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Abstract

We consider the sparse grid combination
technique for regression, which we regard as
a problem of function reconstruction in some
given function space. We use a regularised
least squares approach, discretised by sparse
grids and solved using the so-called combina-
tion technique, where a certain sequence of
conventional grids is employed. The sparse
grid solution is then obtained by addition of
the partial solutions with combination coeffi-
cients dependent on the involved grids. This
approach shows instabilities in certain sit-
uations and is not guaranteed to converge
with higher discretisation levels. In this ar-
ticle we apply the recently introduced opti-
mised combination technique, which repairs
these instabilities. Now the combination co-
efficients also depend on the function to be re-
constructed, resulting in a non-linear approx-
imation method which achieves very compet-
itive results. We show that the computa-
tional complexity of the improved method
still scales only linear in regard to the number
of data.

1. Introduction

In this paper we consider the regression problem aris-
ing in machine learning. A set of data points xi in
a d-dimensional feature space is given, together with
an associated value yi. We assume that a function f∗
describes the relation between the predictor variables
x and the response variable y and want to (approx-
imately) reconstruct the function f∗ from the given
data. This allows us to predict the function value of
any newly given data point for future decision-making.

In (Garcke et al., 2001) a discretisation approach to the
regularisation network ansatz (Wahba, 1990; Girosi
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et al., 1995) was introduced. In contrast to other
methods which employ mostly global ansatz functions
associated with data points to describe the function
f∗, here an independent grid with associated local ba-
sis functions is used to discretise the regularised min-
imisation problem. This way the data information is
transferred into the discrete function space defined by
the grid and its corresponding basis functions. Such
a discretisation approach is similar to the numerical
treatment of partial differential equations by finite el-
ement methods, see e.g. (Braess, 2001). Let hn := 2−n

now be the distance between two grid points in each
dimension, i.e. the mesh size of a discretisation of level
n. A uniform grid would result in O(h−d

n ) grid points.
Therefore the complexity of such an approach would
grow exponentially with the dimension d and one en-
counters the curse of dimensionality.

However, so-called sparse grids allow us to cope with
the complexity of grid-based discretisation methods to
some extent. This method has been originally devel-
oped for the numerical solution of partial differential
equations (Zenger, 1991; Griebel, 1991) and is now also
used successfully for integral equations, interpolation
and approximation, eigenvalue problems, and integra-
tion problems, see (Bungartz & Griebel, 2004; Garcke,
2005) for detailed references. The underlying concept
of a sparse tensor product decomposition has a long
tradition in approximation and goes back to the Rus-
sian literature (Babenko, 1960; Smolyak, 1963). For a
d-dimensional problem, the sparse grid approach em-
ploys only O(h−1

n (log(h−1
n ))d−1) grid points in a dis-

cretisation of level n. The accuracy of the approxima-
tion however is nearly as good as for conventional grid
methods, provided that certain additional smoothness
requirements are fulfilled. The curse of dimensionality
for conventional ‘full’ grid methods affects sparse grids
much less; currently up to around 20 dimensions can
be handled.

As in (Garcke et al., 2001) we apply the sparse grid
combination technique (Griebel et al., 1992) to the
regression problem. Here, the regularisation network
problem is discretised and solved on a certain sequence
of anisotropic grids, i.e. grids with different mesh sizes
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in each coordinate direction. The sparse grid solution
is then obtained from the (partial) solutions on these
different grids by their linear combination using com-
bination coefficients which depend on the employed
grids. Thus the regression function is built on sparse
grid points and not on data points.

Following empirical results in (Garcke, 2004), which
show instabilities of the combination technique in cer-
tain situations, we apply here the optimised combi-
nation technique introduced in (Hegland, 2003) to the
regression problem for the first time. The combination
coefficients now not only depend on the grids involved,
but on the function to be reconstructed as well, result-
ing in a non-linear approximation approach. A com-
parison of experimental results for a number of bench-
mark data sets with results from (Meyer et al., 2003)
suggest that the optimised combination technique is
very competitive.

