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Abstract

We give a simple optimistic algorithm for which it is easy to derive regret bounds of
Õ(
√
tmixSAT ) after T steps in uniformly ergodic Markov decision processes with S states,

A actions, and mixing time parameter tmix. These bounds are the first regret bounds in the
general, non-episodic setting with an optimal dependence on all given parameters. They
could only be improved by using an alternative mixing time parameter.

1. Introduction

Starting with Burnetas and Katehakis (1997), regret bounds for reinforcement learning
have addressed the question of how difficult it is to learn optimal behavior in an unknown
Markov decision process (MDP). Some of these bounds —like the one derived by Burnetas
and Katehakis (1997)— depend on particular properties of the underlying MDP, typically
some kind of gap that specifies the distance between an optimal and a sub-optimal action or
policy (see e.g. Ok, Proutière, & Tranos, 2018, for a recent refinement of such bounds). The
first so-called problem independent bounds that have no dependence on any gap-parameter
were obtained by Jaksch, Ortner, and Auer (2010). For MDPs with S states, A actions
and diameter D the regret of the UCRL algorithm was shown to be Õ(DS

√
AT ) after

any T steps. A corresponding lower bound of Ω(
√
DSAT ) left the open question of the

true dependence of the regret on the parameters S and D. Recently, regret bounds of
Õ(D

√
SAT ) have been claimed by Agrawal and Jia (2017), however there seems to be a

gap in the proof, cf. Sec. 38.9 of Lattimore and Szepesvári (2019), so that the original
bounds of Jaksch et al. (2010) are still the best known bounds.

In the simpler episodic setting, the gap between the upper and the lower bounds has been
closed by Azar, Osband, and Munos (2017), showing that the regret is of order Õ(

√
HSAT ),

where H is the length of an episode. However, while bounds for the non-episodic setting
can be easily transferred to the episodic setting, the reverse is not true. We also note that
another kind of regret bounds that appears in the literature assumes an MDP sampled
from some distribution (see e.g. Osband & Roy, 2017, for a recent contribution). Regret
bounds in this Bayesian setting cannot be turned into bounds for the worst case setting as
considered here.

There is also quite some work on bounds on the number of samples from a generative
model necessary to approximate the optimal policy by an error of at most ε. Obviously,
having access to a generative model makes learning the optimal policy easier than in the
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online setting considered here. However, for ergodic MDPs (on which we will focus in
this note) it could be argued that any policy reaches any state so that in this case sample
complexity bounds could in principle be turned into regret bounds. We first note that
this seems difficult for bounds in the discounted setting, which make up the majority in
the literature. Bounds in the discounted setting (see e.g. Azar, Munos, & Kappen, 2013b;
Sidford, Wang, Wu, Yang, & Ye, 2018, for more recent contributions obtaining near-optimal
bounds) depend on the term 1 − γ, where γ is the discount factor, and it is not clear how
this term translates into a mixing time parameter in the average reward case. For the few
results in the average reward setting the best sample complexity bound we are aware of

is the bound of Õ
( τ2t2mixSA

ε2

)
of Wang (2017), where tmix is a mixing time parameter like

ours (cf. below) and τ characterizes the range of stationary distributions across policies.
Translated into respective regret bounds, these would have a worse (i.e., linear) dependence
on the mixing time and would depend on the additional parameter τ > 1, which does not
appear in the bounds we are going to present below.

Starting with Kearns and Singh (2002) and Brafman and Tennenholtz (2002) there
are also sample complexity bounds in the literature that were derived for settings without
generative sampling model. Although this is obviously harder, there are bounds for the
discounted case where the dependence with respect to S, A, and ε is the same as for the
case with a generative sampling model (Szita & Szepesvári, 2010). However, we are not
aware of any such bounds for the undiscounted setting that would translate into online
regret bounds optimal in S, A, and T .

