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Regression With Missing X's: A Review 
RODERICK J. A. LITTLE* 

The literature of regression analysis with missing values of the independent variables is reviewed. Six classes of procedures are 
distinguished: complete case analysis, available case methods, least squares on imputed data, maximum likelihood, Bayesian methods, 
and multiple imputation. Methods are compared and illustrated when missing data are confined to one independent variable, and 
extensions to more general patterns are indicated. Attention is paid to the performance of methods when the missing data are not 
missing completely at random. Least squares methods that fill in missing X's using only data on the X's are contrasted with likelihood- 
based methods that use data on the X's and Y. The latter approach is preferred and provides methods for elaboration of the basic 
normal linear regression model. It is suggested that more widely distributed software is needed that advances beyond complete-case 
analysis, available-case analysis, and naive imputation methods. Bayesian simulation methods and multiple imputation are reviewed; 
these provide fruitful avenues for future research. 

KEY WORDS: Bayesian inference; Imputation; Incomplete data; Multiple imputation. 

1. INTRODUCTION 

1.1 Statement of the Problem 

Statistical inference with missing data is an important ap- 
plied problem, because missing values (planned or un- 
planned) are commonly encountered in practice. Recent ad- 
vances in computing power and theory have made the topic 
an active area of statistics research in the last 20 years, and 
the fruits of this research are becoming available to applied 
workers in statistics packages. In this article I update earlier 
reviews (Afifi and Elashoff 1966; Anderson, Basilevsky, and 
Hum 1983; Hartley and Hocking 1971) for a particular 
missing-data problem, namely, inference for the regression, 
of Y X Xp,I on p variables XI, . . ., Xp based on a random 
sample of n cases, when some of the X values are missing. 

Research has primarily focused on homoscedastic linear 
regression, where 

p 
E(Y I XI,.., Xp) = + I fjXj; 

j=1 

var(YI XI, . . .,Xp) = 2. (1) 

Write:l= (f1, ...,p). If XI, . .. , ,Xp, Yhave a joint dis- 
tribution with mean u = (Al, . . ., Ap, ,y) and covariance 
matrix 

_ xxx 7xyXY 

V 2 yX ayy J 

then standard regression theory gives 
p 

fl= ZyxZ; lo = Ay - I f jh; 
j=' 

2 =yy -yxxx zx . (2) 

With complete data, least squares (LS) estimates are obtained 
by replacing ,u and 7: by sample first and second moments; 
the primary problem considered is to develop estimates of 
parameters and associated precision when some data are 

* Roderick J. A. Little is Professor, Department of Biomathematics, UCLA 
School of Medicine, Los Angeles, CA 90024. This research was supported 
by JSA 89-17 between the Bureau of the Census and the Regents of the 
University of California and by USPHS Grant MH37 188 from the National 
Institute of Mental Health. The author thanks Nat Schenker and two referees 
for useful comments. 

missing. In my review I shall focus on this problem but also 
mention work on other problems, including incomplete cat- 
egorical X's, logistic regression, nonlinear regression, and 
survival analysis with missing X's. 

The focus on regression needs little justification in view 
of its importance as a statistical tool. The related problem 
of missing values in the outcome Y was prominent in the 
early history of missing-data methods, but is less interesting 
in the following sense: If the X's are complete and the missing 
values of Yare missing at random, then the incomplete cases 
contribute no information to the regression of Y on XI, . . ., 
Xp. The only advantage of methods that use the incomplete 
cases is computational-for example, to retain a balanced 
design in ANOVA (see, for example, Little and Rubin 1987, 
chap. 2). Computational issues have less importance in the 
era of high speed computers, although they do still arise when 
p is very large. If values of X are missing as well as Y, then 
cases with Y missing can provide a minor amount of infor- 
mation for the regression of interest, by improving predic- 
tions of missing X's for cases with Ypresent. The likelihood- 
based methods described here can be extended to handle this 
case. Difficult modeling issues not addressed here arise when 
missing Y's are not missing at random, as when missingness 
is monotonically related to the value of Y (see, for example, 
Amemiya 1984; Little and Rubin 1987, chap. 11). 

Example 1. Missing Data in a Mental Health Sur- 
vey. To illustrate missing data problems and methods, I 
use a subset of the data from a survey of depression in Los 
Angeles, analyzed in Afifi and Clark (1984), and used to 
illustrate methods in BMDP (Dixon 1988, app. D9). The 
regression model (1) was applied to n = 294 respondents, 
where p = 4, Y = square root total depression score, XI 
= log(income), X2 = Age, X3 = Healthy (a four-point scale 
indicating general health), and X4 = Bed-Days (a binary 
variable indicating whether the respondent had an entire 
day in bed in the last two months). LS regression yields the 
coefficient estimates and standard errors in Row 0 of Table 
1. Standard diagnostics are satisfactory. The R-squared is 
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Table 1. Regression Coefficients and Standard Errors for Depression Data 

Regressor variable 

Xi = Log(lncome) X2= Age X3= Healthy X4= Bed-Days 

Standard Standard Standard Standard 
Intercept Coefficient error Coefficient error Coefficient error Coefficient error 

OLS, Data Before Deletion 

0. 3.571 -.744 .246 -.021 .0049 .427 .106 .673 .206 

Complete Case Analysis 

1. MCAR 2.202 -.949 .373 -.0224 .0075 .565 .167 .695 .321 
2. Selection on X 4.139 -.860 .486 -.0232 .0064 .153 .151 .890 .313 
3. Selection on Y 1.557 -.110 .277 -.0145 .0055 .463 .135 .294 .253 

Ave. vs. row 0 -.94 .104 54% .014 32% -.033 42% -.046 44% 

Available Case Analysis 

4. MCAR 4.066 -1.075 .278 -.0234 .0053 .391 .115 .720 .223 
5. Selection on X 3.094 -.590 .364 -.0199 .0053 .435 .119 .658 .227 
6. Selection on Y 2.870 -.262 .292 -.0209 .0056 .459 .117 .654 .227 

Ave. vs. row 0 -.23 .102 26% .000 10% .001 10% .004 10% 

OLS, Conditional Mean Imputed 

7. MCAR 3.914 -.949 .385 -.0230 .0051 .388 .112 .757 .212 
8. Selection on X 3.378 -.860 .483 -.0199 .0049 .422 .111 .653 .208 
9. Selection on Y 2.627 -.110 .389 -.0200 .0054 .467 .114 .654 .210 

