
Regressor Basis Learning for Anchored

Super-Resolution

Eirikur Agustsson

Computer Vision Lab

D-ITET, ETH Zurich

aeirikur@vision.ee.ethz.ch

Radu Timofte

Computer Vision Lab

D-ITET, ETH Zurich

radu.timofte@vision.ee.ethz.ch

Luc Van Gool

ESAT, KU Leuven

D-ITET, ETH Zurich

vangool@vision.ee.ethz.ch

Abstract—A+ aka Adjusted Anchored Neighborhood Regres-
sion - is a state-of-the-art method for exemplar-based single
image super-resolution with low time complexity at both train
and test time. By robustly training a clustered regression model
over a low-resolution dictionary, its performance keeps improving
with the dictionary size - even when using tens of thousands
of regressors. However, this can pose a memory issue where
the model size can grow to more than a gigabyte, limiting
applicability in memory constrained scenarios. To address this,
we propose Regressor Basis Learning (RB), a novel variant
of A+ where we restrict the regressor set to a learned low-
dimensional subspace, such that each regressor is coded as a
linear combination of few basis regressors. We learn the regressor
basis by alternating between closed form solutions of the optimal
coding of the regressor set (given the basis) and the optimal
regressor basis (given the coding). We validate RB on several
standard benchmarks and achieve comparable performance to
A+ but by using orders of magnitude fewer basis regressors, ie.

32 basis regressors instead of 1024 regressors. This makes our
RB method ideal for memory constrained applications.

I. INTRODUCTION

Image resizing is an ubiquitous image operation on nowa-

days for displays and editing software. While downsampling

or downsizing does not pose problems, since part of the

information is dropped, increasing the size or super-resolving

the images is challenging and an open problem. Image super-

resolution is an ill posed problem, since for a low-resolution

(LR) image patch there can be a multitude of high-resolution

(HR) corresponding patches, causing an inherent ambiguity in

choosing the right HR patch.

Single image super-resolution (SR) research spans decades.

The interpolation methods such as nearest neighbor, bilinear

or bicubic were among the first to produce low time and

memory complexity results and are still in broad use. While

fast and simple, the interpolation methods are not able to

restore missing high frequencies and produce artifacts such as

edge halos and blur. Other directions try to embed knowledge

and different image priors at level of edges and natural image

statistics. The example based SR direction [9] is the one cur-

rently most active and usually the methods are more involved

in comparison with fast interpolations. According to the source

of information used in the SR process, the example based

methods can be roughly categorized into internal dictionary

methods that use solely the information extracted from the

input LR image and external dictionary methods with models

16 32 64 128 256 512 1024 2048 4096 8192 16384

28.6

28.7

28.8

28.9

29

29.1

29.2

number of regressors

P
S

N
R

(d
B

)

RB with 1024 anchors (ours)

RB with 16384 anchors (ours)

JOR with 5,000,000 anchors [4]

A+, # regressors = # anchors [18]

SRCNN [7]

Zeyde [24]

Fig. 1. Average PSNR [dB] on (Set14, ×3) vs. number of regressors and
number of anchor points for our RB method, A+ [18] and JOR [4]. Our RB
uses much fewer regressors (> 32×) than A+ and much fewer anchors than
JOR (> 305×) rendering it a memory efficient method. Details in Section IV.

and priors extracted from extra exemplars of LR and HR

natural images.

Internal dictionary SR methods [10], [11] usually have high

complexities since they need to extract and organize the data

on-line from the input LR image. Glasner et al. [10] gradually

increase the image resolution by using the patch redundancy

/ self-similarity from the natural images. Recently, Huang et

al. [11] follow the same direction and use transformed self-

exemplars for improved performance.

External dictionary SR methods [17], [18], [20], [6], [3],

[15], [4], [21], [9], [22], [1], [8], [14], on the other hand, by

using external data and moving offline most of the computation

required to extract and build useful priors and models, are

able to reach better on-line complexities and SR performance.