In this note, we present a simple algorithm that allows the derivation of regret bounds
of Õ(

√
tmixSAT ) for uniformly ergodic MDPs with mixing time tmix, a parameter that

measures how long it takes to approximate the stationary distribution induced by any
policy. These bounds are optimal with respect to the parameters S, A, T , and tmix. The
only possible improvement is a replacement of tmix by a parameter that may be smaller for
some MDPs, such as the diameter (Jaksch et al., 2010) or the bias span (Bartlett & Tewari,
2009; Fruit, Pirotta, Lazaric, & Ortner, 2018b). We note, however, that it is easy to give
MDPs for which tmix is basically of the same size as the mentioned alternative parameters.1

Accordingly, the obtained bound basically closes the gap between the upper and the lower
bound on the regret for a subclass of MDPs.

Algorithmically, the algorithm we propose works like an optimistic bandit algorithm
such as UCB (Auer, Cesa-Bianchi, & Fischer, 2002). Such algorithms have been proposed
before for MDP settings with a limited set of policies (Azar, Lazaric, & Brunskill, 2013a).
The main difference to the latter approach is that due to the re-use of samples we obtain
regret bounds that do not scale with the number of policies but with the number of state-
action pairs. We note however that as the approach of Azar et al. (2013a) our algorithm
needs to evaluate each policy independently, which makes it impractical. The proof of the
regret bound is much simpler than for bounds achieved before and relies on concentration
results for Markov chains.

1. For a discussion of various transition parameters used in the literature we refer to Jaksch et al. (2010)
and Bartlett and Tewari (2009).
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2. Setting

We consider reinforcement learning in an average reward Markov decision process (MDP)
with finite state space S and finite action space A. We assume that each stationary policy
π : S → A induces a uniformly ergodic2 Markov chain on the state space. In such MDPs,
which we call uniformly ergodic, the chain induced by a policy π has a unique stationary
distribution µπ. Then writing the mean reward for choosing an action a in a state s as
r(s, a), the (state-independent) average reward ρπ can be written as ρπ = µ>π rπ, where
µπ = (µπ(s))s and rπ = (r(s, π(s))s are the (column) vectors for the stationary distribution
and the average reward under π, respectively. We assume in the following that the reward
distribution for each state-action pair (s, a) has support in [0, 1].

The maximal average reward is known (cf. Puterman, 1994) to be achieved by a sta-
tionary policy π∗ that gives average reward ρ∗ := ρπ∗ . We are interested in the regret
accumulated by an algorithm after any number of T steps defined as3

RT := Tρ∗ −
∑
t

rt,

where rt are the (random) rewards collected by the algorithm at each step t.

3. Preliminaries on Markov Chains

In this section, we give some definitions and results about Markov chain concentration that
we will use in the following.

3.1 Mixing Times

For two distributions P,Q over the same state space (S,F) with σ-algebra F , let

dTV (P,Q) := sup
A∈F
|P (A)−Q(A)|

be the total variational distance between P and Q. A Markov chain with a transition kernel
p and a stationary distribution µ is said to be uniformly ergodic, if there are a θ < 1 and a
finite L such that

sup
s∈S

dTV (pn(s, ·), µ) ≤ Lθn.

Furthermore, the mixing time tmix of the Markov chain is defined as

tmix := min
{
n | sup

s∈S
dTV (pn(s, ·), µ) ≤ 1

4

}
.

For a uniformly ergodic MDP we set the mixing time tπmix of a policy π to be the mixing
time of the Markov chain induced by π, and define the mixing time of the MDP to be
tmix := maxπ t

π
mix.

2. See Section 3 for definitions.
3. Since we are only interested in upper bounds on this quantity we ignore the dependence on the initial

state to keep things simpler. For a more detailed discussion we refer to Jaksch et al. (2010).
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3.2 McDiarmid’s Inequality for Markov Chains

Our results mainly rely on the following version of McDiarmid’s inequality for Markov chains
due to Paulin (2015).

Lemma 1. (Corollary 2.10 and the following Remark 2.11 of Paulin, 2015)
Consider a uniformly ergodic Markov chain X1, . . . , Xn with state space S and mixing time
tmix. Let f : Sn → R with

f(s1, . . . , sn)− f(s′1, . . . , s
′
n) ≤

∑
i

ci1[si 6= s′i]. (1)

Then

P
{∣∣f(X1, . . . , Xn)− E[f(X1, . . . , Xn)]

∣∣ ≥ ε} ≤ 2 exp

(
− 2ε2

9 ‖c‖22 tmix

)
.

