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In many areas of social and behavior sciences, the investigator has

obtained observations on a variety of variables from a number of respondents

and wishes to investigate their structure with the use of multiple (or, occa-

sionally, canonical) correlation techniques. But the investigator has a problem.
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He knows that his variables do not measure up, as it were, to the assumptions

required by the multiple correlation technique. Some of his variables are

measured at the interval level, as is conventionally required, but others
are ordinal and yet others are (heaven forbid) only nominal. What does

he do in the face of this dilemma? He proceeds as though there were no

problem at all. After all, what other alternatives are there? There is no com-

pletely appropriate alternative, as the only multiple correlation techniques

which permit qualitative variables assume that all variables are qualitative,

or that the independent variables are quantitative while the dependent

variable is qualitative. In the former situation the variables must all be

nominal [Hayashi, 1950], or all ordinal [Lingoes, 1973; de Leeuw, Note 2],

with no mixing of levels and no quantitative variables. In the latter situation

the dependent variable may be ordinal [de Leeuw, Note 3; Carroll, 1972;

Srinivasan, Note 7], nominal (discriminant analysis) or binary [de Leeuw,

Note 4]. With the exception of discriminant analysis, no procedures have

been proposed which permit several dependent variables that may be qualita-

tive.

The work presented in this paper is designed with the above situation

in mind. With the Multiple Optimal Regression by Alternating Least Squares

(MORALS) technique, and the corresponding canonical regression technique

(CORALS), the investigator with variables defined at a variety of measure-

ment levels can investigate their structure while he respects the various
levels of measurement. MORALS optimizes the multiple correlation between

a single criterion variable and a set of predictor variables where any of the

variables (criterion included) may be nominal, ordinal or interval. The
variables do not all have to be measured at the same level; any mixture will

do. Also, the process assumed to have generated the data may be either

discrete or continuous. As ~vill be explained, MORALS obtains an optimal

scaling for each variable within the restrictions imposed by the regression

model, the measurement level, and the generating process. The scaling is

optimal in the Fisher [1938] sense of optimal scaling: the multiple correlation

is maximized.

CORALS is very similar to MORALS, except that it optimizes the

canonical correlation between two sets of variables. Since 5~IORALS is a
special case of CORALS (where one of the sets of variables consists of 

single variable), we refer to the algorithm as the MORALS/CORALS

algorithm.

In the companion paper [de Leeuw, Young & Takane, 1976] we discussed

in detail the simple additive situation where one has obtained qualitative

data in a factorial design and is only interested in the main effects. The

previous work, then, was restricted to univariatc qualitative data obtained
in factorial experiments, and to the additive model with no interaction terms.
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In this paper we remove all of these limitations. We discuss the general

linear model as it applies to multivariate data where the variables may be

defined at any mixture of measurement levels.

As was discussed in the companion paper, the analysis of additivity

has usually been introduced in the context of a statistical model which places

very stringent and oftentimes unrealistic assumptions on the nature of the

data. As a result of these assumptions it is possible to develop inferential

procedures. Our purpose is not to develop an inferential procedure, but rather

to develop a descriptive procedure to provide the investigator with tools

for investigating the additive structure of his qualitative data. While it

would be desirable to develop an inferential procedure based on assumptions

commensurate with qualitative variables, such a development is not presented

in this paper.

1. Mathematical Developments

Notation

We use bold-face capital letters to represent matrices (i.e., X); bold-face

lower case letters for vectors (x); and regular lower case letters for scalars

(x). Note that all vectors are assumed to be column vectors, with a row

vector denoted as the transpose of a column vector (x’). We refer to a specific

column vector of a matrix as x~, a specific element of a matrix as x~, ; and a

specific element of a vector as x~. We further reserve Greek letters for param-

eters (i.e., ~ is a vector of parameters) and script letters for functions (i.e., 

is a transformation).

7’l~e problem

Let there be two matrices of observation variables X and Y, there being

n variables x~ and m variables y~, all having l¢ observations (we will consider

missing data later). We assume that each x~ and Yi is measured at some

known measurement level, with each element being subject to certain meas-

urement restrictions. There need be no particular relationship of measurement

levels between variables, although we assume that all observations on a

single variable are at the same measurement level (an a~sumption to be

relaxed later).
Let us further define two vectors of parameters a and ~, and two matrices

X* and Y*, where a has n elements a~, ~ has m elements ~, X* has n columns
and lc rows, and Y* has m columns and l~ rows. The columns x~* and y~*

correspond to the observation variables x, and y~. Furthermore, the columns
x;* and y~* have two important characteristics: a) all x~* and y~* are defined

at the interval level of measurement; and b) each x~* and y~* is related to

its observation variable x~ and y~ by a transformation which completely
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satisfies the measurement characteristics of the observation variable. That is,

(1)
x,* =

y~* = 51[y~],

where 5~ and 5; are called the measurement transformations, and are col-
lectively referred to as 5 when there is no resulting confusion. Of course,

the 5 are subject to restraints by the measurement level and process of their

variables. These restraints are discussed in the next section. We may cor-

rectly think of x~* and y~* as being the observation variables rescaled at

the interval level of measurement so that the correlation is optimized. Thus,

we will oftentimes refer to x~* and y~* as the optimally scaled observations.
The problem we wish to solve can now be stated. We wish to obtain

transformations 5 of each observation variables x, and y~-, as well as regres-

sion weights (~ and ~, so that the canonical correlation between X* and Y*

is as high as possible. Since maximizing the canonical correlation is equivalent

to minimizing the sums of squared differences between two composite vari-

ables (under suitable normalization assumptions), we defined composite

variables a and b such that

a = X*¢~,
(2)

b = Y*~,

and state our goal as the minimization of

~2 = (a - b)’(a - 
(3)

