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Abstract—Broadband wireless communication is of critical
importance during public safety scenarios as it facilitates sit-
uational awareness capabilities for first responders and victims.
In this paper, the use of LTE-Unlicensed (LTE-U) technology
for unmanned aerial base stations (UABSs) is investigated as
an effective approach to enhance the achievable broadband
throughput during emergency situations by utilizing the unli-
censed spectrum. In particular, we develop a game theoretic
framework for load balancing between LTE-U UABSs and WiFi
access points (APs), based on the users’ link qualities as well as
the loads at the UABSs and the ground APs. To solve this game,
we propose a regret-based learning (RBL) dynamic duty cycle
selection (DDCS) method for configuring the transmission gaps in
LTE-U UABSs, to ensure a satisfactory throughput for all users.
Simulation results show that the proposed RBL-DDCS yields an
improvement of 32% over fixed duty cycle LTE-U transmission,
and an improvement of 10% over Q-learning based DDCS.

Index terms— 5G, drone, LTE-U, public safety communi-
cations, regret based learning, unmanned aerial base station.

I. INTRODUCTION

The ubiquitous availability of broadband wireless connectiv-
ity carries critical importance during public safety scenarios. It
can enable real time situational awareness for first responders,
and help in protecting lives, property, and critical infrastruc-
ture. On the other hand, existing broadband communication
networks can get damaged in the aftermath of a disaster
scenario, as seen during the 2011 tsunami in Japan [1], which
can eliminate the most important form of communications
between victims, first responders, and other personnel during
critical emergency situations. Due to their mobility and self-
organization features, aerial platforms such as unmanned aerial
base stations (UABSs) [2], [3] are uniquely suited for deliv-
ering broadband connectivity during public safety scenarios.

A critical bottleneck during public safety incidents is the
limited availability of the wireless spectrum to satisfy the data
rate requirements needed for real-time situational awareness
applications. In addition to the licensed spectrum, the use
of unlicensed frequency bands can increase the achievable
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throughput for public safety networks (PSNs). In particular,
LTE-Unlicensed (LTE-U) is a promising technology that can
alleviate wireless network congestion by smartly off-loading
the wireless traffic from the licensed spectrum, into the un-
licensed spectrum [4]. However, the use of unlicensed bands
by the LTE technology may severely affect the performance of
WiFi networks due to the difference of medium access control
(MAC) mechanisms of both radio access technologies (RATs).
LTE radio resource allocation is controlled by LTE base
stations (BSs) in a centralized manner. In contrast, WiFi uses
carrier sense multiple access/collision avoidance (CSMA/CA)
to sense whether the medium is occupied before sending any
data.

The use of airborne platforms to maintain wireless con-
nectivity during disaster scenarios has recently attracted at-
tention in the existing literature. In [5], the authors consider
the performance of 4G LTE-WiFi multimode base stations
deployed on airborne platforms which provide coverage for
first responders during an emergency. The feasibility of using
an unmanned aerial vehicle (UAV) based WiFi network during
disaster response scenarios has been studied in [6], while a
UAV network with underlaid device-to-device communications
has been explored in [7]. Coexistence studies between LTE-
U and WiFi has also been investigated in the literature [8]–
[10]. For example, a Q-Learning based dynamic duty cycle
selection (DDCS) technique is proposed in [8] for configuring
LTE transmission gaps, and allow transmission opportunities
for WiFi. It is recently shown in [9], [10] that without any
carefully designed coexistence schemes, WiFi performance
can drop significantly while the LTE-U system performance
is only slightly affected.

The main contribution of this paper is to propose an
LTE-U based UAV-assisted heterogeneous network to sustain
ubiquitous broadband connectivity in the aftermath of a natural
disaster, as shown in Fig. 1. Such a scenario, to our best
knowledge, has not yet been considered in the literature.
In particular, LTE-U UABSs are deployed to fill coverage
gaps due to the damaged infrastructure. The studied system
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Fig. 1: UAV assisted LTE-U/WiFi heterogeneous network. Here UE-
8 receives very strong signals both from UABS and AP, UE-7 receives
strong signals from UABS and very weak signals from AP. Similarly
UE-9 receives strong signals from AP but weak signals from UABS.