Lemma 1 can be used to obtain a concentration result for the empirical average reward
of any policy π in an MDP. This works analogously to the concentration bounds for the total
variational distance between the empirical and the stationary distribution (Proposition 2.18
of Paulin, 2015).

Corollary 2. Consider an MDP and a policy π that induces a uniformly ergodic Markov
chain with mixing time tmix. Using (column) vector notation µ := (µπ(s))s and r :=
(r(s, π(s))s for the stationary distribution and the reward function under π, and writing µ̂n

for the empirical distribution after n steps defined as µ̂n(s) := 1
n

∑n
i=1 1{Xi = s}, it holds

that

P
{∣∣µ̂n>r− µ>r

∣∣ ≥ ε} ≤ 2 exp

(
− 2ε2n

9tmix

)
.

Proof. Setting f(X1, . . . , Xn) := 1
n

(
r(X1, π(X1)) + . . .+ r(Xn, π(Xn))

)
, condition (1) holds

choosing ci = 1
n for i = 1, . . . , n and the claim follows from Lemma 1.

Choosing the error probability to be δ, we obtain the following confidence interval that
will be used by our algorithm.

Corollary 3. Using the same assumptions and notation of Corollary 2, with probability at
least 1− δ, ∣∣µ̂n>r− µ>r

∣∣ ≤
√

9tmix log 2
δ

2n
.

3.3 Concentration of the Empirical Distribution

We will also use the following results on the concentration of the empirical state distribution
of Markov chains given by Paulin (2015). In the following, consider a uniformly ergodic
Markov chain X1, . . . , Xn with a stationary distribution µ and a mixing time tmix. Let µ̂n

be the empirical distribution after performing n steps in the chain.

Lemma 4. (Proposition 2.18 of Paulin, 2015)

P
{∣∣dTV (µ, µ̂n)− E[dTV (µ, µ̂n)]

∣∣ ≥ ε} ≤ 2 exp

(
− 2ε2n

9tmix

)
.
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Lemma 5. (Proposition 3.16 and the following remark of Paulin, 2015)

E[dTV (µ, µ̂n)] ≤
∑
s∈S

min

(√
8µ(s)

nβ
, µ(s)

)
,

where β is the pseudo-spectral gap4 of the chain.

Lemma 6. (Proposition 3.4 of Paulin, 2015) In uniformly ergodic Markov chains, the
pseudo-spectral gap β can be bounded via the mixing time tmix as

1
β ≤ 2tmix.

We summarize these results in the following corollary.

Corollary 7. With probability at least 1− δ,

dTV (µ, µ̂n) ≤

√
38Stmix log 2

δ

n
.

Proof. Using the bound of Lemma 6 in Lemma 5 and setting the error probability in
Lemma 4 to δ, one obtains by Jensen’s inequality

dTV (µ, µ̂n) ≤
√

16Stmixµ(s)

n
+

√
9tmix log 2

δ

2n
,

and the claim of the corollary follows immediately.

4. Algorithm

At the core, the Osp algorithm we propose works like the UCB algorithm in the bandit
setting (Auer et al., 2002). In our case, each policy corresponds to an arm, and the concen-
tration results of the previous chapter are used to obtain suitable confidence intervals for
the MDP setting.

Osp (shown in detail as Algorithm 1) does not evaluate the policies at each time step.
Instead, it proceeds in phases5 (cf. line 3 of Osp), where in each phase k an optimistic policy
πk is selected (line 8). This is done (cf. line 5) by first constructing for each policy π a sample
path Pπ =

(
(st, π(st), rt, st+1)

)n
t=1

from the observations so far. Accordingly, the algorithm
keeps a record of all observations. That is, after choosing in a state s an action a, obtaining
the reward r, and observing a transition to the next state s′, the respective observation
(s, a, r, s′) is appended to the sequence of observations O (cf. line 10).