Among them, we can distinguish various assumptions and

principles that make these methods successful. Chang et al.

[2] assume local manifolds for both LR and corresponding

HR image patches, proposing a neighbor embedding method.

Yang et al. [23] assume sparsity and perform sparse coding

over learned dictionaries of LR and HR patches in the ScSR

method. By doing so they need considerably smaller dictio-



naries than Chang et al. but the time complexity increases as

the computation of a sparse coding is required. Zeyde et al.

[24] speed up the overall framework and uses K-SVD and

orthogonal matching pursuit to enforce sparsity. Timofte et

al. [17] go further with Anchored Neighborhood Regres-

sion (ANR) and compute, over the same dictionary, offline

anchored linear regressors from LR to HR, transforming the

SR task into a linear search followed by a regression of the LR

input patch. The follow-up Adjusted ANR (A+) method [18]

computes the regressors from training LR and HR patches

instead of the small dictionary and thus uses better the prior

data for improved performance. Dai et al. [4] jointly optimize

regressors (JOR) over the training LR and HR patches and

achieve comparable performance with fewer regressors, at the

expense of increased complexity in the selection of regressors.

Schulter et al. [15] map LR to HR by random forests and ridge

regressors as in A+. Dong et al. [6] apply a convolutional

neural network (SRCNN) for end-to-end LR to HR mapping,

while Wang et al. [21] in their cascade of sparse coding

network (CSCN) combine ideas from convolutional neural

networks [7], [12] and ScSR[23].

A number of techniques can be applied to any super-

resolution method to achieve improved results and seven are

demonstrated in [20]. Other works study the semantic super-

resolution [19] and how useful super-solution is for other

vision tasks [5].

In this paper, we propose to learn a regressor basis (RB) for

anchored super-resolution within the framework of A+ [18]

to greatly reduce the memory footprint of the method. Our

RB method keeps anchor points and the general pipeline of

A+ while reducing the regressors to codings over a compact

learned regressor basis. Thus, with a fraction of the number of

regressors of A+, RB achieves comparable performance (see

Fig. 1). This is a remarkable result especially for memory

constrained applications and devices and allows for much

larger numbers of anchors within the A+ framework at order(s)

of magnitude lower memory requirements. At the same time,

as shown in our experiments, RB has a lower (memory and

time) complexity than JOR requiring orders of magnitude

fewer stored anchor points than JOR for equal number of

regressors and PSNR performance.

The remainder of the paper is structured as follows. In

Section II we briefly reintroduce A+ [18] with a slightly mod-

ified notation, which makes the formulation of our Regressor

Basis Learning in Section III more succinct. In Section IV we

describe the experimental setup and discuss the results, to then

conclude the paper in Section V.

II. ANCHORED REGRESSION (A+)

Adjusted Anchored Neighborhood Regression (A+) [18]

robustly trains a family of regressors corresponding to a

number of anchor points (or atoms) from a low-resolution

dictionary, which is learned from the training data with K-SVD

as in [24], [17]. The training data consists of extracted low

resolution patches X ⊂ R
dl and corresponding high resolution

patches Y ⊂ R
dh . We denote the low resolution dictionary

as Dl = [dl
1, · · · ,d

l
N ] ∈ R

dl×N and the corresponding

high resolution dictionary as Dh = [dh
1 , · · · ,d

h
N ] ∈ R

dh×N ,

where N is the number of atoms/anchor points. For each

dictionary atom dl
i, A+ obtains the K nearest samples Xi =

[xi
1, · · · ,x

i
K ] ∈ R

dl×K from X . From the corresponding high

resolution patches Yi = [yi
1, · · · ,y

i
K ] ∈ R

dh×K , A+ uses

(vector) ridge regression to learn a regressor

Wi = argmin
W′∈R

dh×dl

K
∑

k=1

‖Wxi
k − yi

k‖
2
2 + λ‖W‖2F (1)

= argmin
W′∈R

dh×dl

‖WXi −Yi‖
2
F + λ‖W‖2F , (2)

where ‖ · ‖F is the Frobenius norm.