considers the interference between the RATs and aims to
reduce the degradation in WiFi communications due to LTE-
U transmissions. To make the association decision for a user
equipment (UE) between LTE-U and WiFi, we consider the
loads and link qualities of both LTE-U and WiFi networks.
We formulate the problem as a game between WiFi APs and
LTE-U UABSs. In this game, the goal of LTE-U UABSs is to
maximize their capacity while keeping minimum interference
towards WiFi transmissions. In particular, we propose a regret-
based learning (RBL) dynamic duty cycle selection (DDCS)
technique for configuring LTE-U transmission gaps, so that
a satisfactory throughput is maintained both for UABSs and
WiFi access points (APs). Simulation results show that the pro-
posed RBL-DDCS yields an improvement of 32% over fixed
duty cycle based LTE-U transmission, and an improvement of
10% over Q-learning based DDCS.

The rest of this paper is organized as follows. Section II
presents the system model for coexisting LTE-U UABS and
WiFi AP networks. In Section III, we describe the load-
balancing RAT selection technique among LTE-U UABSs and
WiFi APs, while in Section IV we introduce the DDCS frame-
work for LTE-U and WiFi coexistence. Section V develops
our proposed RBL-DDCS technique and provides convergence
analysis for it. Section VI presents various simulation results
on the performance of the proposed RBL-DDCS approach,
and the last section provides some concluding remarks.

II. SYSTEM MODEL

A. Hybrid UABS-WiFi Architecture

Consider a hybrid cellular network such as in Fig. 1 that
consists of UABSs with LTE-U capability and ground-based
WiFi APs that provide network coverage in the aftermath of a
diaster. The LTE-U UABSs can be rapidly deployed to form
an on-the-fly cellular network to fulfill the throughput require-
ments of PSN. We assume that the UABSs are dynamically
positioned in order to maximize the combined coverage with
the WiFi network. Both WiFi and LTE-U RATs transmit in the
5 GHz unlicensed band, and they share a common 20 MHz
unlicensed spectrum for transmission. In this model, our key
goal is to operate the LTE-U based UABSs to fill the coverage

gaps without jeopardizing the performance of ground WiFi
users.

We focus on the downlink transmission which consists of a
set 𝒰 = {1, ...,U} of LTE-U UABSs and a set 𝒲 = {1, ...,W}
of WiFi APs (hereinafter, both referred to as base stations
(BSs)). Let x be a vector of two-dimensional coordinates
measured with respect to the origin, and 𝐿𝑏 be the coverage
area of BS b such that any given UE at a given location x
is served by BS b if x ∈ 𝐿𝑏. For an arbitrary UE at location
x ∈ 𝐿𝑏, let the nearest UABS u ∈ 𝒰 at a distance ∥x𝑢∥ be
its UABS of interest (UOI) and the nearest WiFi AP w ∈ 𝒲
at a distance ∥x𝑤∥ be its WiFi AP of interest (WOI). Let the
transmitted power of UABS and AP be denoted as 𝑃𝑢

tx and
𝑃𝑤
tx, respectively, and let ℎ𝑢 denote the altitude of the UABS u.
Based on these definitions, the average received signal

power from the UOI and the WOI is respectively given by:

𝑆𝑢(x) =
𝑃𝑢
tx

10(PLavg/10)
, 𝑆𝑤(x) =

𝑃𝑤
tx𝐾𝑤𝐻𝑤

∥x − x𝑤∥𝛽
, (1)

where 𝐾𝑤 accounts for geometric parameters such as trans-
mitter/receiver antenna heights of the WiFi AP, 𝛽 is the path
loss exponent (PLE), and the random variable 𝐻𝑤 ∼ exp(1)
accounts for Rayleigh fading over the user-WiFi AP link.

The channels between the BSs and the UEs are modeled as
additive white Gaussian noise (AWGN) channels with noise
variance 𝜎2 for the downlink transmission. Let 𝑢 be the
transmission indicator of UABS u such that 𝑢 = 1 indicates
the ON state while 𝑢 = 0 reflects the OFF state. Then, the
received signal to interference plus noise ratio (SINR) values
of a UE at location x ∈ 𝐿𝑏 due to the UOI and the WOI can
be respectively expressed as:

𝜂𝑢(x) =
𝑆𝑢(x) 𝑢∑

∀𝑢′∈𝒰∖𝑢
𝑆𝑢′(x) 𝑢′ +

∑
∀𝑤′∈𝒲

𝑆𝑤′(x) + 𝜎2
, (2)