Ave. vs. row 0 -.26 .104 71% .004 5% .001 6% .015 2% 

Maximum Likelihood, Normal Model 

10. MCAR -1.00 .356 -.0233 .0051 .392 .112 .759 .214 
11. Selection on X -.857 .471 -.0199 .0048 .416 .110 .658 .208 
12. Selection on Y -.220 .272 -.0206 .0051 .456 .109 .658 .208 

Ave. vs. row 0 .052 49% .001 2% -.006 4% .019 2% 

Bayesian Simulation, Normal Model 

13. MCAR -.955 .367 -.0233 .0052 .397 .110 .753 .216 
14. Selection on X -.822 .459 -.0199 .0049 .417 .111 .658 .211 
15. Selection on Y -.200 .517 -.0200 .0058 .458 .118 .650 .210 

Ave. vs. row 0 .085 82% .003 8% -.003 7% .014 3% 

quite low (.18), but the included variables are clearly statis- 
tically significant. Correlations between the regressors are 
moderate. The model is selected for illustrative purposes and 
is by no means the best substantive analysis of the data. 
These results will be compared with those from incomplete 
data methods after values of X1 have been deleted in various 
ways. The deletion of values from a complete data set is 
rather artificial, but it allows the mechanism of deletion to 
be varied and provides comparisons with the regression re- 
sults before deletion. 

1.2 Patterns of Missing Data 

Some methods apply only to special patterns of missing 
data, whereas others apply to any pattern. Consider the four 
examples of missing-data patterns among the X's in 
Figures 1-4. For univariate missing data (see Fig. 1), missing 
values are confined to a single X, say Xi. This is a special 
case of monotone or nested missing data (see Fig. 2), where 
the columns can be arranged so that XjAl is observed for 
every case where Xj is observed, for j = 1, ... , p. Figure 3 
displays a pattern where two X's (Xi and X2) are never ob- 
served together. Such data arise when two samples containing 

data on X1 and Y and X2 and Y are merged into a single 
data base. Estimates of the regression from this pattern re- 
quire an assumption (explicit or implicit) about the condi- 
tional association of X1 and X2 given X3 and Y. Finally, 
Figure 4 represents a general pattern with no special structure. 

1.3 Missing-Data Mechanisms 

Methods differ in assumptions made about the mecha- 
nisms leading to missing values. The key issue is whether 
missingness is related to the data values. For example, given 
data as in Figure 1, the probability that X1 is missing for a 

XF X2 1 tff U r Mis Dt 

Figure 1. Pattern of Univariate Missing Data. 
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x X ... x ... Xp y 

Figure 2. Pattern of Monotone Missing Data. 

case may (a) be independent of data values, (b) depend on 
the value of X1 for that case, (c) depend on the value of X2, 
. . ., Xp for that case, or (d) depend on the values of X2, . . .. 
Xp and Y for that case, to name some of the possibilities. If 
missing values of XI are created by subsampling according 
to a controlled sampling strategy, then case (a) may be jus- 
tified. If XI is income and individuals with high incomes are 
less likely than others to respond, then case (b) may apply. 

Formally, let Z denote the n X (p + 1) data matrix, in- 
cluding observed and missing values, let Zobs denote the set 
of observed values of Z, and let Zmis denote the set of missing 
values. Rubin (1976a) introduced a missing-data indicator 
matrix R, with (i, j)th element Rij = 1 if Xij is observed and 
Rij = 0 if Xij is missing, and then formalized the notion of a 
missing-data mechanism in terms of a model for the con- 
ditional distribution p (R I Z, sp) of R given Z, indexed by 
unknown parameters Sp. Data are missing at random (MAR) 
if this distribution depends on the data Z only through the 
observed values Zobs; that is, 

p(R I Z, cp) = p(R IZobs (p) for all Zmis. 

Data are missing completely at random (MCAR) if the dis- 
tribution of R does not depend on the observed or missing 
values of Z; that is, 

p(RI Z, ep) = p(RI |p) for all Z. 

Thus mechanism (a) is MCAR, mechanisms (a), (c), and 
(d) are MAR because X2, . .. , Xp and Y are fully observed, 
and mechanism (b) is not MAR because XI is not fully ob- 
served. 

A different issue is whether the pattern of missing data is 
random, in the sense that missing-data indicators for the 
different variables are independent (see Anderson et al. 1983; 
Glasser 1964). In survey nonresponse settings, missing-in- 

x1 x2 x3 Y 

Figure 3. Special Pattern of Missing Data with Unidentified Parameters. 

x1 x2 x3 Y 

[1 
Figure 4. General Pattern of Missing Data. 

dicator variables are often highly correlated for blocks of 
variables with similar content, because such variables tend 
to be observed or missing together. The observed pattern 
clearly affects the information content of the data, but the 
question of whether missingness is related to the data values 
(i.e., whether or not the data are MAR or MCAR) is the key 
to nonresponse bias. Much previous work on missing data 
in regression compares methods under the (often unrealistic) 
assumption that the data are MCAR. Here attention will be 
paid to performance under alternative assumptions about 
the missing-data mechanism. 

1.4 Taxonomy of Methods 

Most proposed methods can be classified into one of the 
following classes: 

1. complete-case (CC) analysis 
2. available-case (AC) methods 
3. least squares (LS) on imputed data 
4. maximum likelihood (ML) 
5. Bayesian methods 
6. multiple imputation (MI) 

A common theme of the latter three methods is that they 
are based on models for the data and missing-data mecha- 
nism (although the models may be implicit rather than ex- 
plicitly formulated). For missing data in regression it is in- 
teresting to compare model-based methods with LS methods, 
which have received considerable attention in the econo- 
metrics literature. Refined LS methods can be quite com- 
petitive in some settings; however, in my view LS is inferior 
to methods 4-6, for reasons that I hope will become apparent. 
I now review each of these strategies for the linear regression 
problem. 