The regressor Wi can be obtained through the closed form

solution:

Wi = YiX
T
i (XiX

T
i + λIdl

)−1, (3)

where Idl
denotes the dl × dl identity matrix.

At test time, for a sample x ∈ R
dl the nearest anchor dl

γ(x)

is found (with index γ(x)) and the corresponding regressor is

applied:

ŷ = Wγ(x)x. (4)

In contrast to clustered regression, ie. where the data is

clustered and a model trained on each cluster, the fixed neigh-

bourhood size K ensures that each regressor will be robustly

trained. Since each regressor Wi is trained independently and

requires only solving a linear problem over dh× dl variables,

the training is also very efficient.

Thus, A+ has been successfully applied using as much as

65,536 regressors [20], [16], achieving state-of-the-art results.

However, for N regressors (and atoms), the memory complex-

ity is O(Ndldh + Ndl), ie. almost 1.2GB for x4 upscaling

(N = 65536, dl = 31, dh = 144, single precision).

This motivates our proposed method, detailed in the next

section.

III. REGRESSOR BASIS LEARNING

In this section, we describe the proposed method, Regressor

Basis Learning (RB) for anchored super resolution. We remain

inside the framework of A+, using the same dictionaries

Dl,Dh and N neighbourhoods Xi,Yi for training. However,

we restrict the regressors Wi to a R-dimensional linear

subspace of R
dh×dl , ie. we learn a basis W̃(1), · · · ,W̃(R)

such that each regressor is expressed as a linear combination

Wi =

R
∑

j=1

α
(j)
i W̃(j).

Using a small number of basis regressors (br.), R ≪ N , we

then only need to store the basis, O(Rdldh), and the coding

of each regressor, O(NR), compared to O(Ndldh) required

by N regressors of A+.

The question remains on how to obtain a good basis

W̃ = [W̃(1), · · · ,W̃(R)] ∈ R
dh×Rdl and a coding αi =

[α
(1)
i , · · · , α

(R)
i ]T ∈ R

R for each Wi.



The trivial approach would be to apply a PCA-

approximation to W1, · · · ,WN , but our experiments show

that is far from the optimal strategy (see Figure 2).

Instead, we consider the training objective of A+ (ie. equa-

tion (2) ), re-parametrized over W̃ and αi, taken jointly over

all neighbourhoods:

L :=

N
∑

i=1

∥

∥

∥

∥

∥

∥





R
∑

j=1

α
(j)
i W̃(j)



Xi −Yi

∥

∥

∥

∥

∥

∥

2

F

+ λ‖W̃‖2F , (5)

which we want to minimize over all W̃(1), · · · ,W̃(R) and

α1, · · · ,αN . While the objective in (5) seems unmanageable

to optimize over thousands of neighbourhoods N and so many

parameters, we will see that by fixing either α1, · · · ,αN or

W̃(1), · · · ,W̃(R), the problem turns into a ridge regression

for the other set of parameters, enabling us perform alternating

optimization over the parameter sets.

We will start by looking at the simpler case, when W̃ =
[W̃(1), · · · ,W̃(R)] is fixed. In this case, we can separately

minimize each term

Li :=

∥

∥

∥

∥

∥

∥





R
∑

j=1

α
(j)
i W̃(j)



Xi −Yi

∥

∥

∥

∥

∥

∥

2

F

(6)

of (5) over αi. We can now compute

Li =

∥

∥

∥

∥

∥

∥

R
∑

j=1

α
(j)
i

(

W̃(j)Xi

)

−Yi

∥

∥

∥

∥

∥

∥

2

F

(7)

=

∥

∥

∥

∥

∥

∥

R
∑

j=1

α
(j)
i vec(W̃(j)Xi)− vec(Yi)

∥

∥

∥

∥

∥

∥

2

2

(8)

=
∥

∥

∥[vec(W̃(1)Xi), · · · , vec(W̃
(R)Xi)]αi − vec(Yi)

∥

∥

∥

2

2
,

(9)

which gives the optimal

αi = (ATA)−1AT vec(Yi), (10)

with A := [vec(W̃(1)Xi), · · · , vec(W̃
(R)Xi)] ∈ R

dhK×R.