A discussion of the complexity of the method shows
that the method scales linearly with the number of in-
stances, i.e. the amount of data to be treated. There-
fore, the approach is well suited for applications where
the dimension of the feature space is moderately high
(e.g. after some preprocessing steps) but the amount
of data is very large.

In the following we first describe the discretisation
approach to the regularised regression problem, then
present the sparse grid combination technique in sec-
tion 3 followed by the introduction of the optimised
combination technique. After experiments in section
5 we conclude with remarks on an extension of our
approach.

2. Discretisation of the Regularised
Regression Problem

We interpret the regression problem as a scattered
data approximation problem in a possibly high-
dimensional space. Given is a data set

S = {(xi, yi)}m
i=1 xi ∈ Rd, yi ∈ R,

where we denote with · a d-dimensional vector or in-
dex with entries ·1, . . . , ·d. We assume that the data
has been obtained by sampling an unknown func-
tion f∗ which belongs to some space V of functions
defined over Rd. The aim is to recover the func-
tion f∗ from the given data as good as possible. To
achieve a well-posed (and uniquely solvable) problem
Tikhonov-regularisation theory (Tikhonov & Arsenin,
1977; Wahba, 1990) imposes a smoothness constraint
on the solution. This leads to the variational problem

min
f∈V

R(f)

with

R(f) =
1
m

m∑
i=1

(f(xi)− yi)2 + λ||Sf ||22, (1)

where yi = f∗(xi). Here, S is a linear operator. The
first term in (1) measures the error and therefore en-
forces closeness of f to the labelled data, the second
term ||Sf ||22 enforces smoothness of f , and the regu-
larisation parameter λ balances these two terms. This
regularised least squares approach was introduced for
machine learning in (Girosi et al., 1995) under the
name “regularisation network” (possibly with other er-
ror terms instead of the least square error). Note that
the corresponding Galerkin equations to (1) are

1
m

m∑
i=1

f(xi)g(xi) + λ〈Sf,Sg〉2 =
1
m

m∑
i=1

g(xi)yi, (2)

which hold for the minimum f ∈ V of R(f) and all
g ∈ V .

Let us define the following semi-definite bi-linear form

〈f, g〉RLS =
1
m

m∑
i=1

f(xi)g(xi) + λ〈Sf,Sg〉2 (3)

and choose V so that 〈·, ·〉RLS is a scalar product on it.
With respect to this scalar product the minimisation
(1) is an orthogonal projection of f∗ into V (Hegland,
2003), i.e. if ‖f − f∗‖2

RLS ≤ ‖g− f∗‖2
RLS than R(f) ≤

R(g).

In the following we restrict the problem explicitly to
a finite dimensional subspace VN ⊂ V with an ap-
propriate basis {ϕj}N

j=1. A function f ∈ V is then
approximated by

fN (x) =
N∑

j=1

αjϕj(x). (4)

Note that any discretisation involves additional reg-
ularisation by projection (Natterer, 1977) and that
there is an interplay between regularisation by pro-
jection and Tikhonov-regularisation, see e.g. (Binder
et al., 2002).

Such an explicit restriction to a discrete space is fun-
damentally different from kernel approaches. There,
a finite representation of the solution in the infinite
dimensional function space induced by the smooth-
ing operator S is given via the representer theorem as
a sum over kernel functions associated with the data
points (Wahba, 1990). Thus, kernel based methods
can be regarded as working in the data space.
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We now plug the representation (4) of a function f ∈
VN into (2) and since (2) has to be valid for every
basis function ϕj(·) directly obtain the linear equation
system

(B>B + λM · C)α = B>y (5)

and therefore are able to compute the unknown vector
α for the solution fN of (1) in VN . C is a symmet-
ric N × N matrix with entries Cj,k = 〈Sϕj ,Sϕk〉2,
j, k = 1, . . . , N and corresponds to the smoothness op-
erator. B> is a rectangular M×N matrix with entries
(B>)j,k = ϕj(xk), j = 1, . . . , N , k = 1, . . . ,M and
transfers the information from the data into the dis-
crete space, B correspondingly works in the opposite
direction. The vector y contains the data labels yi and
has length M .