2. COMPLETE-CASE ANALYSIS 

The standard treatment of missing data in statistical pack- 
ages is complete-case analysis (CC), where cases with any 
missing values are simply discarded. This method is also 
known as listwise deletion. Advantages are ease of imple- 
mentation and the fact that valid inference is obtained when 
missingness depends on the regressors, as in case (b) (Glynn 
and Laird 1986). This is a useful property that is not shared 
by other, more sophisticated approaches. On the other hand, 
the rejection of incomplete cases seems an unnecessary waste 
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of information. If the number of X's is large, then even a 
sparse pattern of missing X's can result in a substantial 
number of incomplete cases. It seems reasonable to seek ways 
to incorporate the incomplete cases into the analysis. One 
approach is to drop regressor variables with high levels of 
nonresponse; in this context Rubin (1976b) described mea- 
sures of a covariate's predictive value that take into account 
degree of incompleteness. Other ways of incorporating in- 
complete cases are discussed in Sections 3-8. 

CC serves as a useful baseline method for comparisons. 
It is a least squares method in the sense that it results from 
minimizing the sum of squares of residuals with respect to 
the parameters and the missing values (Afifi and Elashoff 
1966; Yates 1933). To see this, note that any incomplete 
case with missing values can be assigned a zero residual by 
suitable choices of the missing values, thus effectively re- 
moving that case for estimation of the regression parameters. 
Treating missing values like parameters in this way is a poor 
general strategy (Little and Rubin 1983). A more useful ap- 
proach is to treat the missing values as random variables, as 
in likelihood-based approaches 4-6. 

3. AVAILABLE-CASE ANALYSIS 

Available-case analysis (AC) methods use the largest sets 
of available cases for estimating individual parameters (Little 
and Rubin 1987). In particular, for regression Glasser (1964) 
substituted AC estimates of the first two moments of (XI, 
... . Xp, Y) in (1): ,Uj and ojj were estimated using the n(i) 
cases with Xj observed, and aojk(j #A k) was estimated using 
the n (k) cases with Xj and Xk observed. Other versions of 
AC analysis can be developed, depending on the choice of 
parameterization. 

Although AC appears to use information in the incomplete 
cases in a plausible way, a defect is that the estimated co- 
variance matrix of the X's is not necessarily positive definite, 
yielding indeterminate slopes when it is not. This problem 
is severe when X variables are highly correlated; Haitovsky's 
(1968) simulations on highly correlated data found the 
method to be markedly inferior to CC. On the other hand, 
Kim and Curry (1977) found AC to be superior to CC in 
simulations based on weakly correlated data. Simulation 
studies comparing AC regression estimates with maximum 
likelihood ML under normality (see Sec. 5) suggest superi- 
ority for ML even when underlying normality assumptions 
are violated (Azen, Van Guilder, and Hill 1989; Little 1988a; 
Muthen, Kaplan, and Hollis 1987). 

Example 2. CC and AC Analysis of Depression Data 
with Missing Values of Income. Using the data in Example 
1, an artificial variable U = a1II* + a2D* + Z was created, 
where I* is XI = log(Income), D* is Y = Depression stan- 
dardized to mean 0 and variance 1 and Z is an indepen- 
dent standard normal random deviate. Values of XI 
= log(Income) were deleted when U was positive, yielding 
a data set with about half the values of Income missing. The 
large fraction of missing values is chosen to exaggerate dif- 
ferences between methods. Three mechanisms were simu- 
lated by the following choices of a1l and a2 using in each 

case the same random number seed for Z: 

1. MCAR Selection: a1I = a2 = 0; this yielded 157 missing 
values and 137 complete cases. 

2. Selection on X1: a I = 1, a2 = 0; this yielded 155 missing 
values and 139 complete cases 

3. Selection on Y: a1I = 0, a2 = 1; this yielded 150 missing 
values and 144 complete cases 

The results from CC analysis of the three data sets obtained 
in this way are given in rows 1-3 of Table 1. The row "Ave. 
vs. row 0" provides a summary comparison with the esti- 
mates before deletion: for estimated coefficients it gives the 
average deviation of the estimates in rows 1-3 from the es- 
timate in row 0; for estimated standard errors it gives the 
average percent increase of the standard errors in rows 1-3 
over the standard error in row 0. Similar summaries are pre- 
sented for AC and the other methods, to be discussed later. 
Results in Table 1 are, of course, illustrative and are not 
intended to be a basis for generalization. 

Under assumptions of the model, estimates from MCAR 
(row 1) and selection on X(row 2) remain valid; the standard 
errors increase by 30-50%, reflecting the halving of sample 
size. The CC estimates and standard errors after selection 
on Y are biased, as reflected in the marked change in the 
coefficient of X1 (-.110, compared with -.744 from the 
original data). 

Rows 4-6 of Table 1 present results from an AC analysis. 
Coefficients were obtained by computing the covariance ma- 
trix of (XI, .. ., X4, Y) using the "all value" option in the 
BMDPAM program (Dixon 1988), a method that differs 
slightly from Glasser's (1964) method. The covariance matrix 
is then inputted into a regression program. Estimates 3 are 
consistent under MCAR but generally are not consistent un- 
der selection on X or Y; estimated coefficients for X2-X4 are 
closer to row 0 than are those from CC analysis, and are 
probably acceptable for this data set because cofrelations 
between the X's are moderate. AC estimates are less suc- 
cessful for data sets with high correlations. 

Standard errors for the AC estimates are taken from 
BMDPAM and are based on the expression var(,B) 

xx - n/n, where Zix and a2 are AC estimates of 7Xx and 
a2 and n- is the harmonic mean of the sample sizes of the 
individual variables (Dixon 1988, p. 684). This method 
seems to have no theoretical basis; in particular, the standard 
errors for XI appear too small, because additional informa- 
tion in the incomplete cases is modest in this example. 
Asymptotically consistent estimates of standard errors re- 
quire more complex formulas (Van Praag, Dijkstra, and Van 
Velzen 1985). 

4. LEAST SQUARES ON IMPUTED DATA 

LS methods fill in (or impute) the missing X's. The regres- 
sion of Y on the X's is then computed on the filled-in data 
by ordinary least squares (OLS) or by a weighted least squares 
(WLS) scheme that downweights incomplete cases. 