= (X*~ -- Y*~)’(X*~ - ¥*~),

where the normalization restrictions are

l’x~* = l’yi* = O, (i = 1, ... ,n;j = 1, ... ,m),

1 1 ,, ,
~xi*’x~* = ~y~ Yi = 1,

1(4)
(c) ~a’a = 

1
(d) ~b’b = 

Of course, x,* and y~-* are also subject to the measurement restrictions of
(1). Note that we minimize ~ and not ~ normalized by the variance 

a (or b). De Leeuw [Note 5] has shown that restriction (c) makes such 
normalization unnecessary. Note that the canonical correlation between the

two sets of variables is defined as

1
R = ~ a’b.

(a)

(b)
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Restrictions

In this section, we discuss the types of restrictions imposed on the rela-

tionship between the raw observations in matrices X and Y and the rescaled

observations represented by matrices X* and Y*; that is, we discuss restric-

tions of the transformations in (1). The restrictions are of three types; 

those concerned with identifying the parameters ~ and ~ (the normalization

restrictions); b) those concerned with the measurement level of the observa-

tion variables; and c) those concerned with the underlying process which
generated the observations on each variable.

The minimal set of restrictions always involves the normalization restric-

tions imposed by (4). Though these restrictions are trivial and not very

interesting, they are of crucial importance since without them unique values

for ~ and ~ are undefinable. Of greater interest are the restrictions on the

transformations 3 (equation 1). These restrictions concern two different

aspects of the measurement situation: the level of measurement of the observa-

tion variable (i.e., nominal, ordinal or interval), and the nature of the process

which generated the observations (discrete or continuous). We do not 

into these restrictions in detail here since they have already been discussed

in detail in the companion papers [de Leeuw, Young & Takane, 1976; Takane,
Young & de Leeuw, in press]. We simply state that the measurement process

restrictions involve either the discrete restriction

(5) 3~ : (xo, -.~ xb~) ~ (xo,* = xb,*),

(where ~ indicates empirical equivalence, i.e., membership in the same obser-

vation category) or the continuous restriction

(6)

(where xo~- and xa~* are lower and upper bounds of an interval of real num-

bers). Note that the same types of restrictions apply to Y and Y*.

The measurement level restrictions involve a) no added restrictions for

nominal variables; b) order restrictions

(7) 50 : (Xo~ < xb,) -~ (xo,* <_ xb,*),

for the ordinal measurement level; and c) linear restrictions

or polynomial restrictions

for the interval level of measurement.
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Model subspace

The final notion to be introduced is that of the model subspace repre-

sented by the matrices ~ and ~, which are of the same order as the observa-

tion matrices X and Y. The model subspace notion is most easily introduced

by expanding (3) 

(10) h~ = [xt*a~ -- (b - a + x~*a~)]’[xz*a~ - (b - a + xz*at)].

If we define

(11)

then

~., = [b - (a- x,*.,)],

X~ = [x~*., - ~,.,]’[x,*.¢ - ~,,z]
(12)

= .?(x,* - ~,)’(x,* ~,).

Note that the model subspace vector ~ is proportional to the difference

between the two linear components a and b when the optimally scaled ob-

servations on variable 1 are removed from the equation:

(13) :~ = [b - (a- x,*a,)la,-’.

This explains the name of these variables. Of course, we may define ~ cor-

respondingly.

2. Algorithm

The MORALS/CORALS algorithm is an alternating least squares

(ALS) algorithm. A very closely related ALS algorithm which is appropriate

to the ANOVA situation (ADDALS) has been described in the companion

paper [de Leeuw, Young, & Takane, 1976]. An ALS algorithm for individual
differences multidimensional scaling (ALSCAL) has also been discussed 

Takane, Young, and de Leeuw [in press]. These same investigators are also

developing ALS algorithms for principal components analysis. All of these

algorithms have in common the fact that the data being analyzed may be

at a variety of measurement levels. The ALS approach is related to the

work of Wold and Lyttkens [1969], de Leeuw [Note 3] and Young [1972].

As is implied by the name, an ALS algorithm is an interative algorithm

which alternatives back and forth between two phases, each of which is a

least squares procedure. In one of the phases, least squares estimates for the

model parameters are obtained while the data transformations are held

constant, whereas in the other phase, least squares estimates of the transfor-

mations are obtained while the model parameters are held constant. It has

been shown by de Leeuw, Young and Takane [1976] that under the appro-
prmte conditions such an iterative process is convergent. "The MORALS/

CORALS algorithm is such an algorithm. In one of the phases the least
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squares estimates of the model parameters ~ and ~ are obtained while the

transformations 5 are held constant, while in the other phase the least squares

estimate of a single transformation 5i is obtained while a, ~, and the remaining

5 are fixed. Since both phases minimize (3), the algorithm is convergent.

Ia the next two sections we discuss the model estimation phase (which esti-

mates a and ~) and then the optimal scaling phase (which estimates 51).

We should point out that the model estimation phase is entirely super-

fluous. It is possible to recast our problem in the indicator matrix format
used in our work with the additive model [de Leeuw, Young & Takane, 1976]

and to avoid the transformations notation entirely. When viewed in this

light it is apparent that the regression weights are unnecessary, as they are

absorbed into the scaling of each variable. However, it is our opinion that

the presentation mode used here is more desirable pedagogically in the

present context.