In the following we also use G := B> · B + λM · C to
denote the matrix sum. We now can write the scalar
product (3) as 〈f, g〉G := 〈f,Gg〉2. Using the corre-
sponding operator matrix one can directly write other
variational problems in this form as projections as well.

3. Sparse Grid Combination Technique

For the discretisation of the function space V we use
sparse grids (Zenger, 1991; Griebel, 1991; Bungartz &
Griebel, 2004; Garcke, 2005), which are based on a hi-
erarchical subspace splitting and a sparse tensor prod-
uct decomposition. To approximate functions f ∈ V
we apply this approach, as in (Garcke et al., 2001),
in the form of the combination technique (Griebel
et al., 1992). We discretise and solve the problem
(1) on a suitable sequence of small anisotropic grids
Ωl = Ωl1,...,ld , i.e. grids which have different but
uniform mesh sizes in each coordinate direction with
ht = 2−lt , t = 1, . . . , d. The grid points are numbered
using the multi-index j, jt = 0, . . . , 2lt .. For ease of
presentation we assume the domain [0, 1]d here and
in the following, which can be achieved by a proper
rescaling of the data. Note that from here on we
employ the gradient as a regularisation operator, i.e.
S = ∇.

A finite element approach with piecewise d-linear func-
tions

φl,j(x) :=
d∏

t=1

φlt,jt
(xt), jt = 0, . . . , 2lt (6)

on each grid Ωl, where the one-dimensional basis func-
tions φl,j(x) are the so-called hat functions

φl,j(x) =
{

1− | x
hl
− j|, x ∈ [(j − 1)hl, (j + 1)hl]

0, otherwise,

Figure 1. Basis function φ1,1 on grid Ω2,1.

now results in the discrete function space

Vl := span{φl,j , jt = 0, ..., 2lt , t = 1, ..., d} (7)

on grid Ωl. A function fl ∈ Vl is represented as

fl(x) =
2l1∑

j1=0

...
2ld∑

jd=0

αl,jφl,j(x).

Each d-linear function φl,j(x) is one at the grid point j
and zero at all other points of grid Ωl. Its support, i.e.
domain where the function is non-zero, is ⊗d

t=1[(jt −
1)hlt , (jt + 1)hlt ]. See Figure 1 for the basis function
at position 1, 1 of the grid Ω2, 1.

The variational approach (2) now results in the dis-
crete system(

B>l Bl + λAM · Cl

)
αl = B>l y. (8)

Note that the matrices on the left hand side can be
stored in one N × N matrix, where N = Πd

t=1(2
lt +

1), and on the right hand side the evaluation of the
matrix B> is only needed once for setup. We currently
solve these linear equation systems with a diagonally
preconditioned conjugate gradient algorithm, see e.g.
(Braess, 2001).

For the combination technique we now in particular
consider all grids Ωl with

|l|1 := l1 + ... + ld = n− q, q = 0, .., d− 1, lt ≥ 0,

set up and solve the associated problems (8). The
number of grid points for each these grids is of order
O(h−1

n ). The original combination technique (Griebel
et al., 1992) now linearly combines the resulting dis-
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Figure 2. Grids involved for the combination technique of
level n = 4 in two dimensions.

crete solutions fl(x) from the partial grids Ωl accord-
ing to the formula

fc
n(x) :=

d−1∑
q=0

(−1)q

(
d− 1

q

) ∑
|l|1=n−q

fl(x).

Note the varying sign of the combination coefficients,
which ‘offsets’ the fact that some sparse grid points
occur several times within the combination technique.