4.1 Unconditional Mean Imputation 
A simple approach imputes missing X's by their uncon- 

ditional sample means. Discussions of the method in bivar- 
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iate settings were given in Wilks (1932) and Afifi and Elashoff 
(1967). The method yields an inconsistent estimate of 2 
(Haitovsky 1968): Assuming MCAR, the sample variance 
of Xj is biased by a factor (n(j) - 1)/(n - 1), and the sample 
covariance of Xj and Xk is biased by a factor (n(jk) -1)(n 
- 1). Biases in the resulting estimated slopes can be com- 
pensated for by reductions in variance relative to CC if the 
fraction of complete cases is small (Afifi and Elashoff 1967). 
But inferences (tests and confidence intervals) are seriously 
distorted by bias and overstated precision. Correcting the 
sample covariance matrix for bias leads to the AC method 
discussed in the previous section (Little and Rubin 1987, 
chap. 3). Unconditional mean imputation cannot be gen- 
erally recommended. 

4.2 Conditional Mean Imputation Based on X's 

A worthwhile improvement is to use information in the 
observed X's in a case to impute the missing X's. Some 
authors base imputations on a principal component analysis 
(Dear 1959; Timm 1970). But a more obvious (and in my 
view, more promising) approach is to impute for a missing 
X by linear regression on the observed X's in that case, es- 
timated from the complete cases (Dagenais 1973). WLS 
regression of the imputed data is recommended. 

For univariate missing data as in Figure 1, suppose that 
XI is observed for m cases (say i = 1, . . ., m) and missing 
for n - m cases (say i = m + 1, ..., n). Because E(Y1I Xi) 
= do + I'=1 3JXiJ, 

p 

E(YJIXi2, * * ., Xip) = o + o1X*l + z ojxij, 
j=2 

where X l = E(Xi X12, .I . ., Xip). Thus, if conditional 
means X are substituted for missing values of X1,, then 
LS on the filled-in data produces consistent estimates of the 
regression coefficients, assuming MCAR. Also, write s for 
the set of subscripts (2,. . . , p) and let uyy., and ryy. is denote 
the residual variances of Y given X2, .. ., Xp and Y given 
X1, X2, ... , Xp. Then, to compensate for the increased re- 
sidual variance when X1 is missing, incomplete cases should 
be assigned the reduced weight 

w* = ayy. s/ ayy.S = 1p- 2, (3) 

where Ply.s is the partial correlation of X1 and Y given X2, 
. . , Xp. Replacing the parameters in (3) by sample estimates 
yields weights proposed by Dagenais (1973) and Beale and 
Little (1975). 

The imputations X "1 depend on the unknown regression 
parameters, which in practice must be estimated from the 
data. Gourieroux and Montfort (1981) and Conniffe (1 983a) 
noted that estimation error in regression coefficients inflates 
the residual variance and also introduces a correlation be- 
tween the incomplete observations. This does not affect the 
consistency of the WLS estimates, but does affiect the best 
choice of weight and consistency of estimates of standard 
error. Arguing by a rather loose analogy with generalized 
least squares (GLS), these authors proposed the improved 

weight 

(1 - p s)mln 

P2y.s + (1 - p2y*S)m/n 

which approximates (3) when the fraction of complete cases 
is large but gives less weight to the incomplete cases. 

For general patterns of missing data, the appropriate gen- 
eralization of the weight (3) is the ratio of the residual vari- 
ance of Ygiven all the X's to the residual variance of Ygiven 
the observed X's for that case. Dagenais (1973) proposed 
this weighting with imputations and weights based on the 
complete cases; Beale and Little (1975) studied a similar 
method but with imputations based on an estimate of the 
covariance matrix 1Zx that used all the data. Analogs of the 
weight (4) for a general pattern of missing data have not been 
developed. 

Example 3. Imputation of Depression Data Sets. 
Rows 7-9 of Table 1 show the results of imputing the con- 
ditional mean of X1 given X2 ... Xp. Because X1 is weakly 
related to X2 ... Xp here, results from imputing the uncon- 
ditional mean are similar and are not presented; OLS results 
are presented, WLS being similar in this case. Note that the 
coefficients for XI are the same as for complete cases, a result 
that holds in general for this pattern. Coefficients for X2-X4 
are like those from AC. Standard errors are based on the 
filled-in data. Because they do not account for uncertainty 
in the imputed values, they are underestimated on the av- 
erage; however, the standard errors for coefficients of XI are 
in fact higher than for complete cases in this realization. 

4.3 Conditional Mean Imputation Based on X's 
and Y 

If the partial correlation of Y and a missing X given the 
observed X's is high, then better imputations can be obtained 
by using Y as well as the observed X's for imputation. It 
seems like cheating to use Y to fill in missing X's when the 
objective is to regress Y on the X's. Indeed, if the regression 
of Yon the X's is computed by LS on the filled-in data, then 
biased regression estimates result. Afifi and Elashoff( 1 969a,b) 
studied bias-corrected versions of this approach for the case 
of univariate X. 

For a general pattern of missing data, A and l: can be 
estimated by Buck's (1960) method and substituted in (2). 
Buck imputed missing X's by a regression of the missing 
X's on the observed X's and Y, with coefficients based on 
the complete cases. Easily computed corrections to the es- 
timated covariance matrix from the filled-in data correct for 
bias. Specifically, if Xj is missing for a case, then the residual 
variance of Xj given y and the observed X's in that case 
(computed from the regression on complete cases) is added 
to the sum of squares of Xj; and if both Xj and Xk are missing, 
the residual covariance of Xj and Xk given y and the observed 
X's is added to the sum of cross products of Xj and Xk. Buck 
(1960) gave the corrections for the variances but omitted the 
corrections for the covariances; see Beale and Little (1975). 
The corrected version of Buck's method is in fact closely 
related to normal ML, as discussed in the next section. 

Whether the missing X's are imputed using only observed 
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X's or using observed X's and Y, estimated standard errors 
of the regression coefficients from OLS or WLS on the filled- 
in data will tend to be too small, because imputation error 
is not taken into account. Formulas for standard errors can 
be developed for special patterns such as Figure 1, but appear 
harder to derive for general patterns. One possibility is to 
compute the sample variance of the slopes over a set of 
bootstrap samples; properties of this approach do not appear 
to have been explored. Another approach is multiple im- 
putation, as discussed in Section 7. 