Model Estimation Phase

In the model estimation phase we desire to obtain least squares estimates
(relative to ~2) of the model parameters a and ~ under the assumption that

all the optimally scaled variables X* and Y* are held constant. When it is

recalled that the X* and Y* represent the observations rescaled at the interval

level, we see that this phase is no different than the classical canonical cor-
relation situation [Hotelling, 1935], where the variables are the x~* and Yi*

(not the x~ and y~). If we define Rx~ to be the correlations among the vari-

ables in X*, and define R~ and R~, correspondingly, then the least squares
solution to the canonical correlation equation

(14) X*a ~ Y*~,

may be obtained by finding the square root of the largest latent root ~ of

(15) (R,~-’R,~xR~-IR~,, - ~I)~ = 

It is then the case that the vector of weights ~ is the characteristic vector

associated with the largest root of (15). The weight vector (~ is obtained

from

(16) ~ = (R~-~R~)-~ /2 .

In the multiple correlation situation where, for example, there is only one
variable x*, the least squares estimate of

(17) x* = Y*~,

for ~ reduces to

(18) ~ = (Y*’Y*)-~Y*’x*.
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Optimal scaling phase

We will not discuss the details of the optimal scaling phase as they are

the same as in the companion papers [de Leeuw, Young & Takane, 1976;

Takane, Young & de Leeuw, in press].

Initial values

As with any iterative algorithm, we must ’supply the procedure with

values to initiate the process, but with MORALS, unlike some algorithms;

there is a particularly compelling initialization procedure. We simply assume

that the matrices X and Y (the raw data) are actually the matrices X* and Y*.

This is equivalent to assuming, for the initialization process, that the raw

data are measured on an interval scale. (We must assign arbitrary values to
the observation categories when a variable is nominal.) We then enter the

model estimation phase and solve for u and ~ by (15) and (16) (or (18), 

the case may be). We then use these estimates of the model parameters

to begin the iterative procedure whose flow is discussed in the next section.

Note that the initialization procedure is simply the classical canonical or

multiple regression procedure. Thus, the very first step of the procedure

corresponds to the analysis the researcher would have obtained had he

decided that his variables were all quantitatively measured. By comparing
the results of the entire iterative process with the results of the very first step

of the pro~ess, the user can determine what he has gained by the use of his

measurement assumptions (except for nominal variables). If, for example,

he assumed that his variables were ordinal and discovers that the canonical
correlation is essentially the same after the iterative process as it was before,

and he also discovers that his monotonic transformations are all essentially

linear, then he could safely conclude that he has gained nothing by the

assumptions of ordinality, and that it would have been proper to assume that

his variables are measured at the interval level. Thus, we see that by using

the classical procedure as the initialization process the user can easily investi-

gate whether his assumptions concerning measurement levels are correct

(see Takane, Young & de Leeuw, in press, for a discussion of this point).

Algorithm Flow

As described thus far, the MORALS/CORALS procedure consists of
two phases, one to estimate the model parameters ~ and 9, and the other to

estimate the data transformation 5~ . The obvious ALS procedure would

involve alternating these two phases until convergence is obtained. A careful

reader, however, will have by now detected a subtle imbalance between the

two phases. Whereas the model estimation phase obtains estimators of the

weights a and ~ for all variables, the optimal scaling phase obtains estimates

of the transformation one variable at a time. Thus, the obvious ALS procedure
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must be modified somewhat. Several of the alternatives that we might choose

ace discussed in the remainder of this section.

One alternative is an iterative procedure where a single iteration is

defined as follows. First select a particular variable and optimize ),~ relative

to that variable (as expressed by (13)) by repetitively alternating the 

phases until convergence is obtained. Then repeat this procedure for another

variable and another, etc., until all variables have been subjected to this

procedure. This completes a single iteration, with the iterations being re-

peated until convergence is obtained. We have not investigated this procedure

as it appears to us to be computationally inefficient relative to some of the

procedures discussed below.

Another alternative would define an iteration as follows: obtain the

transformation ~ which yields the optimal xj*. Then replace the previous
x~* with the new one, and repeat this process for x~*, x3*, etc., until all the

variables in both sets have been optimally scaled. There is now an entirely

new set of X* and Y*, for which the transformation process is repeated.

We repeat the transformation estimation until convergence is obtained at

which point we have already obtained estimates of a and ~ as a by-product

of the procedure. We have investigated this algorithm and have found it to

be very slow. Thus, we do not pursue it further, although it can be shown to

converge on the desired X* and Y* and on the appropriate weights ~ and ~.

The two algorithms that we have investigated most thoroughly are each
rather similar to the one just discussed. The iterative structure for the first

of these two procedures is as follows. First obtain the transformation 5 which

yields the optimal x~*, and then replace the previous x~* with the new one.