For the two-dimensional case, we display the grids
needed in the combination formula of level 4 in Figure
2 and give the resulting sparse grid.

The function fc
n lives in the sparse grid space

V s
n :=

⊕
|l|1 = n− q

q = 0, ..., d− 1 lt ≥ 0

Vl,

with Vl as in (7). The space V s
n has dimension of

order O(h−1
n (log(h−1

n ))d−1) in contrast to O(hd
n) for

conventional grid based approaches. It is alternatively
spanned by a piecewise d-linear hierarchical tensor
product basis. For the approximation of f by a sparse
grid function fs

n ∈ V s
n the error relation

||f − fs
n||Lp

= O(h2
n log(h−1

n )d−1)

holds, provided that f fulfils certain smoothness re-
quirements (Bungartz & Griebel, 2004).

Note that the combination technique is only one of the
various methods to solve problems on sparse grids. Fi-
nite difference and Galerkin finite element approaches
which work directly in the hierarchical product basis
on the sparse grid also exist, see (Bungartz & Griebel,
2004) for detailed references. But the combination
technique is conceptually much simpler and easier to
implement. Moreover, it allows the reuse of standard
solvers for the anisotropic subgrids Ωl.

4. Optimised Combination Technique

The combination technique is an exact projection into
the sparse grid space only if the partial projections
commute, i.e. the commutator [PV1 , PV2 ] := PV1PV2 −
PV2PV1 is zero for all pairs of involved grids (Hegland
et al., 2005). This is the case for interpolation prob-
lems (Griebel et al., 1992). Although the commuting
property does not hold for the numerical solution of
partial differential equations, it was shown that the
combination technique has the same approximation or-
der as ordinary sparse grids, as long as a certain error
expansion for the partial solutions holds (Griebel et al.,
1992).

Recently it was observed empirically (Garcke, 2004)
that for regularised regression the combination tech-
nique is instable and can actually diverge. To illustrate
this we show in Figure 3 the residual and the least
square error for a simple problem in two dimensions,
note that after level n = 3 both error measurements
increase on the training data, which cannot happen
with a true variational discretisation ansatz. This ef-
fect is especially observed for small λ, already with
λ = 10−4 the now stronger influence of the smooth-
ing term results in nearly commuting projectors and
a (more) stable approximation method. Note that the
instability is more common and significant in higher
dimensions.

This observation was recently explained using the con-
text of projections and relating commuting projections
to angles between spaces, i.e. two spaces are orthogo-
nal if the projections commute (Hegland et al., 2005).
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from 5000 training data using
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technique with λ = 10−6 (right) and level n = 0, . . . , 10.
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In the case of regularised regression, which is a projec-
tion according to the scalar product (3), strong deriva-
tions from the orthogonal angle of π/2 of up to π/4 for
certain constructed examples could be observed.

In (Hegland, 2003) a modification of the combination
technique is introduced where the combination coeffi-
cients not only depend on the spaces as before, which
gives a linear approximation method, but instead de-
pend on the function to be reconstructed as well, re-
sulting in a non-linear approximation approach. In
(Hegland et al., 2005) this ansatz is presented in more
detail and the name ‘opticom’ for this optimised com-
bination technique is suggested. In this paper we apply
this approach to the regularised regression problem for
the first time in detail.

To compute the optimal combination coefficients ci

one minimises the functional

J(c1, . . . , cm) = ‖Pf −
m∑

i=1

ciPif‖2
G ,

where one uses the scalar product corresponding to
the variational problem 〈·, ·〉G , defined on V to gen-
erate a norm. For ease of presentation we assume a
suitable numbering of the involved spaces. By simple
expansion one gets

J(c1, . . . , cm) =
m∑

i,j=1

cicj〈Pif, Pjf〉G

−2
m∑

i=1

ci‖Pif‖2
G + ‖Pf‖2

G .