5. MAXIMUM LIKELIHOOD 

5.1 ML Estimation for the Multivariate Normal 
Model: Factored Likelihood Methods 

Another approach computes ML estimates for a model 
for the joint distribution of Y and X. A basic choice is the 
multivariate normal distribution with mean ,u and covariance 
matrix 2. ML estimates of ,u and z are substituted into (1), 
yielding ML estimates of the regression parameters. 

Afifi and Elashoff (1966) reviewed early contributions to 
ML estimation of , and z by Wilks (1932), Lord (1955), 
Edgett (1956), Rao (1956), Nicholson (1957), and Anderson 
(1957). Anderson introduced the important idea of factoring 
the likelihood to obtain explicit ML solutions for special 
patterns of missing data. Gourieroux and Montfort (1981) 
applied Anderson's method to regression with missing X's. 
For the data pattern of Figure 1, the distribution of X, and 
Y given the other X's can be factored as 

P(Xl, Y I X2, * * *, Xp; a) 

= P(XI I X2, . . ., Xp, Y; (I,?)P(y I X2, * ,Xp; S?2) - 

The corresponding likelihood of (p, and (P2 factors as 

L((p1, S02) = LI (p 1)L2((P2), (5) 

where LI is a product of the normal density of X, given X2, 
... , Xp and Y over the m complete observations, and L2 is 
a product of the normal density of Y given X2, .. ., Xp over 
all n observations. Because S?i and S02 are distinct sets of 
parameters, their ML estimates are obtained by maximizing 
LI and L2 separately, two standard complete-data problems. 
ML estimates of parameters of the regression of interest are 
then obtained by expressing them as functions of S?l and S?2 
and substituting their ML estimates. In particular, ML es- 
timates of the coefficients of X, and Xj (j > 1) on Y take the 
form 

131y.*syOyy.* fi~~~OY Sy 

A 

I-I 
0yl - ls 

al sy + P ly.syayy.s 

fyj*saii y Sy- 0y.Syf*.sy*ayys 
Byv is = - 2 A * (6) 

al1. sy + 1S lY. Syay O'.s 

Here s again represents the set of subscripts {2, . . ., p }, and 
31 y. y and cr I . sy denote the slope of Y and residual variance 
for the regression of X1 on X2, ... ., Xp, and Y, etc. Parameters 
with tildes on the right sides of (6) belong to S? and are 
estimated from the m complete cases; parameters with hats 
belong to *?2 and are estimated from all n cases. Equivalent 

expressions for p = 2 are given in the ML row of Table 2, 
in a form that shows how they relate to WLS estimates. 

Asymptotic standard errors under MAR can be obtained 
from the inverse of the information matrix, obtained by twice 
differentiating log L(pI1, S?2). In particular, let 0 = 

- I , ^2) 
be the ML estimate of a parameter 0((p1, 02). Because SI 
and ?2 are asymptotically uncorrelated, 

var ( ) = 27I m( )Oa + 02I'n (2) (7) 

where Oj is the vector of partial derivatives of 0 with respect 
to spj evaluated at A and Im and In are the information ma- 
trices of p1 and p02. The variance estimate of the CC estimator 
0 is 

var(6) = T(1 )m O0 + OfIm (02)2, 

where the derivatives Oi are evaluated at S? = (pt, If the 
data are MCAR, then S S, O, Oj and 

var(O) var(O) -2 { (I P ( n,1) - I 1b(2)}O2* (8) 
This expression is simpler than (7) in that it does not involve 
partial derivatives with respect to 5pj. The last term, which 
is positive, represents the reduction in variance from in- 
cluding the incomplete cases and is used to provide the pro- 
portional variance reductions in Table 3. 

Factored likelihood methods can also be applied to more 
complex missing-data patterns, such as Figures 2 and 3 (Little 
and Rubin 1987, chap. 6; Rubin 1974). 

Example 4. ML for Depression Data Sets. Rows 10- 
12 of Table 1 present results from applying the normal ML 
method to the depression data. Estimates can be found by 
computing the ML estimate of X: in BMDPAM (Dixon 1988) 
and then inputting the result into a regression routine. Stan- 
dard errors are not currently implemented in BMDP-those 
in the table were derived using (8) and hence assume MCAR. 
Results are quite similar to previous analyses. One would 
hope that the coefficient of X1 for row 12 is improved by 
ML, because this method is consistent when missingness de- 
pends on Y, under normal assumptions. The estimate is still 
too large (-.22), although it is closer to the estimate before 
deletion (-.74) than are estimates from the previously dis- 
cussed methods. Standard errors of the other coefficients re- 
flect gains in efficiency over CC analysis. 

Table 2. Regression of Y on X1 and X2, X1 Observed for m Cases and 
Missing for n - m Cases: Estimators From Four Methods 

Parameter 

Method y1 - 12 y2- 12 

CC 1 * 12 y2 *12 

OLS 1- y112 y21-2-y2-412-2 

WLS 1y -12y (1 - Piy.2)3y2.2 + Pi2y-21y2-2 - 1y1- 12 12 

Plys2 2P+2ly 'S 
ML '2 3yi.i2 (12 12y l :12.2 +y 2 2-2 Oy1.12012 ML 

21yy2 
- 2 -20y2-2 

Ply' 

NOTE: Quantities with a tilde () are standard complete-data ML estimates based on the m 
complete cases; Sy. and &w.s are standard complete-data ML estimates based on all n cases; 
and Ply. is the ML estimate of 4l2.2. namely, 

1ll.2y + 1ly.2ya7yy2 
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5.2 Theoretical Comparisons of ML, LS, and CC 

Efficiency comparisons of ML with CC and/or LS were 
given by Conniffe (1983a,b), Donner and Rosner (1982), 
Gourieroux and Montfort (1981), Hill and Ziemer (1983), 
Hocking and Smith (1972), and Nijman and Palm (1988). 
I compare here LS, ML, and CC for Figure 1 with p = 2 
regressors, assuming MCAR. Table 2 gives expressions for 
estimates of the regression coefficients of Y on XI and X2 
(3yI * 12 and /y2- 12), based on OLS, WLS with weights given 
by (3), and ML under normality. In these expressions 
1y2 .2 is the LS regression coefficient of Y on X2 based on all 
n cases, and estimates with a tilde ( ) are based on LS on 
the m complete cases. The large sample variances of these 
estimates are presented in Table 3, expressed as a propor- 
tional decrease in variance relative to CC. Note the following: 

1. OLS and WLS yield the same estimate of yl . 12as does 
CC; ML is more efficient, with incomplete cases contributing 
a fraction 2p2. 2(1 - P2y.2) of a CC, which is bounded by 
I when P2y.2 - 2 

2. As might be expected, all three alternatives to CC 
achieve maximum efficiency for estimating /y2. 12 when both 
2 P2y sal 

P12 and - 2 are small; that is, the incomplete variable XI 
has no effect on the regression of Y on X2. Because the 
regression of XI on X2 yields good predictions of the missing 
values when p12 is large, one might expect LS methods to 
do well in that case; however, this is not true for the regression 
that conditions on both X1 and X2. The efficiency result helps 
to explain the performance of LS in the simulations of Hill 
and Ziemer (1983). 