The sample path Pπ constructed from the observation sequence O contains each observa-
tion from O at most once. Further, the path Pπ =

(
(st, π(st), rt, st+1)

)n
t=1

is such that there

4. The pseudo-spectral gap is defined as maxk
{ γ(P∗kPk)

k

}
, where P is the transition kernel interpreted as

linear operator, P∗ is the adjoint of P, and γ(P∗kPk) is the spectral gap of the self-adjoint operator
P∗kPk. For more details see Paulin (2015). Here we do not make direct use of this quantity and only
use the bound given in Lemma 6.

5. We emphasize that we consider non-episodic reinforcement learning and that these phases are internal
to the algorithm.
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Algorithm 1 Optimistic Sample Path (Osp)

1: Input: confidence δ, horizon T , (upper bound on) mixing time tmix

//Initialization:
2: Set t := 1 and let the sequence O of observations (s, a, r, s′) be empty.

// Compute sample paths for policies
3: for phases k = 1, 2, . . . do
4: for each policy π : S → A do
5: Use Algorithm 2 to construct a non-extendible sample path Pπ from O.
6: Let

ρ̂π := 1
|Pπ |

∑
(s,π(s),r,s′)∈Pπ

r, and set ρ̃π := ρ̂π +

√
8tmix log 16tT

δ

|Pπ|
.

7: end for

// Choose optimistic policy
8: Choose πk := arg maxπ ρ̃π and set n<k := |Pπk |.

// Execute optimistic policy πk

9: for τ = 1, . . . , nk := max
{
n<k,

√
T
SA

}
do

10: Choose action at = πk(st), obtain reward rt, and observe st+1.
Set t := t+ 1 and append the observation (st, at, rt, st+1) to O.

11: end for
12: end for

Algorithm 2 Path Construction

1: Input: Observation sequence O, policy π, initial state s1

2: Set t = 1 and let path Pπ be empty.

3: while O contains an unused observation of the form (st, π(st), ·, ·) do
4: Choose the first unused occurrence ot := (st, π(st), r, s) of such an observation.
5: Append ot to Pπ.
6: Mark ot in O as used.
7: Set st+1 := s and t := t+ 1.
8: end while
9: Mark all observations in O as unused.

10: Output: sample path Pπ

is no unused observation (sn+1, π(sn+1), r, s) in O that could be used to extend the path
by appending the observation. In the following, we say that such a path is non-extendible.
Algorithm 2 provides an algorithm for constructing a non-extendible path from a given set
of observations. Alternative constructions could be used for obtaining non-extendible paths
as well.

For each possible policy π the algorithm computes an estimate of the average reward ρπ
from the sample path Pπ and considers an optimistic upper confidence value ρ̃π (cf. line 6 of
Osp) using the concentration results of Section 3. The policy with the maximal ρ̃π is chosen
for use in phase k. The length nk of phase k, in which the chosen policy πk is executed,
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depends on the length n<k := |Pπk | of the sample path Pπk . That is, πk is usually played

for n<k steps, but at least for
√

T
SA steps (cf. line 9).

Note that at the beginning, all sample paths are empty in which case we set the con-
fidence intervals to be ∞, and the algorithm chooses an arbitrary policy. The initial state
of the sample paths can be chosen to be the current state, but this is not necessary. Note
that by the Markov property the outcomes of all samples are independent of each other.
The way Algorithm 2 extracts observations from O is analogous to when having access to
a generative sampling model as e.g. assumed in work on sample complexity bounds (e.g.
Azar et al., 2013b). In both settings the algorithm can request a sample for a particular
state-action pair (s, a). The only difference is that in our case at some point there are no
suitable samples available anymore, when the construction of the sample path is terminated.

As the goal of this paper is to demonstrate an easy way to obtain optimal regret bounds,
we do not elaborate in detail on computational aspects of the algorithm. A brief discussion
is however in order. First, note that it is obviously not necessary to construct sample paths
from scratch in each phase. It is sufficient to extend the path for each policy with new
and previously unused samples. Further, while the algorithm as given is exponential in
nature (as it loops over all AS policies), it may be possible to find the optimistic policy by
some kind of optimistic policy gradient algorithm (Lazaric, 2018). We note that policies in
ergodic MDPs exhibit a particular structure (see Section 3 of Ortner, 2007, that could be
exploited by such an algorithm). However, at the moment this is not more than an idea for
future research and the details of such an algorithm are yet to be developed.