While this functional depends on the unknown quan-
tity Pf , the location of the minimum of J does not.
By differentiating with respect to the combination co-
efficients ci and setting each of these derivatives to
zero we see that minimising this norm corresponds to
finding ci which have to satisfy

‖P1f‖2
G · · · 〈P1f, Pmf〉G

〈P2f, P1f〉G · · · 〈P2f, Pmf〉G
...

. . .
...

〈Pmf, P1f〉G · · · ‖Pmf‖2
G




c1

c2

...
cm

=


‖P1f‖2

G
‖P2f‖2

G
...

‖Pmf‖2
G


The solution of this small system creates little over-
head. However, in general an increase in computa-
tional complexity is due to the need for the determi-
nation of the scalar products 〈Pif, Pjf〉G . Their com-
putation is often difficult as it requires an embedding
into a bigger discrete space which contains both Vi and
Vj .

To compute the scalar product 〈Pif, Pjf〉G of the two
projections into the discrete spaces Vi and Vj in our

case, the operator matrix G defining the scalar product
〈f,Gg〉 has to be computed in the joint space Vk, with
kt = max(it, jt), into which the partial solutions Plf =
fl, l = i, j have to be interpolated. One observes that
Vk is of size O(h−2

n ) in the worst case, as opposed to
O(h−1

n ) for the Vl, l = i, j. Remember that in our
setting the scalar product is defined as

〈f, g〉RLS =
1
m

m∑
i=1

f(xi)g(xi) + λ〈∇f,∇g〉2

and the computation of the scalar product can be split
according to these two terms. For the first data depen-
dent part the projections Plf are evaluated at all data
points xi and for a pair of grids the sum over the prod-
uct of these function values is computed. The second
term is computed in the joint space, but since we are
using S = ∇ this can be achieved efficiently on-the-fly,
one does not need to explicitly build the matrix C. But
a run-time complexity of O(h−2

n ) still arises for the lat-
ter term. This can be reduced to O(h−1

n (log h−1
n )d−1)

following the approach in (Griebel, 1991) which ex-
ploits the structural zeros of 〈∇f,∇g〉2 in this setting.

Using these optimal coefficients ci the combination for-
mula is now

fc
n(x) :=

d−1∑
q=0

∑
|l|1=n−q

clfl(x). (9)

Note that we never explicitly assemble the function fc
n

but instead keep the solutions fl which arise in the
combination formula. Therefore, if we now want to
evaluate a newly given set of data points {x̃i}

mn
i=1 by

ỹi := fc
n(x̃i), i = 1, ...,mn

we just form the combination of the associated values
for fl according to (9).

In Figure 3 we also show the residual and the least
square error for the optimised combination technique
and see that the least square error now steadily de-
creases whereas the residual saturates after some dis-
cretisation level.

4.1. Computational Complexity

Let us conclude this section with a discussion of the
complexity of our approach. The number of grids we
have to consider during the computation of the sparse
grid solution is of order O(d · log(h−1

n )d−1) and their
size is dim(Vl) = O(2d−1 · h−1

n ) = O(2d−1 · 2n). All
these problems can be solved independently, which al-
lows for a straightforward parallelisation, for details
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(1,1,1)

(0,0,0)

Figure 4. A simplicial discretisation divides each rectangu-
lar block formed by grid points into d! simplices.

see (Garcke et al., 2006). Note that the term 2d−1

in the above order complexity of dim(Vl) limits our
approach in the number of predictor variables.

Looking at the discrete system (8) we see that only
the matrix B>l Bl with entries (B>l Bl)j,k =

∑M
i ϕj(xi)·

ϕk(xi) and the right hand side depend on the data. For
each data point we have to evaluate all basis functions
which are non-zero at this point, or in other words,
all basis functions in whose support the data point is
situated.