Now suppose α1, · · · ,αN are fixed. Since W̃ =
[W̃(1), · · · ,W̃(R)] is now shared among all N neighbour-

hoods, we cannot optimized each Li separately. Instead, we

will formulate (5) as a ridge regression problem over all

Xi,Yi and αi. To this end, we define the matrix

α̃i :=









α
(1)
i Idl

...

α
(R)
i Idl









∈ R
(Rdl)×dl , (11)

such that we can write

R
∑

j=1

α
(j)
i W̃(j) = W̃α̃i. (12)

We can now put (5) into matrix form

L =

N
∑

i=1

∥

∥

∥
W̃α̃iXi −Yi

∥

∥

∥

2

F
+ λ‖W̃‖2F (13)

=
∥

∥

∥
W̃[α̃1X1, . . . , α̃NXN ]− [Y1, . . . ,YN ]

∥

∥

∥

2

F
+ λ‖W̃‖2F .

(14)

Denoting Ŷ := [Y1, . . . ,YN ] ∈ R
dh×NK and X̂ :=

[α̃1X1, . . . , α̃NXN ] ∈ R
Rdl×NK , we can view (14) as a ridge

regression problem with X̂ and Ŷ as the observations. This

gives us a closed form solution

W̃ = ŶX̂T (X̂X̂T + λIRdl
)−1 (15)

that minimizes (5). While the involved matrices, Ŷ and X̂,

can contain millions of entries (for N > 1000,K > 1000),

we can efficiently compute:

X̂X̂T =

N
∑

i=1

(α̃iXi)(α̃iXi)
T =

N
∑

i=1

α̃i(XiX
T
i )α̃i

T =: Z

(16)

and

ŶX̂T =

N
∑

i=1

Yi(α̃iXi)
T =

N
∑

i=1

(YiX
T
i )α̃i

T =: Q, (17)

such that computing W̃ = Q(Z+λIRdl
)−1 only involves the

matrices Q and Z of size dh×Rdl and Rdl×Rdl, respectively.

Alternating between the closed form solutions (10) and (15)

gives us our Regressor Basis Learning algorithm, detailed in

Algorithm 1. Since the global loss L in equation (5) is reduced

in each iteration (and bounded by 0 below), convergence is

guaranteed. In practice we only need a couple iterations to

converge to a good solution.

Algorithm 1 Regressor Basis Learning

1: Input: initial W̃ = [W̃(1) . . .W̃(R)], (Xi)
N
i=1, (Yi)

N
i=1

2: Output: final W̃, codings α1, . . . ,αN

3: while Not Converged do

4: for i = 1 . . . N do

5: A← [vec(W̃(1)Xi), · · · , vec(W̃
(R)Xi)]

6: αi ← (ATA)−1AT vec(Yi)
7: end for

8: Z← 0

9: Q← 0

10: for i = 1 . . . N do

11: Z← Z+ α̃i(XiX
T
i )α̃

T
i

12: Q← Q+ (YiX
T
i )α̃

T
i

13: end for

14: W̃← Q(Z+ λIRdl
)−1

15: end while



IV. EXPERIMENTS

In this section we study the relationship between the perfor-

mance and the internal parameters of our method, the number

of basis regressors and anchor points used. Furthermore, we

report the performance of our proposed RB method and

compare with other state-of-the-art methods.

A. Datasets and methods

We adhere to the same benchmark as in [17], [18]. That is,

training on 91 images [23], testing on another 3 datasets (Set5,

Set14, B100), and using bicubic downscaling for obtaining LR

images.