3. OLS is worse than CC when p2y. 2> 2. WLS corrects 
the deficiencies of OLS, and ML is slightly more efficient 
than WLS. 

These comparisons suggest that OLS is not a reliable way 
to recover information from the incomplete cases, and WLS 
can come close to ML in terms of efficiency, provided that 
the weights are well chosen. 

ML, unlike LS, yields consistent estimates of other regres- 
sion parameters. For example, suppose that there are three 
variables, the regression of Yon XI is under study, XI is hard 
or expensive to measure, and X2 is a proxy for XI that is easy 
or inexpensive to measure. Then an efficient design might 
collect a large sample on X2 and Y and a small subsample 
on XI, X2, and Y, yielding the pattern of Figure 1 with p 

Table 3. Regression of Y on X1 and X2, Xl Observed for m Cases and 
Missing for n - m Cases: Proportional Decrease in Variance of 
Estimators from OLS, WLS, and ML Relative to CC Estimate 

Parameter 

Method 3y1 * 12 1y2- 12 

OLS (? ( __) (1 - P12)(1 - 2pr2y2) 
1 - Ply.2 

WLS ? (1 - m!)(1 - p12.2)(l - pn2) 

ML (1 --)p2.( - Pi2y.2) (1 - n)1- p12y.2)[1 - p122(1 - 2Pl2y.2)] 

= 2. But for the regression of Y on XI, it usually does not 
make sense to condition on the proxy variable X2; for this 
reason, 1yl1. 1 rather than yl . 12 is the parameter of interest. 

LS methods (unweighted or weighted) do not yield con- 
sistent estimates of 13yI . I . To see this, note that /yI . I = fyl. 12 

+ 1y2. 12021.1 for both parameters and LS estimates, and LS 
yields consistent estimates of Oyl .12 and Oy2. 12 but does not 
yield a consistent estimate of 121 . 1, because the denominator 
of the LS estimate from the filled-in data underestimates the 
quantity { n a, I } 