𝜂𝑤(x) =
𝑆𝑤(x)∑

∀𝑢′∈𝒰
𝑆𝑢′(x) 𝑢′ +

∑
∀𝑤′∈𝒲∖𝑤

𝑆𝑤′(x) + 𝜎2
. (3)

B. Path Loss Model

For the UABS channel, we use the air-to-ground propaga-
tion model as described in [11] and [12] from UABS to UE.
Therefore line of sight (LoS) and non-line of sight (NLoS)
path loss (PL) from a given UABS to a given UE can be
expressed (in dB) as:

PLLoS = 𝐿FS + 𝛽 log[du(x, hu)] , (4)

PLNLoS = 𝐿FS + 𝛽 log[du(x, hu)] + log𝐿NLoS , (5)

where 𝐿FS is the free space PL given by 20 log(du(x), h) +

20 log(f) + 20 log(4𝜋/𝑐), and du(x, hu) =

√
∥x − x𝑢∥2 + h2

u

is the distance between UE and UABS u, and 𝐿NLoS is an
additional attenuation factor due to the NLOS connection. The
probability of LoS connection is given by [12]:

𝑃 (LoS) =
(
1 + 𝑎 exp(−𝑏[𝜃 − 𝑎]))−1

(6)



where 𝑎 and 𝑏 are constants which depend on the envi-
ronment (rural, urban, dense urban, or others) and 𝜃 =
sin−1

(
ℎ𝑢/𝑑𝑢(x, ℎ𝑢)

)
is the elevation angle. The average path

loss can then be expressed as (in dB):

PLavg = 𝑃 (LoS) × PLLoS + 𝑃 (NLoS) × PLNLoS , (7)

where 𝑃 (NLoS) = 1 − 𝑃 (LoS).

III. RAT SELECTION AMONG LTE-U AND WIFI

As shown in Fig. 1, even when the received signal strength
(RSS) is good from both UABS and WiFi APs, one RAT
might be highly loaded over other. Therefore, considering the
proper balance between RSS and cell load is critical for UE
association. We use the 𝛼-optimal user association and cell
load balancing as described in [13] for the RAT selection
between WiFi and LTE-U. We define the traffic load density
𝛾(x) of any UE at location x ∈ 𝐿𝑏 as 𝛾𝑏(x) = 𝜆(x)

𝜇(x) , where 𝜆(x)
is the file transfer requests arrival rate per unit area. Hence, the
load follows an inhomogeneous Poisson point process and file
sizes are independently distributed with mean 1

𝜇(x) at location
x ∈ 𝐿𝑏. Let 𝑅𝑏(x) be the data rate of any UE at location x.
The fraction of time BS b needs to serve the traffic 𝛾𝑏(x) from
BS b to location x is defined as 𝑃𝑢

tx = 𝛾𝑏(x)/𝑅𝑏(x). Thus, the
system-load density of BS 𝑏 is given by:

𝜌𝑏 =

∫
x∈𝐿𝑏

𝑞𝑏(𝑥)d𝑥. (8)

In some of the existing works such as [14] and [15], UE
association is typically used based on the received SINR
values while ignoring the load of BSs. This may lead to
overloading of BSs since a UE may associate to a BS which
gives high SINR even though that particular BS is already
overloaded. Moreover, in [13] and [16], the authors study load
balancing; however, they only consider the RSS instead of the
received SINR for UE association. Thus, we propose a new
UE association criteria by considering both load balancing and
received SINR aspects.

Under such a scheme, UEs must be aware of the current load
of BSs, and each BS needs to transmit their estimated system-
load density 𝜌∗𝑏(𝑡) via a broadcast control message. Then, a
UE at location x ∈ {𝐿𝑢 ∩ 𝐿𝑤} selects one of UOI and WOI
according to the following criteria [16]:

𝑏(x, 𝑡) = arg max
𝑏∈{𝑢,𝑤}

{(1 − 𝜌∗𝑏(𝑡))𝛼 𝜂𝑏(x, 𝑡)}, (9)

where 𝛼 ≥ 0 is a parameter specifying the desired degree
of load balancing. For 𝛼 = 0, classical SINR based UE
association is achieved, while for 𝛼 > 0, the BS load affects
the UE association. The 𝜂𝑏(x, 𝑡) is the received SINR value
as defined in (2),(3) at UE in location x ∈ {𝐿𝑢 ∩ 𝐿𝑤} at
time instant 𝑡. Each BS will compute its estimated system-
load density 𝜌∗𝑏(𝑡) as a moving-time average as follows:

𝜌∗𝑏(𝑡) = 𝑣(𝑡)𝜌𝑏(𝑡− 1) + (1 − 𝑣(𝑡))𝜌∗𝑏(𝑡− 1), (10)
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LTE Frame = 10 ms LTE ON PeriodLTE Mute Period
Fig. 2: LTE-U frame representation for a duty cycle period of 0.6.

where 𝑣(𝑡) is the learning rate of the load estimation, and 𝑣(𝑡)
is selected such that the load estimation procedure is slower
than the UE association process in (9).

IV. COCHANNEL LTE-U AND WIFI CO-EXISTENCE

In this section, we use ON/OFF strategy of LTE-U UABS
transmissions to maintain coexistence with WiFi APs. In
the proposed approach, the UABSs need to autonomously
and dynamically select their transmission duty cycle (DDCS)
in order to maximize their utility functions. However, the
achievable throughput of a UABS depends not only on its
own choice of action but also on remaining UABSs due
to interference. Therefore, we formulate a noncooperative
game [17], in particular, a U player normal-form game. Here
we assume that UABSs are the players of this noncooperative
game 𝒢, which can be defined as: 𝒢 = (𝒰 , {𝒮i}𝑖∈𝒰 , {Φ𝑖}𝑖∈𝒰 ),
where Φ𝑖 is the utility of player 𝑖, and 𝒮i is the strategy space
of player 𝑖. To enable LTE-U transmission in the unlicensed
band we consider the LTE frame configuration shown in Fig. 2.

Each player 𝑖 ∈ 𝒰 has 𝒮i
𝑡 = {𝑠𝑡𝑖,1, ..., 𝑠𝑡𝑖,∣𝒮 t

i ∣} set of actions
where an action of UABS 𝑖, 𝑠𝑡𝑖, is composed of its transmission
duty cycle. For our game we used 0.2, 0.4, 0.6 and 0.8 as
𝑠𝑡𝑖 values. Let 𝜋𝑡𝑖 =

[
𝜋𝑡𝑖(1), ....., 𝜋𝑡𝑖(∣𝒮𝑡

𝑖 ∣)
]

be a probability
distribution in which UABS 𝑖 selects a given action from 𝒮𝑡

𝑖

at time instant 𝑡, i.e. 𝜋𝑡𝑖 is UABS 𝑖’s mixed strategy where 𝑠𝑡𝑖
is the action of player 𝑖 at time 𝑡.

For the utility function, we use the average cell throughput
of the UABS 𝑖 for one duty cycle period (50 ms). Since we
model this as a noncooperative game, every player (UABS)
tries to maximize its own cell throughput selfishly. Let UABS
𝑖 ∈ 𝒰 serve 𝑁 UEs. According to the frame structure in Fig. 2,
UABS 𝑖 schedules its users on each downlink-subframe (DL-
SF). Let one duty-cycle period consist of a set 𝒞 = {1, ...,C}
of DL-SFs. As an example, according to our frame structure
one duty cycle period consists of 𝒞 = {1, ..., 30} DL-SFs, with
∥𝒞∥ = 30.

Let 𝑁𝑐(𝜅) be the number of allocated resource blocks (RBs)
for user 𝜅 on DL-SF 𝑐 and 𝜔 as the bandwidth of one RB
which is equal to 180 kHz in LTE. Then, 𝜂𝑐𝑖 (x𝜅) is the received
SINR value (2) of user-𝜅 (i.e UE-𝜅) from UABS 𝑖 at the
location x𝜅 on the DL-SF c. Then we can write down the
average cell throughput of the 𝑖th UABS for one duty cycle



period (50 ms) as follows:

𝜙𝑡𝑖(𝑠
𝑡
𝑖, 𝒔

𝑡
−𝑖) =

1

∥𝒞∥
∥𝒞∥∑
𝑐=1

𝑁∑
𝜅=1

𝑐
𝑖 𝑁𝑐(𝜅)𝜔 log2(1 + 𝜂𝑐𝑖 (x𝜅)),

(11)

where 𝜙𝑡𝑖(𝑠
𝑡
𝑖, 𝒔

𝑡
−𝑖) is the utility function of each player and

𝑠𝑡𝑖 ∈ 𝒮i
𝑡 is the selected strategy by a player 𝑖 during the 𝑡th

duty cycle period. The 𝑐
𝑖 is an indicator function and 𝑐

𝑖 = 1
indicates that UABS i is in ON state on 𝑐th DL-SF. The UEs
are scheduled by transmission time intervals (TTIs) which is
1 ms in LTE. Therefore, the achievable DL throughput for
UABS 𝑖 for one duty cycle period has been taken as the utility
function of UABS 𝑖. We can see that (11) depends on the
received SINR value of player 𝑖, which also depends on the
received interference from other players (2). Hence potentially,
this represents the player 𝑖 utility function which depends on
other players’ actions as well thus motivating a game-theoretic
approach.

We can see that the number of non zero 𝑐
𝑖 terms equal to

the number of ON state DL-SFs within one duty cycle period
(T). However we know that the action of a player 𝑖, 𝑠𝑡𝑖 (the
duty cycle of player 𝑖) is proportional to the number of ON
state DL-SFs within T. Therefore (11) represents player 𝑖’s
utility as a function of players’ actions. Game 𝒢 is played
as seen later, to find the solution of this game, the players
must engage in a learning algorithm over discrete time slots
𝑡 ∈ {1, 2, ...}. In this game, one time slot is equal to one duty
cycle period which is 50 ms for this frame structure.

V. CORRELATED EQUILIBRIUM AND LEARNING

Our goal is to develop a distributed mechanism to solve the
LTE-U ON/OFF game and reach the correlated equilibrium
(CE). To this end, we introduce a class of no-regret learning
algorithm called regret-matching [18], which converges to the
CE and has been used widely in resource allocation problems
of wireless networks such as in [19] [20].

A. Correlated Equilibrium

The concept of CE generalizes the idea of a Nash equilib-
rium to enable correlated strategy choices across the players.
The idea is that a strategy profile is chosen randomly according
to a joint distribution. Given the recommended strategy, it is
in the players’ best interests to conform with this strategy.

Definition 1: For the proposed game 𝒢, define 𝜋 as the
probability distribution over the joint strategy space 𝒮 = 𝒮1 ×
𝒮2× .....×𝒮U. The set of correlated equilibria 𝒞𝑒 is the convex
polytope given by:

𝒞𝑒 =
{
𝜋 :

∑
𝒔−𝒊∈𝒮-i

𝜋(𝑠𝑖, 𝒔−𝒊)[𝜙𝑖(𝑠
′
𝑖, 𝒔−𝒊)−𝜙𝑖(𝑠𝑖, 𝒔−𝒊)] ≤ 0,

∀𝑖 ∈ 𝒰 , 𝑠𝑖, 𝑠′𝑖 ∈ 𝒮i

}
. (12)

B. Regret Based Learning for Co-Channel Coexistence

In this subsection, we propose a learning algorithm based
on the notion of regret matching [18]. In order to reach the
CE, we need to select a suitable probability distribution over
the strategy space of the players. In [18], it is shown that if we
select the probability distributions according to the proposed
regret matching algorithm, it will reach the CE.

The algorithm will dynamically select the LTE-U duty
cycle for UABSs transmission. In each time slot 𝑡 (𝑡th duty
cycle period), player 𝑖 chooses strategy 𝑠𝑡𝑖 according to the
probability distribution 𝜋𝑡𝑖(𝑘) ; 𝑘 ∈ 𝒮i. We can define 𝜋𝑡𝑖(𝑘)
as follows:

𝜋𝑡𝑖(𝑘) =
1

∣𝒮i∣ ; 𝑡 = 1 (Initialization), (13)

𝜋𝑡𝑖(𝑘) =

⎧⎨
⎩

1
𝜇𝑡−1 ℛ𝑡−1

𝑖 (𝑗, 𝑘) ; 𝑘 ∕= 𝑗; 𝑡 > 1,

1 −
∑

ℎ ∕=𝑗,ℎ∈𝒮i

𝜋𝑡𝑖(ℎ) ; 𝑘 = 𝑗; 𝑡 > 1. (14)