Set5 and Set14 consist of 5 and 14 images, respectively,

and are used for validation of single-image super-resolution

methods. We use Set14 and upscaling factor ×3 to study

the internal parameters of our method and for comparing

the performance to other methods for different number of

regressors and anchor points.

B100 consists of the 100 testing images of the Berkeley

Segmentation Dataset (BSDS300)[13], a widely used dataset

of natural images originally designed for image segmentation.

Compared methods We compare our RB method with

other state-of-the-art methods, in particular: NE+LLE (Neigh-

bour Embedding + Locally Linear Embedding, similar to

Chang et al. [2], codes by Timofte et al. [18]), the efficient

sparse coding method of Zeyde et al. [24], ANR (Anchored

Neghborhood Regression) as well as A+ (Adjusted Anchored

Neighborhood Regression) by Timofte et al. [17], [18],

SRCNN (Convolutional Neural Network) of Dong et al. [7],

and JOR (Jointly Optimized Regressors) of Dai et al. [4]. All

methods already briefly described in the introductory sections.

B. Implementation details

We implement our Regressor Basis Learning (RB) method

by extending the codes of A+ [18] and using the same

validation benchmark, which also ensures a fair comparison.

We extract 5 million low and high resolution patches as in

A+ [18] and use the same trained dictionary across methods

for a given number of anchor points. Also we fix the size

of the neighborhood of training patches used for computing

each anchored regressor to 2048 as in A+. We initialize our

RB algorithm with a PCA approximation of the regressors

obtained with A+ and perform 4 iterations for the basis

learning (Algorithm 1). The results are very stable with respect

to the regularization parameter λ, which we fix as 10−5N

(where N is the number of anchors).

In other aspects, we also stay within the A+ framework[18],

using the same codes for patch/feature extraction and bench-

marking.

C. Parameters versus performance

Our RB shares with A+ a number of parameters: number of

training samples, neighborhood size, and number of anchors

(or atoms in dictionary). The number of iterations for learning

the basis and the number of regressors forming the basis are

specific to RB. We fix the number of training samples (5

PCA
(init)

αi

(1)
W̃

(1)

αi

(2)
W̃

(2)

αi

(3)
W̃

(3)

αi

(4)
W̃

(4)

αi

(5)
W̃

(5)

28.9

29

29.1

iterations (i) and steps (PCA, αi, W̃)

P
S

N
R

(d
B

)

Fig. 2. Average PSNR [dB] on (Set14, ×3) vs. number of iterations for
learning our RB method, using 32 basis regressors and 16382 anchor points.

million) and the neighborhood size (2048) as in A+ and refer

to [18] for a discussion of them. As shown in [18], [20] using

more training samples and/or more anchors/regressors usually

leads to improved performance for the anchored regression

methods such as A+ and ANR.

For the basis learning (Algorithm1), we fix the number of

iterations to 4 because going further only slowly improves

the performance (see Fig. 2). In Fig. 1 we compare the

performance of RB when varying the number of regressors

in the basis and the number of anchors. Note the logarithmic

scale for the number of regressors. As expected the larger the

number of regressors in the basis (plot from 16 to 128 basis

regressors), the more accurate is RB in restoring HR details.

The same goes with the number of anchors determining the

partition granularity of the LR space. For clarity we plot

the RB results only for 1024 and 16384 anchors, as the

intermediate number of anchors (2048, 4096, 8192) provide

intermediate results.

In Fig. 1 we also report the performance of A+ with

the number of regressors varying from 16 to 16384 and for

JOR [4] with 16, 32, and 64 regressors. Note that for A+ the

number of regressors coincide with the number of anchors

while for JOR the number of anchors is very large, fixed

to the number of training samples, 5 millions. From the plot

in Fig. 1, where the results for bicubic, Zeyde and SRCNN

methods are provided for reference, we see that for equal

number of regressors, our RB method is able to provide the

best performance and when compared with JOR, if we look at

the number of anchors, our RB uses hundreds of times fewer

and is thus significantly more memory efficient. At the same

time RB is closer to A+ in speed, while JOR is significantly

slower.