Repeat this process for ea’ch of the other x~* (i = 1, 2, 3 ... n); and solve

for weights a~ and ~. Follow this with estimation and replacement of each

y~* (j = 1, 2, ¯ ¯ ¯ m) and another estimation of ~, and ~. The other algorithm

that we have investigated is exactly the same except that the weights ~ and

~ are estimated only once on each iteration. Thus, the structure of an iteration

for this procedure is to estimate and replace each x~* (i = 1, 2, ... n), and

then each y~* (j = 1, 2, ... m), and then to estimate the ~ and ~. Both 

these algorithms entail an iteration which is much quicker than the first

possibility discussed in the previous paragraphs and slightly slower than the

second possibility. Many fewer iterations are required with these algorithms

than with the second alternative. More important, however, is the fact that

these two algorithms place more nearly equal emphasis on the two phases

than the former two algorithms. We have been unable to determine any

characteristics of the latter two algorithms which would allow us to select

one over the other except for the fact that the one involving only one model

estimation is slightly more efficient. Thus, we have chosen it to define the

iterative flow of MORALS/CORALS.
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Missing data

Missing data. are allowed for in a manner which does not destroy the

ALS property of the MORALS/CORALS algorithm. If some observation

x~t (or, implicitly, ya~) is missing, then the computation of the initial weights

at and ~i is changed in a minor manner: we simply estimate each missing

xa~* as being the mean of the nonmissing observations in the vector xt .

The computation of initial at and ~ then proceeds as stated.

The computation of the subspace vector ~t is as stated above except

for the element 2or corresponding to the missing observation. The value

of this subspace element is determined by either a) setting it equal to the mean

of xt*; or b) setting it equal to the element xa,*. The choice of method is

left to the user and corresponds to whether he views his missing observations

as having been caused by a discrete or continuous process, respectively.
If the discrete assumption seems appropriate, then all missing observations

on a given variable are assumed to have been caused by the same (discrete)

set of events, and are all assigned the mean of the nonmissing values (the

least squares discrete estimate). If the continuous assumption is appropriate,

then all missing observations on a given variable are assumed to have bc6n

caused by different (continuous) sets of events and are all set equal to their

corresponding optimally scaled observation (the least squares continuous

estimate). Alternatively, we may view the choice as concerning whether

all missing observations represent a single category (form means) or separate

categories (don’t form means).

Parlit.ions

It may sometimes be the case that not all of the observations made on a

single variable are comparable. For example, it may be that some of the obser-

vations of a variable were made at a different time or under somewhat dif-

ferent conditions than some of the other observations. The result is that a

specific observation made at one time (or place) cannot be said to be larger

or smaller than one made at the other time (or place), even though the obser-

vations have the same measurement characteristics. Or, as another example,

the measuring device may have broken during the observation process and

been repaired in such a_way that the measurements before and after the

break-down are no longer directly comparable. If it is the case that not all

observations on a specific variable are directly comparable, then we wish

to partition the observations into mutually exclusive and exhaustive subsets,

and permit separate transformations within each partition.

The partition notion is also useful in precisely the opposite situation.

It may be that we have two (or more) variables which are measured on the

same scale and that we wish to obtain identical optimal transformations of

both variables. In this case we wish to collect the observations on the two
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variables into a single superset of observations and obtain a single transfor-

mation for the superset.

It should be apparent that defining partitions as either subsets of the

observations on a variable or as supersets of observations creates no particular

problem. We need only to substitute the desired partitioning of X and Y for

the partitioning which has been implicit in our previous developments (i.e.,

partitioning by variables).

3. Evaluation

In this section we present three evaluations of the MORALS/CORALS

algorithm. The first evaluation involves a Monte Carlo study in which we

find that the algorithm can recover known information in the face of

systematic and random error. In the second evaluation we obtain useful

and interpretable results when the algorithm is applied to a set of real survey

data. In the third and final evaluation we obtain a meaningful interpretation

of a multidimensional scaling solution in a special case of MORALS/CORALS
which corresponds to a previously proposed procedure for interpreting such

solutions.

Monte Carlo study

A small Monte Carlo study designed to investigate the robustness of
MORALS/CORALS in the face of both systematic and random error is

presented in this section. We do not claim that this is a complete or definitive

study of the algorithm’s behavior in situations likely to be encountered by

the typical investigator. Rather, it is simply a small study designed to dem-

onstrate the algorithm’s behavior in one common situation, that in which

there is a single dependent variable and two independent variables, all of

which are ordinal. The design of the study is as follows.

Two "true" independent variables were generated, each with 64 observa-

tions. Each observation was sampled from a random uniform distribution

on the interval (0-1). A "true" dependent variable was then generated 
simply adding together corresponding elements of the independent variables.

Five degrees of nonlinear monotonic distortion and three levels of random

error were then defined. The nonlinear distortion involved the three transfor-

mations:

y~ = y~ ,

where k varies from 1 to 5, a "bar" indicates "true" values, and x.~ indicates

the mean of the true values. Thus when ]~ = 1, all variables remain undis-
torted, and when ]c varies up to 5, the variables become increasingly more
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nonlinear, with each variable being distorted in its own unique manner.

Note, however, that all distorted variables are equivalent to the undistorted

variables at the ordinal level, since each transformation is strictly monotonic.

Random error, was introduced by adding a random normal deviate to each

element of each of the three distorted variables, where the standard deviation
of the deviate is proportional to the standard deviation of the undistorted

variable. The proportionality constant defined the three levels of random

error, and was equal to zero for the lowest level (no random error), .10 for

the intermediate level, and .50 for the highest level. These systematically

distorted and randomly perturbed variables were then input to MORALS/

CORALS, under the assumption that each variable was ordinal. The results

are summarized in Table 1 and Figure 1. The table presents the classical

multiple correlation coefficient Rc (which is the one obtained under the

interval measurement level assumptions made in the standard multiple

correlation analysis, and which is also the initial correlation obtained by

MORALS/CORALS), the optimal multiple correlation coefficient R0 (ob-

tained under ordinal measurement level assumptions), the simple correlation

of each optimally scaled variable with its corresponding "true" variable

(r~ , r~ , and r~), and the number of iterations required for convergence 

the algorithm. The figure presents the optimal transformations obtained for

each variable for the fourth degree of systematic distortion and for all three

levels of random perturbation. The horizontal axes are the distorted and

perturbed Values being analyzed, and the vertical axes are the optimally

transformed values. Ideally, the optimal transformations presented in Figure

1 should be the inverse of the transformations used to define the systematic

distortion.