The ML estimate of fyl . I is 

~~~~~ $1 y y 1^YY 

3yl1l- 

I 

^2y 

^ 
1 1 y + dly.yafyy 

where 31 y.y = 011y.2y + 012.2yO2y.y and ll-y = 611-2y 

+13A2.2*&2yv2.. Here &y, 12y.y, and a22.y are computed using 
all n cases, and fly. 2y and O12.2y are computed using the m 
complete cases. This estimate is consistent. Under MCAR, 
the proportional reduction in asymptotic variance over CC 
from (8) is 

var(yl .1 )/var(0yI .1) - 1 

(l n ) {(2 P2Y(1 
- 

p2Y) + (I 2 P2Yp2y 

+ 2p2y(1-2Py)P21*y}- 

Hence the value of an incomplete case ranges from 2p y (1 
p2y) when P2I.y = 0 and data on the proxy supply no 

information to 1 when p 21.y = 1 and data on the proxy fully 
recover the missing information on XI. 

5.3 ML for General Patterns 

ML for a general pattern of missing data requires iterative 
methods. Scoring algorithms for the normal model were de- 
veloped by Trawinski and Bargmann (1964) and Hartley 
and Hocking (1971). Orchard and Woodbury (1972) for- 
mulated an alternative approach (a "missing information 
principle"), later called the EM algorithm by Dempster et 
al. (1977). The E step of EM computes the expected value 
of the complete-data log-likelihood, given the observed data 
and current parameter estimates, and the M step of EM 
maximizes the resulting function to provide new parameter 
estimates. The appeal of EM lies in the fact that for many 
problems the M step is a complete-data problem with an 
easy or existing solution. History, theory, and examples of 
EM were given in Dempster et al. (1977), Little and Rubin 
(1987), and Orchard and Woodbury (1972). 

The E step of EM for ML estimation of (gi, 2) under 
multivariate normality effectively imputes the missing X's 
in a case by regression on the observed X's and Y, as in 
Buck's method. In fact, EM for this problem is simply an 
iterated version of Buck's method, with the correction to the 
covariances noted earlier (Beale and Little 1975). For certain 
patterns (such as Figure 1), EM starting from CC estimates 
converges in one iteration, in which case Buck's method is 
ML under the normal model. Little (1993) showed that 
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Buck's method is also ML for a general pattern of missing 
data, under a "pattern mixture" model with different normal 
distributions for each pattern of missing values and certain 
restrictions to identify inestimable parameters. 

Asymptotic standard errors of ML estimates of slopes can 
be computed from the inverse of the observed or expected 
information matrix. This calculation forms part of scoring 
or Newton algorithms, but is not an output of EM. Other 
approaches to standard errors are (1) to bootstrap the sample 
(Little 1988a; Su 1988), (2) to use EM computations to con- 
struct numerical approximations to the information matrix 
(Meng and Rubin 1991), or (3) to use an approximate for- 
mula for standard errors, as in Beale and Little (1975). The 
latter approach performed well in simulations in Little 
(1979). Su's (1988) simulations compared standard errors 
computed by the observed or expected information matrix 
and by the bootstrap, finding the observed information su- 
perior to the expected and bootstrap methods better when 
the model was misspecified. 

Some have claimed computational advantages of LS over 
ML methods, but these advantages seem minor. Both meth- 
ods yield explicit estimates for special patterns. For general 
patterns ML requires iteration, but extensions of LS to such 
cases are not necessarily simpler, because filling in the missing 
X's is a more complex problem. WLS methods for general 
patterns in Beale and Little (1975) were dominated by ML 
in simulations on normal data. 

5.4 Assumptions About the Missing-Data 
Mechanism 

Simonoff (1988) stated that CC, LS, and ML require an 
MCAR assumption, but in fact weaker assumptions suffice. 
As noted earlier, CC estimates are unbiased if missingness 
depends on the values of the X's (Glynn and Laird 1986). 
LS remains valid when missingness depends on the fully 
observed covariates, provided the missing X's have a linear 
regression on the observed X's. Under model assumptions, 
ML remains valid when the data are MAR and in particular 
when missingness depends on the fully observed covariates 
and Y, because these variables are fully observed (Rubin 
1976a). 

In particular, for data in Figure 1, LS is valid if missingness 
of Xl depends only on X2,.. ., Xp; CC is valid if missingness 
of XI depends on XI, X2, . .., Xp; and ML is valid when 
missingness of XI depends on X2, ..., Xp and Y. ML can 
be extended to handle non-MAR mechanisms by adding 
terms for the missing-data mechanism p (RI Z, So) in the 
likelihood (Little and Rubin 1987, chap. 11). 

6. BAYESIAN METHODS 

ML is essentially a large sample tool and has limitations 
in small samples. Conniffe (1 983b) suggested advantages for 
LS in small samples, based on a small simulation comparison 
of point estimates. In fact neither LS nor ML methods are 
satisfactory for small sample inference, and more work is 
needed on methods that do not rely on asymptotic results. 
One approach is to add a prior to the likelihood and base 

inference on the posterior distribution. Work on the related 
problem of inference about a mean from incomplete data 
suggests that this approach can yield inferences with good 
frequentist properties (Little 1988b). 

The Bayesian approach has been applied to multivariate 
problems with incomplete dependent variables (Chen 1986; 
Guttman and Menzefricke 1983; Little 1988b; Press and 
Scott 1976; Rubin 1977, 1978, 1987a, in press; Swamy and 
Mehta 1975), but applications to regression with missing 
X's seem more limited. The complexity of the likelihood 
function does not allow explicit expressions for marginal 
posterior distributions of parameters; these distributions need 
to be approximated by numerical integration or simulation. 

For monotone patterns where the likelihood factorizes into 
complete-data components, parameters of the components 
can be drawn from their complete-data posterior distribu- 
tions and then transformed to yield draws of the regression 
parameters of interest. 

Example 5. Bayesian Simulation for Depression Data. 
In particular, for draws from the posterior distributions of 
iyj ls given the data pattern of Figure 1, (3 ly.sy, ij sy (2 < j 

< p), a I. sy) are drawn from their complete-data posterior 
distribution based on the m complete cases and (fyj.3 s(2 < j 
< p), yy . ) are drawn from their complete-data posterior 
distribution based on all n cases. For conjugate normal priors, 
these draws are readily constructed from chi-squared and 
normal random numbers (see, for example, Little and Rubin 
1987, sec. 6.3.2). These draws are then transformed into 
draws for 1yI . Is and yj. Is using the formulas (6) used for 
transforming ML estimates. 

Rows 13-15 in Table 1 present the posterior mean and 
standard deviation of the regression coefficients for the 
depression data sets, based on 2,000 draws. For this quite 
sizable data set, histograms of the posterior draws look nor- 
mal and the posterior means are close to the ML estimates 
in rows 10- 12. Standard errors are also similar to the standard 
errors from ML, with the exception of the standard error of 
XI in row 12, which is significantly larger than that for ML 
in row 9. Note, however, that the latter is computed using 
(8), which assumes MCAR; this assumption is violated be- 
cause selection was based on values of Y. ML standard errors 
based on (7) would be more appropriate and similar to the 
Bayesian posterior standard errors. For smaller samples the 
Bayesian and ML results would show more disparity. 

For general patterns of missing data, more complex sim- 
ulation techniques (Tanner 1991), such as data augmentation 
(Tanner and Wong 1987), the Gibbs sampler (Gelfand and 
Smith 1990), and importance sampling (Rubin 1987b), are 
needed to simulate the posterior distribution. Rubin and 
Schafer (1990) applied these ideas to the normal model. Fur- 
ther developments along these lines can be expected in the 
future. 

7. MULTIPLE IMPUTATION 
The imputation methods of Section 4 require special for- 

mulas for standard errors; if regression is applied to the filled- 
in data, then the complete-data standard errors will be too 
small, because errors in the imputations are not taken into 
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account. Rubin (1978, 1987a) proposed multiple imputation 
(MI) as a solution to this problem. Instead of imputing a 
single mean for each missing value, I 2 2 values are drawn 
from the predictive distribution and then complete-data 
analyses are repeated I times, once with each imputation 
substituted. Let Om be the estimate of a particular regression 
parameter 0 from the mth analysis, and let v'm be the esti- 
mated variance. The final estimate of 0 is 6 = Y6m/I, with 