D. Results

In Table I we report PSNR results for our RB as well

as other state-of-the-art methods on the standard Set4, Set14

and B100 datasets for ×2, ×3 and ×4 upscaling factors as

commonly done in the literature [18], [6]. For our RB we use

two settings with 32 and 64 regressors in the basis and 16384

anchor points. For A+ we report the results for the default

1024 anchor points and their corresponding 1024 anchored

regressors, as well as, for 16384 anchors and corresponding



TABLE I
PSNR (DB) COMPARISON RESULTS ON STANDARD BENCHMARKS WITH UPSCALING FACTOR ×2, ×3, AND ×4.

Dataset scale Bicubic NE+LLE Zeyde ANR SRCNN JOR A+ (1024 r.) RB (32 br.) RB (64 br.) A+ (16384 r.)

x2 33.66 35.77 35.78 35.83 36.34 - 36.55 36.51 36.58 36.63
Set5 x3 30.39 31.84 31.90 31.92 32.39 32.55 32.59 32.57 32.62 32.66

x4 28.42 29.61 29.69 29.69 30.09 30.19 30.29 30.26 30.30 30.32

x2 30.23 31.76 31.81 31.80 32.18 - 32.28 32.22 32.26 32.30
Set14 x3 27.54 28.60 28.67 28.65 29.00 29.09 29.13 29.11 29.14 29.17

x4 26.00 26.81 26.88 26.85 27.20 27.26 27.32 27.29 27.32 27.35

x2 29.56 30.77 30.78 30.82 31.14 - 31.18 31.16 31.19 31.20
B100 x3 27.21 27.93 27.97 27.97 28.21 28.27 28.29 28.28 28.31 28.32

x4 25.96 26.50 26.55 26.54 26.71 26.79 26.82 26.80 26.82 26.84

TABLE II
MEMORY AND RUN-TIME COMPLEXITIES FOR ANCHORED REGRESSORS METHODS, WITHOUT A SEARCH STRUCTURE. N IS THE NUMBER OF ANCHORS,
R IS THE NUMBER OF REGRESSORS, dh IS THE HR PATCH SIZE, dl IS THE LR PATCH FEATURES SIZE, P IS THE NUMBER OF PATCHES PROCESSED, AND o

IS A PROCESSING OVERHEAD (eg. IMAGE UPSCALING, FILTERING, GRID AND FEATURES COMPUTATION) SHARED BY ALL THE METHODS.

Method test complexity (number of basic operations) memory (number of values) default settings (for upscaling ×3)

ANR [17] P (Ndl +N + dldh) + o Ndl +Rdldh + 4dldh N = 1024, R = 1024, dl = 30, dh = 81
A+ [18] P (Ndl +N + dldh) + o Ndl +Rdldh + 4dldh N = 1024, R = 1024, dl = 30, dh = 81
JOR [4] P (Ndl +NlogN +Rknn +R+ dldh) + o Ndl +Rdldh + 4dldh +NR N = 5000000,R = 32,dl = 30,dh = 81,knn = 16
RB (ours) P (Ndl +N +Rdldh + dldh) + o Ndl +Rdldh + 4dldh +NR N = 1024, R = 32, dl = 30, dh = 81

16384 anchored regressors. We use this setting to give a better

understanding of the performance achieved by our RB method.

RB with 32 regressors is close in PSNR performance to A+

with 1024, while with 64 regressors RB gets quite close to A+

with 16384 regressors and supports once more the previous

reported results from Fig. 1. Besides A+, we compare with

JOR in default settings (32 regressors and 5,000,000 anchors)

and we note that in comparison our RB with the same number

of regressors, 32, already achieves better performance, but as

mentioned before, the number of anchors for our RB is much

lower. Furthermore, we compare with other representative

methods such as NE+LLE, Zeyde, ANR, SRCNN and bicubic

interpolation, to whom we are generally superior in achieved

PSNR performance.