We observe that for all levels of systematic distortion the algorithm

can perfectly recover the underlying true structure when there is no random

error (all optimal multiple correlation are 1.0 and all simple correlations

are at least .976). This implies that the algorithm is able to obtain the desired
inverse of each transformation defined above, as otherwise the simple cor-

relations would be lower. Note also that in these cases with no random error

the classical multiple correlation progressively decreases from 1.0 in the

no-distortion case to .626 in the case of most distortion, as is expected.

We also observe that when random error is present, the degree to which

the true information is recovered deteriorates, as is expected. For the inter-

mediate level of random error the amount of deterioration, does not seem to

be affected much by the amount of systematic distortion. However, there

appears to be some effect of systematic error for the greatest degree of random
error, with the overall poorest recovery occurring when there is a large amount

of randomerror and severe non-linearities in the data. In particular we
note that for high random error and for systematic error levels 3 and 5 (but

not 4) the solution obtained by MORALS/CORALS is degenerate. The
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Table 1

517

Random Error

Level

Monte Carlo Study

Systematic Distortion Level

1 2 3 4 5.00 Rc

1.0000 .9213 .8081 .7079 .6255R°

1.0000 1.0000 1.0000 .9999 .9999

r 1.0000 .9917 .9861 .9833 .9831
Y

rxl
1.0000 .9869 .9792 .9761 .9763

rx2
1.0000 .9943 .9918 .9904 .9898

iter 1 5 7 8 9.10 Rc

.9882 .9069 .7832 .6939 .5921

Ro
.9995 .9999 .999h .9996 .9998

r .9942 .9867 .9810 .9517 .9869
Y

rxl .9931 .9820 .9796 .9139 .9800

rx2 .9906 .9851 .9814 .9748 .9864

iter 5 6 13 ll 12

.50 Rc
.8486 .7043 .5944 .6498 .5228

R .9544 .9269 .9998 9545 .9997o "

ry .9177 .8753 .3339 .9214 .2721

rxl
.8801 .8709 .8927 .8805 .8126

rx2
.8849 .9058 .2785 .9099 .2380

iter 6 5 21 6 23

optimal transformations obtained for the dependent variable and for the
second independent variable consist, essentially, of two values, ~vith the

largest value on each vector being transformed into a very large value, and
all the remaihing values being tied together at a very small value. The four

corresponding simple correlations are much lower than any others. It is not

clear to us why such a degeneracy should occur for these two particular levels

of systematic distortion and not for the intervening level (see Figure 1).

However, these results should serve as a w.arning that in cases of extreme

nonlinearities and high amounts of error the MORALS/CORALS algorithm

may yield degenerate results. In our experience with real data, however,
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FIGURE 1

Recovered t, ra~sformations for three levels of random error at, the fourth level of systematlc

distortiom

we have never obtained such degeneracies, suggesting that these extreme

Monte Carlo conditions may be uncommon empirically.

Survey dala

The application process for prospective graduate students to a quanti-

tative psychology program can be summarized, from ghe faculty’s point of

view, by the variables presented in Table 2. Of the 12 variables presented

in this table, eight are obtained from the 33 graduate student applications

and four are derived by the faculty. Thus the eight applicant variables may

varmbles, and the four evaluationbe naturally thought of as independent " *:+’

variables as dependent variables. The eight independent variables concern

the degree obtained by the applicant (bachelor’s or master’s), the applicant’s

major as an undergraduate (either psychology, mathematics including

statistics, or a double math-psych major), the applicant’s grade point average,

his verbal and mathematical score on the Graduate Record Examination,
his score on the Miller Analogies examination, his strongest interest (quanti-

tative psychology or statistics), and his average recommendation rating.

The four dependent variables indicate the tentative accept-reject decision
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Table 2

Correlation and Regression Weights for Survey Data

Canonical Multiple

i 2 i 2 3 4

Regression Weights

Dependent variables

Tentative decision .212

Final decision .091

Suitability order .970 .996 1.000 1.000

Applicant action -.081 -.086 1.000 1.000

Independent variables

Degree .137 .204 .214 -.065

Major -.136 -.184 -.166 .192

GPA .192 .276 .260 -.173

GRE verbal -.204 -.295 -.272 1.296

GRE math -.281 -.409 -.410 -.957 -.745 .420

Millers Analogies -.164 -.235 -.232 .187

Interest .108 .126 .065 -.348

Recommendation -.443 -.636 -.574 .238 -.528 .296

Correlations

Classical .925 .923 .921 .593 .842 .297

Optimal 1.000 1.000 1.000 .961 .997 .543

Number of cases removed 7 7 7 7 2 2

Number of iterations i 2 2 13 15 2
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made by the faculty at the beginning of the evaluation (including a "defer"

decision), the corresponding decision made at the conclusion of the evaluation,

the faculty’s rank order of all applicants’ suitability to the graduate program,

and the action taken by the applicants. Note that three of the four dependent

variables are weakly equivalent at the ordinal level. The 13 students who

ranked most suitable were accepted, and of these the nine highest were

tentatively accepted and the remaining four were tentatively deferred.