5. Regret Analysis

The following theorem is the main result of this note.

Theorem 1. In uniformly ergodic MDPs, with probability at least 1− δ the regret of Osp
is bounded by

RT ≤ 10 log(16T 2

δ )
√
tmixSAT ,

provided that T ≥ S3A

(
152tmix log 16T2

δ

µ2min

)2

, where µmin := minπ,s:µπ(s)>0 µπ(s).

The improvement with respect to previously known bounds can be achieved due to the
fact that the confidence intervals for our algorithm are computed on the policy level and not
on the level of rewards and transition probabilities as for UCRL (Jaksch et al., 2010). This
avoids the problem of having rectangular confidence intervals that lead to an additional
factor of

√
S in the regret bounds for UCRL, cf. the discussion of Osband and Roy (2017).

To keep the exposition simple, we have chosen confidence intervals which give a high
probability bound for each horizon T . It is easy to adapt the confidence intervals to gain a
high probability bound that holds for all T simultaneously (cf. Jaksch et al., 2010).

The mixing time parameter in our bounds is different from the transition parameters
in the regret bounds of Jaksch et al. (2010) or the bias span used by Bartlett and Tewari
(2009) and Fruit et al. (2018b). We note however that for reversible Markov chains, tmix

is linearly bounded in the diameter (i.e., the hitting time) of the chain, cf. Section 10.5
of Levin, Peres, and Wilmer (2009). It follows from the lower bounds on the regret of
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Jaksch et al. (2010) that the upper bound of Theorem 1 is best possible with respect to
the appearing parameters. Mixing times have also been used for sample complexity bounds
in reinforcement learning (Kearns & Singh, 2002; Brafman & Tennenholtz, 2002), however
not for a fixed constant 1

4 as in our case but with respect to the required accuracy. It would
be desirable to replace the upper bound tmix on all mixing times by the mixing time of the
optimal policy as done by Azar et al. (2013a). However, the technique of Azar et al. (2013a)
comes at the price of an additional dependence on the number of considered policies, which
in our case obviously would deteriorate the bound.

The parameter T can be guessed using a standard doubling scheme giving the same
regret bounds with a slightly larger constant. Guessing tmix is more costly. For example,
using log T as a guess for tmix, the additional regret is an additive constant exponential
in tmix. We note however, that it is an open problem whether it is possible to get regret
bounds depending on a different parameter than the diameter (such as the bias span)
without having a larger bound on the quantity, cf. the discussion in Appendix A of Fruit,
Pirotta, and Lazaric (2018a).

5.1 Proof of Theorem 1

Recall that πk is the policy applied in phase k for nk steps. The respective optimistic
estimate ρ̃πk has been computed from a sample path of length n<k.

5.1.1 Estimates ρ̃π are optimistic

We start showing that the values ρ̃π computed by our algorithm from the sample paths of
any policy π are indeed optimistic. This holds in particular for the employed policies πk.

Lemma 8. With probability at least 1− δ
4 , for all phases k it holds that

ρ̃πk ≥ ρ∗ ≥ ρπk .

Proof. Let us first consider an arbitrary fixed policy π and some time step t. Using (column)
vector notation µ := (µπ(s))s and r := (r(s, π(s))s for the stationary distribution and the
reward function under π, and writing µ̂ and r̂ for the respective estimated values at step t,
we have

ρπ − ρ̂π = µ>r− µ̂>r̂

= (µ− µ̂)>r + µ̂>(r− r̂). (2)

Let n be the length of the sample path Pπ from which the estimates are computed. Then
the first term of (2) can be bounded by Corollary 3 as

|(µ− µ̂)>r| ≤

√
9tmix log 16tT

δ

2n
(3)

with probability at least 1− δ
8T (using a union bound over all t possible values for n). The

second term of (2) can be written as

|µ̂>(r− r̂)| = 1
n ·
∣∣∣ ∑

(s,π(s),r,s′)∈Pπ

(r(s, π(s))− r)
∣∣∣.
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Since the sum is a martingale difference sequence, we obtain by Azuma-Hoeffding inequal-
ity (cf. Lemma A.7 of Cesa-Bianchi & Lugosi, 2006) and another union bound that with
probability 1− δ