For assessing the visual quality we show a couple of results

on standard Set5 and Set14 images in Figs. 3, 4 and 5. We can

see that the visual performance of our RB (32 basis regressors)

is comparable with the compared A+ and slightly better than

the other compared methods (JOR, SRCNN, ANR). The visual

artifacts (like edge halos and blur) affect less A+ and our RB

than the other methods, which is no surprise as RB builds

upon A+ using the same principles but in a compact form.

E. Memory and run-time complexity

As shown in [17] for different neighbor embedding and

sparse coding methods, most such methods are capable to

reach a targeted performance level given that the proper param-

eters are employed. The difference is made by train and test

time complexities and memory requirements. Therefore, we

compare different SR methods not only directly through their

PSNR performance but also by reporting their complexities

at run-time (test) and memory requirements. In Table II we

show the number of basic operations and the memory require-

ments for storing their models for our RB method and the

most related anchored regression-based methods: ANR [17],

A+ [18], and JOR [4]. A+ has the same complexity as ANR

while improving the performance by learning the regressors

from training data. At the same time, for the same number of

anchors (N ) and regressors (R) both JOR and RB require NR

extra memory and both JOR and RB require extra operations

wrt. to ANR/A+. However, usually JOR and RB use much

fewer regressors than A+/ANR for comparable performance.

For an equal number of anchors N = 1024, under the same

conditions, if RB uses only 32 regressors instead of 1024

in A+ the memory footprint of RB is ∼ 16× lower at the

expense of requiring 3.2× more operations at test. There is a

trade-off between PSNR performance, memory savings, and

runtime. On the other hand, if we compare A+ and RB, both

with N = 16, 384 anchors, they reach comparable average

performance on Set14 and comparable runtime (RB requires

1.15 more operations than A+), but RB with only 32 regressors

requires 36.5× less memory than A+. When it comes to

compare our RB to JOR, a method using a similar low number

of stored regressors, we see that the huge number of anchors

required by JOR (N = 5, 000, 000) makes RB faster at run-

time, more than 281× less memory demanding when using

N = 16384 anchors and the same number R = 32 of

regressors. All the methods can further benefit at run-time from

using a search structure (eg. JOR uses a kd-tree structure and

A+ uses a hierarchical search in [20]).

The performance of A+ significantly improves (0.3dB) with

the increase (augmentation) of training data and with the

increase of used regressors as shown in [20] for up to 65536

regressors learned from 50 million samples. This is a perfect

setup for our method since our experiments shown that the

relative memory reduction of RB increases with the increase

number of regressors of A+ and the relative run-time overhead

of RB diminishes.

V. CONCLUSION

In this paper we proposed a novel Regressor Basis Learning

(RB) method for anchored single-image super-resolution. RB

jointly learns a compact regressor basis and a coding over

the basis corresponding to a number of anchor points that



Bicubic / 33.91 dB ANR / 35.13 dB SRCNN / 35.01 dB JOR / 35.23 dB A+ (1024 r.) / 35.21 dB RB (32 br.) / 35.30 dB
Fig. 3. ‘Baby’ image from Set5 with upscaling ×3. Best zoomed on screen.

Bicubic / 32.39 dB ANR / 33.82 dB SRCNN / 34.35 dB JOR / 34.65 dB A+ (1024 r.) / 34.73 dB RB (32 br.) / 34.66 dB
Fig. 4. ‘Pepper’ image from Set14 with upscaling ×3. Best zoomed on screen.

Bicubic / 32.58 dB ANR / 34.60 dB SRCNN / 34.91 dB JOR / 35.54 dB A+ (1024 r.) / 35.54 dB RB (32 br.) / 35.58 dB
Fig. 5. ‘Bird’ image from Set5 with upscaling ×3. Best zoomed on screen.

partition the low-resolution patch space. We are able to reach

comparable performance with state-of-the-art methods such as

A+ method whilst using a low memory footprint as the number

of stored regressors for RB is order(s) of magnitude lower

than the ones required by A+ for the same performance. This

achievement makes our proposed method ideal for applications

on memory constrained devices or under memory constrained

scenarios.