Note also that eight of those students who were initially deferred were later

rejected, and that all of these students were ranked lower than those who were

finally accepted.

We performed two canonical regressions on these data, one using all
four dependent variables, and one using only suitability and action (due to

the relationship between suitability and the other two dependent variables

noted above). For each analysis we assumed that all variables except suitability

were discrete, and that the degree, major and interest variables were nominal,

while all others were ordinal. For each analysis we removed all of those

students who had missing data (the analyses were also performed with these

students left in and with their missing data estimated as stated above, with

little difference in results).

The results of each analysis are presented in Table 2. For both analyses
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the optimal canonical correlation was 1.0, obtained in either 1 or 2 iterations.

Thus it is possible to transform the dependent and independent variables
in a manner which allows a linear combination of one set to be perfectly

linearly related to a linear combination of the other set. The pattern of weights

is very informative. Among the dependent variables suitability is very heavily

weighted, and the remaining receive almost no weight. This is true for both

analyses and suggests that a very strong multiple correlation based only on

suitability exists (a suggestion which will prove to be correct). The pattern

of dependent variable weights is easily interpreted. We should expect the

suitability weight to be very high because the suitability rank order is devel-

oped by the faculty from the applications summarized by the independent

variables. So, if the independent variables summarize all of the information

in the application, and if the rank order is consistent ~vith that information,

then the regression weight should be very high. The weights on the tentative

and final decision variables should be low because their information is already

contained in the suitability rank order, as noted above. Finally, the action

variable should have a low weight because if reflects many variables not

included in the analysis, such as ~vhether or not the applicant was accepted

by other graduate programs, how strongly he desired to be in each program,

etc. Turning now to the independent variable weights, we see that the pattern

of weights is the same for the two analyses, with the GRE-math and recom-

mendation variables receiving the heaviest weight. It is reassuring that the

pattern of Weights is stable between the two analyses.

Due to the perfect relationship derived in both canonical analyses,

we decided to perform several multiple regression analyses, using either

suitability or action as the dependent variable. The results of these analyses

are also presented in Table 2. (The same measurement assumptions and

initial category values "were used in these analyses as in the canonical

analyses.)

We first note that the optimal multiple correlation is still perfect for

the analysis using suitability as the dependent variable, but is somewhat

lower for the action analysis, a result which is consonant with the dependent

variable weights in the canonical analyses above. It is also interesting to

note that the classical multiple correlation is initially quite strong for suit-

ability but rather weak for action. We next note that the regression weights

for the suitability analysis display the same pattern as the weights in the

canonical analyses, but that the weight pattern for the action analysis has

changed. This should be expected due to the very large weight for suitability

and the low weight for action in the canonical analyses.

Finally, we performed one more pair of multiple correlation analyses, each

involving only the two independent variables receiving the most weight in
the three analyses in which suitability was a dependent variable. This new

pair of analyses differed according to whether the dependent variable was
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suitability or action. The results are also presented in Table 2, and are as

anticipated. The optimal multiple correlation for the suitability analysis is

no longer perfect, but is nearly so (.997), and the optimal multiple correlation

for the action analysis is very low (.5427). Furthermore, the regression weights

for the suitability analysis are essentially the same as those in the previous

analyses with this dependent variable.
The final aspect of these analyses to be emphasized is the set of optimal

scale values assigned to each nominal variable (see Table 3). (We do 

present the scale values for binary variables since they are arbitrarily set

to one and zero.) The first point to be made is that the scale values are rather

stable for all analyses except the multiple correlation analysis of action.

This result is in line with previous results. We next note that these variables

do not receive very heavy regression weights in any of the analyses, so any

interpretation of the variables by themselves does not add much to our

understanding of the total process. However, for the three analyses in which

suitability was a dependent variable, major received a negative weight,

indicating that larger (optimally scaled) major values are associated with

smaller (optimally scaled) suitability values. When we note that smaller

suitability values indicate greater suitability (the highest rank is 1), we see

that applicants with mathematics backgrounds tend to be rated as most

suitable, and those with psychology backgrounds as least suitable, while

those having double majors are in between. In a corresponding fashion we

can interpret the optimal scale values for interest (which has a positive regres-

sion weight in the three analyses in which suitability is involved) as showing

that applicants who are most interested in quantitative psychology tend

to be judged as most suitable, cognitive psychology as next most suitable,

and statistics as least suitable. Finally, the positive regression weight for

the binary degree.variable, and the coding of this variable (1 for Bachelors,

2 for Masters) indicates that applicants with Bachelors degrees are more

suitable.

Thus, from all of these analyses taken together, we conclude that it
is possible to describe the faculty’s judgments of the suitability of a prospec-

Variable Category

Major Psychology

Math/Psych

Mathematics

Interest Quantitative

Cognitive

Statistics

Table 3

Optimal Scale Values

Canonical Multiple Initial

1 2 1 2 Values

1.023 1.016 1.008 1.333 1

1.803 1.856 1.921 2.133 2

3.169 3.129 3.075 -0.554 3

1.007 .996 .998 .892 1

1.984 2.010 2.005 2.531 2

3.012 2.992 2.996 2.400 3



522 PSYCHOMETRIKA

rive graduate student on the basis of only that student’s score on the quanti-
tative section of the Graduate Record Examination, and on his strength

of ~ecommendation. In addition we conclude that it is not possible to ade-

quately describe the characteristics of those applicants who are to become

members of the graduate training problem on the basis of the variables

summarizing their applications. Furthermore, the faculty tend to prefer

students interested in quantitative psychology over those interested in

cognitive psychology (and least like those interested in statistics), tend 

judge those with a mathematical background as more suitable than those

without, and tend to prefer students without masters degrees.