Here, in slot 𝑡 (𝑡 > 1), given the previously chosen strategy 𝑗
in slot (𝑡−1), the probability of 𝜋𝑡𝑖(𝑘) of choosing 𝑘 given by
above is expressed as a function of the regret of having used 𝑗
instead of 𝑘 (𝑗 ∕= 𝑘) in the past (ℛ𝑡−1

𝑖 (𝑗, 𝑘)). The probability
of staying with the previous strategy 𝑗 (i.e., choosing 𝑘 = 𝑗),
is simply the remaining probability, which is given by:

1 −
∑

ℎ ∕=𝑗,ℎ∈𝒮i

𝜋𝑡𝑖(ℎ). (15)

At time slot 𝑡, the regret of selecting strategy 𝑗 instead of
𝑘 (𝑗 ∕= 𝑘) is defined as follows:

ℛ𝑡
𝑖(𝑗, 𝑘) ≜ max{𝜁𝑡𝑖 (𝑗, 𝑘), 0} , (16)

𝜁𝑡𝑖 (𝑗, 𝑘) =
1

𝑡

𝑡∑
𝜏=1

(𝜙𝜏𝑖 (𝑘, 𝒔𝝉−𝒊) − 𝜙𝜏𝑖 (𝑗, 𝒔𝝉−𝒊)) . (17)

The expression ℛ𝑡
𝑖(𝑗, 𝑘) in (16) can be viewed as a measure

of the average regret. The 𝜇𝑡−1 is the summation of regrets
over all actions 𝑘 ∈ 𝒮i in the previous time slot (i.e. 𝑡− 1):

𝜇𝑡−1 =
∑
𝑘∈𝒮i

ℛ𝑡−1
𝑖 (𝑗, 𝑘). (18)

We can see that the regret learning algorithm requires user 𝑖
to know not only its own payoffs and the strategy history, but
also the payoff of strategy 𝑘 which was not realized in the past.
Therefore, we follow the following procedure to overcome this
problem. When 𝑡 = 1, the probability distribution of choosing
an action for player 𝑖 is uniform (12). Thus, player 𝑖 selects
an action arbitrarily, e.g., 𝑠𝑖 = 0.6. According to the utility
function formula, player 𝑖’s capacity/utility is calculated per
DL-SFs. Therefore, even if player 𝑖 selects the duty cycle as
0.6, player can calculate its utility for 𝑠𝑖 = 0.2 and 𝑠𝑖 = 0.4 as
well. The problem arises when determining the utility for 𝑠𝑖 =
0.8, which has not been chosen by the player 𝑖. In this case
player 𝑖 predicts the value based on the number of allocated
RBs. Then, player 𝑖 can easily compute its regret values for



Algorithm 1 Regret matching based duty cycle selection of
UABS 𝑖 ∈ 𝒰

1: Initialize:
2: 𝑡 = 1
3: Select an action according to (12)
4: play that action
5: Utility update
6: Determine ℛ𝑡

𝑖(𝑗, 𝑘) (16) for 𝑗, 𝑘 ∈ 𝒮i

7: 𝑡 = 𝑡+ 1
8: end initialization
9: loop for each iteration

10: while sup(ℛ𝑡−1
𝑖 (𝑗, 𝑘)) > 𝛾 do

11: Determine 𝜋𝑡𝑖(𝑘) based on ℛ𝑡−1
𝑖 (𝑗, 𝑘) (13)

12: Select the action with the highest probability
13: Play selected action 𝑠𝑖
14: Utility update
15: Determine ℛ𝑡

𝑖(𝑗, 𝑘) for 𝑗, 𝑘 ∈ 𝒮i

16: 𝑡 = 𝑡+ 1
17: end while
18: end loop

all the actions and based on that values player can determine
an action which has the maximum regret to play for next state
(i.e., 𝑡 = 2).

On the other hand, when 𝑡 > 1, player 𝑖 chooses an action
which is determined based on the previous state regrets. Now,
consider the utility functions calculations at 𝑡th duty cycle
period. Let’s say according to the regret values of (𝑡 − 1)th

duty cycle period, player 𝑖 determines that it should select 0.4
as the duty cycle (action) for the 𝑡th duty cycle. That means
player 𝑖 can compute utility function for 𝑠𝑖 = 0.2 and 𝑠𝑖 = 0.4
but unable to calculate for 𝑠𝑖 = 0.6 and 𝑠𝑖 = 0.8 at 𝑡th duty
cycle period. In this case it uses previous state ((𝑡 − 1)th)
utility function values for 𝑠𝑖 = 0.6 and 𝑠𝑖 = 0.8 to compute
regret values at 𝑡th duty cycle period.