The original derivation of the combination technique is
based on d-linear basis functions (6) stemming from a
tensor product approach. Each data point is in exactly
one finite element cube and this way 2d basis functions,
associated with the nodes of the finite element cube,
are non-zero for each data point. To avoid this compu-
tational complexity, which is exponential in d, (Gar-
cke & Griebel, 2002) instead employ for each partial
grid a simplicial discretisation: now a basis function
is one at its corresponding vertex, zero at all others,
and linear on each simplex. Figure 4 shows how a fi-
nite element cube in three dimensions is divided by d!
simplices using the so-called Freudenthal-Kuhn trian-
gulation. With this approach only d+1 basis functions
have to be evaluated for each data instance, they are
associated with the vertices of the simplex in which
the data point is situated. This reduces the number of
operations needed for the processing of one data point
during the computation of the entries of B>l Bl in (8)
from costs that are exponential in d to costs that are
only quadratic in d.

But note that the theoretical approximation proper-
ties of this variant of the sparse grid combination tech-
nique still have to be investigated in more detail. In
particular the involved discrete spaces are not nested,
and furthermore the assumed error expansion for the
approximation properties in the non-commuting case
does not hold. However the numerical results warrant
its use.

5. Results

We now compare our method with results of the exten-
sive benchmark study (Meyer et al., 2003). We present
results for six real-life regression examples; the three
others in this study were higher-dimensional (or had
categorical attributes) and we abstained from dimen-
sion reduction for these experiments. Note that we
linearly scale the data into the domain [0, 1]d.

We fit the parameters λ and level n on a subset of
the data. As in (Meyer et al., 2003) we repeat a ten-
fold cross-validation ten times, (i.e. ten partitions with
non-overlapping tests sets from ten permutations). In
Table 1 we give the mean of the least squares errors
on the test data and its standard deviation, the latter
computed over the means of the cross validation re-
sults, for both the normal combination technique (ct)
and the optimised combination technique (opticom).
As predicted, the optimised combination technique al-
ways gives better results than the normal one, in some
cases these are significantly better.

For comparison we give the best result from the bench-
mark study and note the rank of the optimised com-
bination technique in comparison to the other meth-
ods used, these are linear regression, ε-support vector
regression with a Gaussian-RBF-kernel (svm), neu-
ral networks (nnet), regression trees, projection pur-
suit regression (ppr), multivariate adaptive regression
splines, additive spline models by adaptive backfitting,
bagging of trees, random forest (rForest), and multi-
variate adaptive regression trees (mart). Since no tim-
ing measurements are given in the benchmark study,
one can only compare the quality of the results and
not the underlying computational complexity.

These are all small data sets, the largest one has just
8192 examples. One might expect that methods whose
complexities scale non-linearly in the number of data
would dominate these experiments. Maybe somewhat
surprisingly, for four of these data sets the optimised
combination technique gives the best result, in two
cases even the normal combination technique would
suffice to improve on the results of the other methods.

To measure the computational time for larger amounts
of data we use the synthetic data from (Friedman,
1991). These are the sets Friedman1 with y =
10 sin(πx1x2)+20(x3−0.5)2+10x4+5x5+e where e is
the normal distribution N(0, 1) and all ten variables,
including five as noise, are in [0, 1]d. Friedman2 and
Friedman3 have data in 0 ≤ x1 ≤ 100, 40π ≤ x2 ≤
560π, 0 ≤ x3 ≤ 1, and 1 ≤ x4 ≤ 11. The outputs
for Friedman2 are created according to the formula
y = (x2

1+(x2x3− 1
x2x4

)2)0.5+e where e is N(0, 125) and
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Table 1. Results in comparison to the benchmark study (Meyer et al., 2003). We give the mean squared test set errors
for the combination technique (ct), the optimised combination technique (opticom) and the results for the best other
method. For the opticom approach we also give the used discretisation level.