M DS interpretation

One of the special uses of the MORALS/CORALS approach is to in-

terpret multidimensional scaling (~DS) configurations by projecting external

information into the MDS space. Cliff and Young [1968] suggested that

multiple correlation techniques could be used to project information into

the MDS space in the form of a vector in the space which correlated most

highly with the external information. Carroll [1972] suggested that multiple

correlation techniques could also project information into an MDS space

in the form of a point such that the distances between the projected point

and the .~DS points correlated most highly with the external information.

Both of these suggestions assumed that the external variable is measured at

the interval level of measurement, an assumption which is usually untenable,

but generally ignored. Carroll and Chang [1970], however, have recently
extended their proposal to cover variables defined at the ordinal level by a

procedure precisely equivalent to the special case of MORALS to be dis-

cussed [Note 2].
Hoadley [Note 6] has obtained a MDS solution for 100 U.S. Senators

based on their voting records in the Senate. He also obtained a variety of

additional information including ratings of each Senator by liberal, conserva-

tive and special interest groups, proportion of votes ~vhich supported the
Senator’s party position on various issues, specific votes on certain key issues,

etc. He also computed Guttman scales on several different topics of national

concern.

MORALS/CORALS was used with these data in the following manner.

Several multiple regressions ~vere performed, all of which assumed that the
two dimensions of the MDS space were defined at the interval level of meas-

urement, and that the vector of information being regressed into the 5(DS

space was qualitative. The results of these analyses are presented in Table 4,
along with the measurement characteristics of each dependent variable.

A geometric representation of one of these analyses is presented in Figure 2.

This is a representation of both the MDS space and the regression of the

Guttman scale concerning the degree to which each Senator voted in support



Variable

War Powers

Agricultural Subs

Party

G Agri. Scale

G Civil Liberty

G Gvt. Reg. Business

Table 4

Correlations and Regression Weights for MDS Interpretation

Measurement Correlation Weights

Level Process Initial Final Initial

dimension

i 2

binary d

binary d

binary c

ordinal d

ordinal d

ordinal d

Final

dimension

i 2

Number of

Iterations

4819 .6003 -.476 .086 -.599 .051

4426 .5922 -.341 .291 -.456 .389 i

9121 1.0000 .549 .716 .549 .716 (0)

7900 .8416 .708 -.367 .779 -.338 2

9255 .9333 -.764 +.541 -.765 .552 1

8812 .8918 -.879 -.049 -.889 -.056 i
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FIGURE 2

Configuration of U. S. Senators with the optimally regressed agriculture support vector.

of agricultural issues. The vector through the space is the direction deter-
mined by 5{ORALS/CORALS such that when the points in the space are

projected onto the vector, the resulting projections are as strongly correlated

with the optimally scaled units as possible. Note that we have presented

the optimally scaled units along one side of the vector, and the raw Guttman
scale units along the other. The relationship between each of these sets of

units is the optimal transformation 5d°. The interpretation of this figure

is straight forward: the conservatives (who are in the lower right part of the

space) support agricultural issues most strongly, and the liberals least strongly.

The strength of support is mostly a function of the liberal-conservative

dimension (the horizontal direction) and only a weak function of the party

split (the vertical direction). This interpretation corresponds to the weighting

scheme presented in Table 4 (Dimension 1 is horizontal, Dimension 2 vertical).

~. Discussion

The results just presented lead us to conclude that the MORALS/

CORALS approach to multiple/canonical correlation with a mixture of
qualitative and quantitative data is capable of obtaining meaningful results

in a variety of situations. Thus our approach not only extends correlation
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analysis to commonly occurring situations which were not previously covered,

but also appears to do so in an efficacious manner.

Reliability and Validity

Due to the great flexibility of the MORALS/CORALS procedure,

one may question whether the optimal transformations and linear combina-

tions obtained for a particular set of observations will be replicated by a

new set of observations in an otherwise identical empirical situation. That

is, does the procedure provide reliable estimates of the optimal transfor-

mations and of the linear combinations, or will these estimates fluctuate

wildly from sample to sample?

Certainly, in some situations the procedure will yield unreliable esti-

mates, and in others it will yield reliable estimates. The issue centers around
the ratio of the number of parameters being estimated to the number of

observations, with this ratio being most favorable in the classical regression

situation (i.e., when all variables are at the interval level of measurement),

and least favorable when all variables are nominal, especially when there are

relatively few observations in each category. As has been noted in the com-

panion paper [de Leeuw, Young & Takane, 1976, section 4], a necessary

condition for a unique solution is that there be at least two observations

in at least one category. For the present situation this concept applies to
every nominal variable. If. at least one nominal variable consists entirel~

of unique categories (i.e., there is only one obserCation in each category),

then the solution is not uniquely determined; a very large number of arbitrary

quantifications of the categories yield correlation coefficients of 1.0. Since

the solution is not unique, it is unreliable. Thus, one should avoid nominal

variables which have observation categories represented by only one observa-

tion. There are other types of situations which also do not yield unique

solutions, some of which are discussed in the companion paper.