8T

|µ̂>(r− r̂)| ≤

√
log 16tT

δ

2n
. (4)

Summarizing, we get from (2)–(4) that for any policy π the estimate ρ̂π computed at
time step t satisfies with probability at least 1− δ

4T

|ρπ − ρ̂π| ≤

√
8tmix log 16tT

δ

n
. (5)

This holds in particular for an optimal policy π∗, so that by a union bound over all time
steps t we have that with probability at least 1− δ

4 at each time step it holds that ρ̃π∗ ≥ ρπ∗ .
Then by definition of the algorithm (in particular line 8) and optimality of π∗ it follows
that with probability at least 1− δ

4 ,

ρ̃πk ≥ ρ̃π∗ ≥ ρπ∗ ≥ ρπk (6)

for all episodes k.

5.1.2 Splitting regret into phases

In the following, let ρ̂<kπk be the empirical average reward of πk computed from the sample

path before episode k, and ρ̂
(k)
πk the empirical average reward of πk in episode k. We write

the regret as a sum over the regret in the single phases as

RT = Tρ∗ −
T∑
t=1

rt =
∑
k

nk(ρ
∗ − ρ̂kπk). (7)

Now we can distinguish between two kinds of phases: The length of most phases is
nk = n<k. However, there are also a few phases where the sample path for the chosen policy

πk is shorter than
√

T
SA , when the length is nk =

√
T
SA > n<k. Let K− := {k |nk > n<k}

be the set of these latter phases and set K− := |K−|. The regret for each phase in K− is

simply bounded by
√

T
SA , so that we obtain from (7) that

RT ≤ K−
√

T

SA
+
∑
k/∈K−

nk(ρ
∗ − ρ̂kπk). (8)

For episodes k /∈ K− we note that6 nk ≤ n<k. Hence, by Lemma 8 and the definition
of ρ̃πk the respective regret with probability at least 1− δ

4 is bounded by∑
k/∈K−

nk(ρ
∗ − ρ̂kπk) ≤

∑
k/∈K−

nk(ρ̃πk − ρ̂
k
πk

)

≤
∑
k/∈K−

√
8nktmix log 16T 2

δ +
∑
k/∈K−

nk(ρ̂
<k
πk
− ρ̂kπk). (9)

6. The final phase may be shorter than n<k.
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The difference in the empirical means in the last term of (9) can be bounded by the confi-
dence interval in (5) and a union bound over all time steps. Combining this with (8) and (9)
yields that with probability at least 1− 3δ

4 ,

RT ≤ K−
√

T

SA
+ 3

∑
k/∈K−

√
8nktmix log 16T 2

δ . (10)

It remains to bound the number of phases (not) in K−. A bound on K− obviously gives
a bound on the first term in (10), while a bound on the number K+ of phases not in K−
allows to bound the second term, as by Jensen’s inequality we have due to

∑
k/∈K− nk ≤ T

that ∑
k/∈K−

√
8nktmix log 16T 2

δ ≤
√

8TK+tmix log 16T 2

δ . (11)

5.1.3 Bounding the number of phases

The following lemma gives a bound on the total number of phases that can be used as a
bound on K− and K+ to conclude the proof of Theorem 1.

Lemma 9. With probability at least 1 − δ
4 , the number of phases up to step T is bounded

by
K ≤ SA log 4

3

(
T
SA

)
,

provided that T ≥ S3A

(
152tmix log 16T2

δ

µ2min

)2

, where µmin := minπ,s:µπ(s)>0 µπ(s).