ct opticom best other opticom # algor.
mean(MSE) level mean(MSE) mean(MSE) rank

abalone 4.33 (0.32) 1 4.20 (0.32) nnet 4.31 1 9
auto-mpg 6.92 (0.34) 2 6.21 (0.46) svm 7.11 1 9
boston-housing 12.23 (1.31) 1 8.92 (0.72) svm 9.60 1 9
cpu (×103) 2.30 (0.55) 1 1.73 (0.19) ppr 3.16 1 9
cpuSmall 56.14 (1.98) 2 8.74 (0.12) mart 7.55 3 10
SLID 39.67 (0.85) 3 38.64 (0.72) rForest 34.13 4 9

Table 2. Results for the synthetic Friedman data sets using the optimised combination technique in comparison with svm
and mars. The timings are given in seconds.

opticom SVM MARS
level MSE time MSE time MSE time

Friedman1 3 1.340 2872 1.148 23604 1.205 10.4
Friedman2 (×103) 3 15.46 35 15.40 3151 15.77 16.9
Friedman3 (×10−3) 4 13.33 89 27.47 16862 14.45 3.6

for Friedman3 one has y = atan((x2x3− 1
x2x4

)/x1)+ e
where e is N(0, 0.1).

We generate 100.000 data for training and another
10.000 for testing, where the data positions are uni-
formly distributed over their domains. For the opti-
mised combination technique we use a 2:1 split of the
data for the parameter fitting of λ and n. We com-
pare with ε-support vector regression as a state-of-art
method from libsvm1 using a Gaussian-RBF-kernel,
here we perform a grid search over σ and C on a small
subset of the training data to find good parameters. As
a simple and fast baseline method we use multivariate
adaptive regression splines from the R package2 with
the highest degree of interaction useful.

The results are given in Table 2. Note that the ma-
chine used was an Intel Pentium 4 (2.4GHz) with
about 500 MB of available memory, all of which could
be used for kernel caching in the case of the svm. As
expected, the fastest method in all cases is MARS and
only for the lower dimensional case is the optimised
combination technique comparable in time. The opti-
com method gives between 2% and 7% improvement
for the lower dimensional cases and is worse for the
ten-dimensional examples in regard to MARS.

As expected the non-linear complexity in respect to
the number of data of the svm-approach results in long

1C.-C. Chang and C.-J. Lin, LIBSVM, Software avail-
able at http://www.csie.ntu.edu.tw/~cjlin/libsvm

2http://www.R-project.org

computational times. With only a fraction of the com-
putation time we achieve for the two lower dimension
data sets either almost similar, with a difference of
0.4%, or by 50% significantly better results. Even in
the ten-dimensional case our approach is almost an
order of magnitude faster, but here the quality of the
result is worse due to the influence of the five noise
variables.

Note that the computational time for Friedman1 us-
ing the optimised combination technique would be sig-
nificantly reduced if we employed dimension adaptive
strategies as in (Garcke, 2004; Kahrs et al., 2005) to
realise that five dimensions are just noise. Work in this
regard is in progress. If we force our method to only
use the five significant attributes we achieve a result of
1.040 in 953.2 seconds with level 5, which again gives
the best result of the three methods tested.

6. Conclusions

We introduced the optimised combination technique
to compute sparse grid approximations to regularised
least square regression problems. We compared our re-
sults with a benchmark study and measured the lowest
least square error in four out of six cases. Comparing
on large synthetic data sets we again achieve good ap-
proximations with an order of magnitude less compu-
tational time than a SVM-approach. Although slower
than MARS we achieve better results in all cases after
some preprocessing of the data.
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To reduce the computational time further we are in-
vestigating dimension-adaptive approaches (Garcke,
2004; Kahrs et al., 2005) which will reduce the num-
ber of partial grids needed in the combination tech-
nique. As indicated, such an approach can also im-
prove the quality of the results. These ideas can be
related to ANOVA-style decompositions. Finding the
relevant attributes and their combinations will also
be worthwhile to interpret results in applications such
as the identification of discrete-time, nonlinear, auto-
regressive models with exogenous inputs (NARX mod-
els).
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