Generally, one should suspect the reliability of his results in the same

situations in which he suspects the reliability of the results of a classical
multiple or canonical regression, except that the problems are compounded

when the measurement levels of the variables are weakened. Thus, if one
has a small number of observations, and a relatively large number of variables

of which several are qualitative, then he should suspect the reliability of the

results. The survey example given above (Section 3) is an example in which

the reliability of the results are suspect. In this example there are a total

of four dependent variables and eight independent variables. All of these

variables are qualitative, nine being ordinal and three nominal. Note that
there are only 33 cases, seven of which are removed from most of the analyses.

Thus, the first canonical analysis involved 12 variables and 26 cases; the

second, ten variables and 26 cases. The first two multiple correlation analyses

each involved nine variables and 26 cases, and the last two, three variables
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and 31 cases. It is not surprising that essentially perfect multiple and canonical
correlation coefficients are obtained in four of the six analyses. Due to the

variable/case ratio one might even suspect the results if all of the variables

were quantitative. We do note, however, that the transformation and the

weight patterns were interpretable, although the interpretation process was

was highly subjective.

The MDS example, involving 99 "cases" (Senators) and only three

variables, would seem to be reliable. Only one of the variables was qualitative;

it was also ordinal. Thus it would appear to be the case that this analysis

should be nearly as reliable as its classical counterpart. The ease of inter-

pretation in this example, and the congruence of the interpretation with

the investigators’ expectations also attest to the reliability of this example.

(Naturally, if reliability is of paramount importance, then any of the standard

procedures for empirically determining reliability can be used, including

such procedures as split-half analyses and repeated observation designs.)

Three schools o] thought about additivity

There have been three essentially separate traditions centered around

the additive model. The oldest and most widely known tradition falls under

the rubric analysis of variance, with the central focus being on the develop-

ment of inferential tests of the significance of the model’s components. Nearly

as old, but much less widely known, is the optimal scaling tradition, with
the central focus being on the quantification of qualitative variables within

the context of the additive model. The most recent tradition is conjoint meas-

urement, which focuses on the axiom systems underlying the additive model.

Our work is clearly within the optimal scaling tradition, and makes no pre-

tenses about the development of inferential tests or axiomatic systems.

We are simply interested in scaling qualitative variables so that they will

be as linearly related as possible.

In the analysis of variance tradition, the additive model is associated

with assumptions about the distributional properties of the observations

and/or the errors, additional assumptions about null and alternative hypo-

theses, and formal procedures for accepting or rejecting the null hypotheses.

In terms of the assumptions which must be satisfied for the significance

tests to be valid, the analysis of variance tradition requires that the error

components be independently normally distributed, generally with zero

means and equal variances. The formal theory of parametric statistics (and

thus of the analysis of variance) does not concern either the scale level of

the variables or the axiomatic system underlying the model. The only critical
~spect is the distributional assumption. Moreover, when the null hypotheses

are invariant over monotonic transformations of the dependent variable

(as is usually the case), the tests can be easily generalized to any other de-

pendent variable which is monotonically equivalent, if the distributional
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assumptions of the tests are met. Thus there is a tradition within the analysis

of variance literature of monotonically transforming variables so that the

distributional assumptions will be met.

In the conjoint measurement tradition, the additive model is concept-

ualized as representing the "true" nature of the process which generated

the dependent measures. Measurement theory is concerned with a) specifying

the exact nature of the conditions under which the dependent measures will

be precisely representable by the model, and b) identifying the types of

transformation of the dependent variables which are allowed within the

previously identified conditions. In the case of the additive model, conjoint

measurement has postulated a set of axioms concerning the structure of
the data which are the necessary and sufficient conditions for the additive

model to precisely describe the data. Not all of the axioms are empirically

testable, but if those that can be tested are satisfied, then there is a monotonic
transformation of the dependent variable which allows the variable to be

precisely described by the additive model. Thus the central focus of the

conjoint measurement tradition is specifying conditions under which mono-

tonic transformations of the dependent variable permit an additive description

of the variable.

In the optimal scaling tradition, the basic goal is to obtain a transfor-

mation of the dependent (and independent) variables so that the additive

model fits as well as possible, as should be obvious from the body of this

paper. This focus is similar to one of the conjoint measurement goals, but the
difference is that those working in the conjoint measurement tradition are

interested in specifying the condition under which the simple additive model

will describe the data perfectly, whereas the optimal scaling tradition centers
on actually providing the best description.

Note that the conjoint measurement and optimal scaling traditions

are similar in that they are both descriptive. Each is concerned with describing

the structure of the data with the additive model, one centering on whether

a perfect description is possible, and the other one providing the best possible

description. The analysis of variance tradition, on the other hand, is inferen-
tial: it is concerned with making inferences beyond the data on the basis of

the additive model. All three traditions are concerned with data transfor-
mations, but the essential difference between the analysis of variance tradi-

tion and the other two is that in the former a transformation is desired to

improve the adequacy of the inferential process, whereas in the latter a trans-

formation is desired to improve the adequacy of the descriptive process.

Perhaps it should be emphasized that a useful function is performed

within each of the traditional approaches to additivity, and that perhaps

the best approach is a combination of all three. It seems to the present authors

that each approach by itself gives an incomplete picture of the data being

analyzed, and that the most complete picture is derived when all three ap-
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proaches are used. Surely we best understand a particular set of data when

we know the degree to which it satisfies the axioms underlying the additive

model, the transformations which make the data most additive, and the
significance of the components of the additive model.
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