ACKNOWLEDGMENT

This work was supported by the ERC project VarCity

(#273940) and by the ETH General Fund (OK).

REFERENCES

[1] M. Bevilacqua, A. Roumy, C. Guillemot, and M.-L. Alberi Morel, “Low-
complexity single-image super-resolution based on nonnegative neighbor
embedding,” in BMVC, 2012.

[2] H. Chang, D.-Y. Yeung, and Y. Xiong, “Super-resolution through neigh-
bor embedding,” CVPR, 2004.

[3] Z. Cui, H. Chang, S. Shan, B. Zhong, and X. Chen, “Deep network
cascade for image super-resolution,” in ECCV, 2014, pp. 49–64.

[4] D. Dai, R. Timofte, and L. Van Gool, “Jointly optimized regressors for
image super-resolution,” in Eurographics, 2015.

[5] D. Dai, Y. Wang, Y. Chen, and L. Van Gool, “Is image super-resolution
helpful for other vision tasks?” in WACV, 2016.

[6] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional
network for image super-resolution,” in ECCV, 2014.

[7] ——, “Image super-resolution using deep convolutional networks,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015.

[8] W. Dong, L. Zhang, G. Shi, and X. Wu, “Image deblurring and super-
resolution by adaptive sparse domain selection and adaptive regulariza-
tion,” TIP, vol. 20, no. 7, pp. 1838–1857, 2011.

[9] W. T. Freeman, T. R. Jones, and E. C. Pasztor, “Example-based super-
resolution,” IEEE Computer Graphics and Applications, vol. 22, no. 2,
pp. 56–65, 2002.

[10] D. Glasner, S. Bagon, and M. Irani, “Super-resolution from a single
image,” in ICCV, 2009.

[11] J.-B. Huang, A. Singh, and N. Ahuja, “Single image super-resolution
from transformed self-exemplars,” in CVPR, June 2015.

[12] J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution
using very deep convolutional networks,” in CVPR, 2016.

[13] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in ICCV, 2001.

[14] E. Perez-Pellitero, J. Salvador, J. Ruiz-Hidalgo, and B. Rosenhahn,
“Psyco: Manifold span reduction for super resolution,” in CVPR, 2016.

[15] S. Schulter, C. Leistner, and H. Bischof, “Fast and accurate image
upscaling with super-resolution forests,” in CVPR, 2015, pp. 3791–3799.

[16] R. Timofte, “Anchored fusion for image restoration,” in 23rd Interna-

tional Conference on Pattern Recognition (ICPR), 2016.
[17] R. Timofte, V. De Smet, and L. Van Gool, “Anchored neighborhood

regression for fast example-based super resolution,” in ICCV, 2013.
[18] R. Timofte, V. De Smet, and L. Van Gool, “A+: Adjusted anchored

neighborhood regression for fast super-resolution,” in Computer Vision–

ACCV 2014. Springer, 2014, pp. 111–126.
[19] R. Timofte, V. De Smet, and L. Van Gool, “Semantic super-resolution:

When and where is it useful?” Computer Vision and Image Understand-

ing, vol. 142, pp. 1 – 12, 2016.
[20] R. Timofte, R. Rothe, and L. Van Gool, “Seven ways to improve

example-based single image super resolution,” in The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June 2016.
[21] Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang, “Deep networks for

image super-resolution with sparse prior,” in ICCV, 2015.
[22] C.-Y. Yang and M.-H. Yang, “Fast direct super-resolution by simple

functions,” in ICCV, 2013.
[23] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution as

sparse representation of raw image patches,” in CVPR, 2008.
[24] R. Zeyde, M. Elad, and M. Protter, “On single image scale-up using

sparse-representations,” in Curves and Surfaces, 2012, pp. 711–730.