Player 𝑖 will select its action (duty cycle value) at each duty
cycle period according to the previously described procedure
until its all regrets values are less than some threshold 𝛾. Pro-
cedure for properly selecting 𝛾, is described in the following
section such that the convergence is achieved. The complete
algorithm is described in Algorithm 1.

C. Convergence Analysis

In [18, Theorem A], the authors show that each player’s
regrets 𝑅𝑡

𝑖(𝑗, 𝑘) converge to zero almost surely. Also [18]
provides the speed of convergence for the expectation of the
regret E[𝑅𝑡

𝑖(𝑗, 𝑘)] as 𝒪(1/
√

(𝑡)) which is an upper bound for
the rate of convergence.

However, in our model, players (UABSs) can not wait
too long in practice such that all its regrets become zero.
Therefore we need to guarantee the convergence within a
certain amount of time. We define a threshold 𝛾 for regrets and
each player perform regret calculations and actions selection

until the maximum regret of each player is greater than 𝛾. If
sup{𝑅𝑡′

𝑖 (𝑗, 𝑘)} ≤ 𝛾 when 𝑡 = 𝑡′, then we consider that the
algorithm has come to its point of convergence. Then this will
lead to the following theorem.

Theorem 1: Assume that, our proposed algorithm has the
point of convergence when 𝑡 = 𝑡′. Then, 𝑡′ is bounded below
by 1/𝛾2 asymptotically i.e. 𝑡′ = Ω(1/𝛾2).

Proof. According to the Lemma 1, ∃𝑀 > 0 s.t.

𝔼
[
𝑅𝑡

𝑖(𝑗, 𝑘)
] ≤𝑀{ 1√

𝑡

}
, (19)

Let 𝑡 = 𝑡′ be our point of convergence. Then, we have

sup
(
𝔼
[
𝑅𝑡′

𝑖 (𝑗, 𝑘)
])

= 𝑀/
√
𝑡′ . (20)

Also, according to the our definition of threshold 𝛾, we have

sup
(
𝑅𝑡′

𝑖 (𝑗, 𝑘)
) ≤ 𝛾 =⇒ 𝔼

[
sup

(
𝑅𝑡′

𝑖 (𝑗, 𝑘)
)] ≤ 𝛾, (21)

by using the property sup
(
𝔼[𝑓(𝑥)]

) ≤ 𝔼
[

sup(𝑓(𝑥))
]
. Then

we can write

sup

(
𝔼
[
𝑅𝑡′

𝑖 (𝑗, 𝑘)
]) ≤ 𝔼

[
sup

(
𝑅𝑡′

𝑖 (𝑗, 𝑘)
)]
. (22)

By using (20) and (21), we have

𝑀/
√
𝑡′ ≤ 𝔼

[
sup

(
𝑅𝑡′

𝑖 (𝑗, 𝑘)
)] ≤ 𝛾, (23)

which, after some manipulation, can be written as

𝑡′ ≥ (
𝑀/𝛾

)2
, 𝑡′ = Ω

(
1/𝛾2

)
. (24)

Based on (24) we conclude that the convergence time is
bounded below by 1/𝛾2 asymptotically. Therefore by properly
selecting a sufficiently small 𝛾 we can achieve the convergence
within the required amount of time, hence 𝜖-CE. In our model,
convergence means, player 𝑖 has come to a final decision
regarding his strategy (duty cycle), it is going to play. Because
at the learning phase, UABSs switch their strategies (duty
cycles) in each 50 ms duty cycle period.

VI. SIMULATION RESULTS

For our simulations, we consider a two layer cell layout for
simplicity as shown in Fig. 3. Each layer consists of 7 cells.
There are 10 WiFi users and 10 LTE-U users, associated with
each WiFi AP and LTE-U UABS, respectively. WiFi users and
LTE-U users move within the cell with a speed of 3 km/h, and
their traffic arrival rates are given by 𝜆WiFi = 𝜆LTE−U = 2.5
in all the simulations. The MAC and PHY layers for LTE and
WiFi are implemented as discussed in [8].