estimated variance 

v2 == 
2 

+ (I + I- )Sh, 

where S2 = E2;vm/I is the average variance within imputed 
data sets and Sb = 2(bm - b)2/(J - 1) is the between-im- 
putation variance and reflects uncertainty in the imputation 
process. Large sample inference for 0 is based on treat- 
ing (6 - 0)/v' as t distributed with v = (I - 1)[l + {I/ 
(I + 1) } sb/Sb] degrees of freedom. For theory underlying 
the method and practical examples, see Rubin and Schenker 
(1986) and Rubin (1987a). 

Note that MI draws are from the predictive distribution 
of the missing values and as such condition on the observed 
data, including the Y's. Thus for data in Figure 1, imputa- 
tions of XI are drawn from the conditional distribution of 
XI given X2 and Y. The draws are thus closer in spirit to the 
imputations in Section 4.3 or Section 5 than to the LS im- 
putations in Section 4.2, which do not condition on Y. When 
means are imputed, conditioning on X's alone can yield 
consistent regression estimates, but conditioning of X's and 
Y requires bias adjustments such as those in Buck (1960) 
and in the E step of the normal EM algorithm. On the other 
hand, when draws are imputed, conditioning on X's and Y 
does not lead to bias, whereas conditioning only on the X's 
does! Specifically, for data of the form of Figure 1, if im- 
putations are draws from the conditional distribution of XI 
given X2, . . ., Xp, then the regression coefficient of XI is 
attenuated, because the noise added to the conditional means 
does not account for partial correlation of XI and Y given 
X2, ... , Xp. The imputations proposed in Simonoff (1988) 
have this characteristic and hence yielded biased regression 
coefficients, although the bias was not a crucial issue in the 
diagnostic setting of that article. 

MI is particularly useful for data base construction, be- 
cause once the imputations are created, analysis by the user 
requires only complete-data methods. If imputations are 
predictions based on an explicit model, then MI is closely 
related to ML inference. For example, as the sample size 
and I increase, 6 converges to the ML estimate of 0 and v 
converges to the variance of the ML estimate based on the 
information matrix. Multiple imputations can also be con- 
structed based on an implicit model for the missing values. 
For example, hot deck imputations match incomplete cases 
to complete cases using covariate information and then im- 
pute values from the complete case. Multiple imputation 
versions match an incomplete case to a set of complete cases 
similar with respect to some metric, and then impute more 
than once by drawing from the set (see, for example, Heitjan 
and Little 1991) . Rubin and Schafer (1990) applied multiple 
imputation to normal model regression problems. 

8. MODELS FOR NONNORMAL DATA 

Although this approach lacks strict chronological accuracy, 
I like to view the literature as evolving from relatively simple 
but limited methods such as CC and AC analysis, through 
the imputation methods described in Section 4, to methods 
based on models-namely ML methods that work well in 
large samples and multiple imputation and Bayesian meth- 
ods that may be preferable in small samples. 

Under the assumed model, the usual optimal large sample 
properties of consistency and efficiency of ML apply to in- 
complete data problems. Sensitivity to model assumptions 
is an important issue. Rubin (1974) noted that the regression 
parameter ML estimates based on the multivariate normal 
model remain ML for a model that fixes the fully observed 
X's and hence allows for dummy variables, polynomials, 
and interactions among X's that are fully observed. In par- 
ticular, for the data in Figure 1, X2, . . . , Xp are fully observed, 
so we can avoid distributional assumptions about those vari- 
ables and restrict multivariate normal assumptions to the 
conditional distribution of Y and XI given X2, .. ., Xp. 

The normal ML method does not require normality to 
yield consistent estimates under MCAR, but it is not nec- 
essarily efficient when the data are nonnormal. Nijman and 
Palm (1987) provided some evidence that WLS methods 
can have a slight edge over ML when the data are elliptically 
symmetric with very long tails. An alternative to normal ML 
estimation in such settings is ML for distributions with 
longer-than-normal tails. In particular, Little (1 988a) showed 
that the normal EM algorithm is easily modified to provide 
ML estimates for multivariate t and contaminated multi- 
variate normal models, and Lange, Little, and Taylor (1989) 
discussed adaptive robust inference for the t model. 

Neither normal ML nor LS methods seem appropriate 
for incomplete categorical X's, represented in the regression 
by binary dummy variables; in particular, both methods can 
yield linear predictions outside the allowable range. Little 
and Schluchter (1985) presented an ML method for mixed 
continuous and categorical variables with missing data based 
on Olkin and Tate's (1961) extension of the model for dis- 
criminant analysis. This method yields a tractable EM al- 
gorithm for regression with missing categorical X's and for 
logistic regression with missing X's. Schafer (1991) provided 
algorithms for simulating Bayesian posterior distributions 
under this model. Ibrahim (1990) and Schluchter and Jack- 
son (1989) discussed EM algorithms for respectively gener- 
alized linear models and survival analysis with missing cat- 
egorical X's. Pepe and Fleming (1991) gave an approximate 
likelihood method for nonlinear regression with missing X's. 

Model analyses should be accompanied by diagnostics to 
detect model sensitivity. This seems to be an area where 
more work would be useful. Mahalanobis-type distance plots 
for multivariate normality with missing data were considered 
by Little (1988a) and Lange et al. (1989). More specifically, 
for regression, Shih and Weisberg (1986) discussed influence 
measures with incomplete data using an ML estimation 
framework and Simon and Simonoff (1986) and Simonoff 
(1988) considered diagnostic plots and tests for consonance 
of the data with MCAR. 
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The models discussed here all assume MAR; that is, they 
do not model the missing-data mechanism. Some work has 
been done on non-MAR missing-data mechanisms, although 
here sensitivity to misspecification is a serious issue (Brown 
1990). Two areas where more work appears to be needed 
are small sample inference methods (Sec. 7) and methods 
for nonnormal data where likelihood methods are hard to 
implement. Examples of the latter include nonlinear or gen- 
eralized linear models with continuous missing X's and sur- 
vival analysis with interval-censored covariates (Little 1992). 
Approximate approaches based on multiple imputation may 
yield adequate answers for such problems (Dorey, Little, and 
Schenker in press). 

For practitioners, CC analysis remains the most common 
method in the absence of readily available alternatives in 
software packages. We have seen that naive alternatives to 
CC are not necessarily improvements and that if the amount 
of missing data is minor, then CC may be a tolerable option. 
But this method becomes markedly less attractive as the 
fraction of incomplete cases increases. Aside from efficiency 
concerns, dropping variables or incomplete cases is philo- 
sophically unappealing, because I think that the statistician's 
role is to analyze all available data in the best way possible 
and resist restriction to subsets of data unless the reasons for 
doing so are truly compelling. AC analysis and imputation 
methods both attempt to avoid discarding data but have de- 
ficiencies as general methods. Model-based estimation 
methods (i.e., ML estimation, multiple imputation, or Bayes) 
seem preferable, because they use all the data and are 
grounded in established principles of statistical inference. 

In contrast to incomplete repeated-measures analysis, 
where software development is currently active, most widely 
distributed software for regression with incomplete covariates 
is still restricted to AC and CC analysis. Algorithms for ML 
estimation for the multivariate normal model are available 
in BMDP (Dixon 1988) and Gauss (Aptech Systems 1988), 
but some postprocessing is needed to yield ML estimates of 
the regression coefficients and associated standard errors. 
Other methods described in Sections 5-7 are not currently 
available in the major packages, although programs may be 
obtainable from individual researchers. For example, soft- 
ware to carry out the Bayesian methods in Rubin and Schafer 
(1990) and Schafer (1991) is available from Schafer. It is 
hoped that the year 2000 review of this topic will find these 
methods more widely available to users. 

[Received September 1990. Revised March 1992.] 
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