 1 50 0 50 175 138 1 41 9999 
156 382 1 36 9999 166 139 1 51 0-96 176 149 0 21 9999 
157 468 0 24 139 167 322 0 36 1-73 177 119 0 20 9999 
158 464 0 38 2-07 168 292 0 43 1-40 178 107 0 46 9999 
159 10 1 13 1-49 169 278 0 41 0-98 179 98 0 19 9999 
160 5 1 20 9999 170 22 1 45 9999 180 89 0 27 9999 

181 60 0 13 9999 
182 56 0 27 9999 
183 2 0 39 9999 
184 1 0 27 9999 

For T5 mismatch score 9999 denotes missing value. 

Table 2. Regression estimates and standard deviations, SD, for log1o of time to death 
versus age at transplant and T5 mismatch score with n = 157 Stanford heart transplant 

patients 
Estimator Intercept Age T5 

a SD (a) pi SD (pl) P2 SD (2) 

Cox 0 030 0-011 0-167 0-183 

Buckley-James 
Initial 2-78 -0 007 -0 034 
One-step 3-14 -0-013 -0-011 
Final 3-23 0 35 -0-015 0-008 -0 003 0-134 

Miller 
Initial 2-03 0-001 0-061 
One-step 2-58 -0-002 0-060 
Finalt 2-57 0-51 -0-001 0-011 0-072 0-191 

2-54 0-36 0 000 0-008 0 040 0-135 

Koul-Susarla-Van Ryzin 0-72 0-024 0-251 
t Loop with two values. 

observation is decreased to zero, and each uncensored observation is inflated by the 
factor { 1- G(yi) } -1. In some cases the observations are being moved away from the 
regression line in order to estimate it. With the Stanford heart transplant data the 
proportionately larger number of censored observations in the younger ages creates a 
proportionately larger number of zeros for small x. This gives a positive slope to the 
estimated regression line whereas everyone feels that increasing age is deleterious and 
the slope should be negative. The implication for other data sets is that if the censored 
observations are not spread evenly over the ranges of the independent variables they can 
tip the estimated' regression plane in a false direction or unduly enhance its slope. 
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Fig. 1. (a) (left). Scatterplot of log10 survival time (days) versus age at transplant (years) for 157 
Stanford heart transplant patients. Patients denoted by x are deceased; those by + were alive in 
February 1980. Dashed line, Buckley & James linear regression line; solid line, Cox proportional 
hazards regression median. 

(b) (right). As Fig. 1(a) but for qua.dra,tic regression with 152 patients who survived at least 
10 da.ys. 

Table 3. Regression estimates and standard deviations for log10 of time to death 
versus age and age squared at time of transplant with n = 152 Stanford heart 

transplant patients who survtied at least 10 days 

Estimator Intercept Age Age2 
a Df(a) 1 SD (3) 2 SD (A2) 

Cox -0-146 0 055 0-0023 0 0007 

Buckley-James 135 0-71 0-107 0r037 -0-0017 0 0005 

Also, while integral expressions have been obtained for the asymptotic variances and 
covariances of Koul et al. estimators when pw> 1, computational expressions are 
currently available only when p = 1. Also, further guidelines and experience are needed 
in the proper choice of the truncation point Mn. 

Miller's estimator can also be thrown off by the censoring pattern. The asymptotic 
consistency of the estimator requires condition (9) on the censoring distributions, and 
this condition is not satisfied for the Stanford heart transplant data. While the Miller 
estimator does not seem to be biased so much by violations of (9) as the estimator of 
Koul et al. by violations of G(t; x) _G(t), it is influenced by the censoring pattern. 

Both the Buckley & James and Miller iterative sequences of estimators can become 
trapped in loops and fail to converge. This happened in Table 1 for the Miller estimator. 
Our studies show that the loops are less frequent and less severe for the Buckley & James 
estimator than the Miller estimator. Why this should be the case was discussed by 
Buckley & James (1979). 

In conclusion, the Cox and Buckley & James estimators are not dependent on 
particular censoring patterns and have proved to be reliable estimators. Theoretical 
validation is lacking for Buckley & James's variance estimator, but use of it seems 
justified since it gives empirically sensible results and is supported by Monte Carlo 
studies. Both the Cox and Buckley & James estimators require about the same amount 
of programming and computing time. The choice between them should depend on the 
appropriateness of the proportional hazards model or the linear model for the data. 
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