In Fig. 4, we present the aggregate LTE-U and WiFi capacity
performance for different fixed duty cycles at LTE-U, Q-
learning based DDCS, and RBL based DDCS. Results show
that due to better frequency reuse, when a fixed duty cycle
is used at LTE-U, aggregate capacity is maximized compared
to other fixed duty cycle approaches. On the other hand, this
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Fig. 3: WiFi APs and LTE-U UABSs in a two-layer cell layout.
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Fig. 4: Aggregate WiFi and LTE-U DL capacity different fixed
duty cycles, Q-learning based DDCS, and RBL based DDCS
(ℎ = 50 m, ISD = 50 m).

also penalizes WiFi capacity, since LTE-U BSs transmit all
the time. With Q-learning and RBL based DDCS, LTE-U
BSs dynamically learn and adapt the duty cycle parameter.
In particular, we can see that with RBL DDCS, there is a
32% improvement in aggregate capacity compared to always-
on LTE transmission, and 10% improvement compared to Q-
learning based DDCS.

Fig. 5 shows the WiFi DL SINR distributions with different
duty cycle adaptation strategies at LTE-U BSs. Under a fixed
LTE-U duty cycle of 0.2, SINR values of WiFi users are
generally greater than DDCS based procedures, since there
is fairly low LTE-U air time and therefore less interference on
WiFi transmissions. However, as was seen in Fig. 4, all fixed
duty cycle scenarios resulted in lower aggregate throughput.
With learning based DDCS procedures, WiFi users can receive
fairly good SINR values, while maintaining improved system
capacity as observed in Fig. 4.

In Fig. 6, the distribution of the WiFi DL SINR is presented
for different heights 50 m, 100 m, and 200 m of the LTE-U
UABSs. We observe that WiFi SINR improves at larger heights
due to lower interference observed from LTE-U UABSs. On
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Fig. 5: WiFi DL SINR distribution with fixed and DDCS based
LTE-U duty cycle configurations (ℎ = 50 m, ISD = 50 m).
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Fig. 6: WiFi DL SINR distribution for different UABS heights
with RBL ISD = 50 m.

the other hand, larger UABS heights will also result in lower
LTE-U capacity, as will be discussed in following figures.

In Fig. 7, considering coexistence scenario in Fig. 3, the
RBL-DDCS capacity of LTE-U downlink, WiFi downlink,
and aggregate LTE-U and WiFi downlink transmissions is
presented for different UABS altitudes. When LTE-U UABS
altitude is increased, aggregate LTE-U capacity decreases due
to weaker signal strength, while WiFi capacity increases. On
the other hand, the aggregate LTE-U/WiFi capacity is seen to
be maximized at around 100 m UABS height.

In Fig. 8, we show the RBL-DDCS capacity of LTE-U
downlink, WiFi downlink, and aggregate LTE-U and WiFi
transmissions for different ISDs and different traffic arrival
rates. From this figure, we can see that the capacity of LTE-
U UABSs is significantly degraded for larger ISDs, while
a relatively lower degradation is observed for WiFi. This is
due to the longer transmission distances from LTE-U UABSs
(ℎ = 50 m) to the users, which, in turn, will result in a weaker
received signal strength at the LTE-U users.
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Fig. 7: RBL-DDCS capacity of LTE-U downlink, WiFi down-
link, and aggregate LTE-U and WiFi downlink transmissions
for different UABS altitudes in the coexisting LTE-U/WiFi
scenario of Fig. 3.
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Fig. 8: RBL-DDCS capacity of LTE-U downlink, WiFi down-
link, and aggregate LTE-U and WiFi transmissions for differ-
ent ISDs and different traffic arrival rates (𝜆) in the coexisting
LTE-U WiFi scenario of Fig. 3 (ℎ = 50 m).

VII. CONCLUDING REMARKS

In this paper, we have shown that LTE-U can be used as
a promising RAT for UABSs which provide coverage and
capacity requirements in the aftermath of a natural disaster.
We have proposed a regret based learning dynamic duty
cycle selection algorithm to configure periodic transmission
gaps of LTE-U. Simulation and analytical results have shown
that due to the proposed regret based learning dynamic duty
cycle selection procedure, UABS network and remaining WiFi
network can effectively coexist in the unlicensed band with im-
proved aggregate system capacity but without much degrading
each RAT’s performance.
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