Proof. Let n<k(s, a) be the number of visits to (s, a) before phase k. Note that the sample
path for each policy π in general will not use all samples of (s, π(s)), so that we also introduce
the notation nπ<k(s) for the number of samples of (s, π(s)) used in the sample path of π
computed before phase k. Recall that by definition of the algorithm, sample paths are
non-extendible, so that for each π there is a state s− for which all samples are used,7 that
is, n<k(s

−, π(s−)) = nπ<k(s
−). We write µ̂<k and µ̂k for the empirical distributions of the

policy πk in the sample path for phase k and in phase k, respectively.
Note that for each phase k we have

dTV (µπk , µ̂<k) ≤

√
38Stmix log 16T 2

δ

n<k
and (12)

dTV (µπk , µ̂k) ≤

√
38Stmix log 16T 2

δ

nk
, (13)

each with probability at least 1 − δ
8T by Corollary 7 and a union bound over all possible

values of nk and n<k, respectively.8 By another union bound over the at most T phases,

7. In particular, this holds for the last state of the sample path.
8. We note that instead of Corollary 7 it would also be sufficient to use Corollary 2 to derive a result

similar to Lemma 9 where the sufficient size of T would have a smaller constant but an additional S in
the log-term due to a necessary union bound over all states.

124



Regret Bounds for Reinforcement Learning via Markov Chain Concentration

(12) and (13) hold for all phases k with probability at least 1 − δ
4 . In the following, we

assume that the confidence intervals of (12) and (13) hold, so that all following results hold
with probability 1− δ

4 .

Each phase k has length at least nk ≥
√

T
SA . Consequently, if T ≥ S3A

(
152tmix log 16T2

δ

µ2min

)2
,

then it is guaranteed by (13) that in each phase k it holds that

dTV (µπk , µ̂k) ≤

√
38Stmix log 16T 2

δ

nk
≤ µmin

2
≤ µπk(s)

2
, (14)

and therefore for each state s
µπk(s)

2
≤ µ̂k(s). (15)

Now consider an arbitrary phase k and let s− be the state for which n<k(s
−, πk(s

−)) =
nπk<k(s

−), so that in particular µ̂<k(s
−)n<k = nπk<k(s

−). We are going to show that the
number of visits to (s−, πk(s

−)) is increased by (at least) a factor 4
3 in phase k. By (12)–

(15) and using that9 nk ≥ n<k we have

n<k(s
−, πk(s

−)) = µ̂<k(s
−)n<k

≤ µπk(s−)n<k +

√
38n<kStmix log 16T 2

δ

≤ 2µ̂k(s
−)n<k +

√
38n<kStmix log 16T 2

δ

≤ 2µ̂k(s
−)nk +

√
38nkStmix log 16T 2

δ

≤ 2µ̂k(s
−)nk +

µπk(s−)

2
nk

≤ 3µ̂k(s
−)nk,

so that abbreviating a− := πk(s
−)

n<k+1(s−, a−) = n<k(s
−, a−) + µ̂k(s

−)nk ≥ 4
3 n<k(s

−, a−).

Hence in each phase there is a state-action pair for which the number of visits is increased
by a factor of 4

3 . This can be used to show that the total number of phases K within T
steps is upper bounded as

K ≤ SA log 4
3

(
T
SA

)
. (16)

The proof of (16) can be rewritten from Proposition 3 of Ortner (2010), with the only
difference that the factor 2 is replaced by 4

3 .

Finally, combining (8), (11), and Lemma 9, using that K−,K+ ≤ K, we obtain that
with probability at least 1− δ

RT ≤ K−
√

T

SA
+ 3

√
8TK+tmix log 16T 2

δ

≤
√
SAT log 4

3

(
T
SA

)
+ 3
√

8tmixSAT log 4
3

(
T
SA

)
log
(

16T 2

δ

)
,

which completes the proof of the theorem.

9. As already mentioned, this may not hold for the last episode, which is however not relevant here.
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6. Discussion and Conclusion

While we were able to close the gap between lower and upper bound on the regret for uni-
formly ergodic MDPs, there are still quite a few open questions. First of all, the concentra-
tion results we use are only available for uniformly ergodic Markov chains, so a generalization
of our approach to more general communicating MDPs seems not easy. An improvement
over the parameter tmix may be possible by considering more specific concentration results
for Markov reward processes. These might depend not so much on the mixing time than
the bias span (Fruit et al., 2018b). However, even if one achieves such bounds, the resulting
regret bounds would depend on the maximum bias span over all policies. Obtaining a de-
pendence on the bias span of the optimal policy instead seems not easily possible. Finally,
another topic for future research is to develop an optimistic policy gradient algorithm that
computes the optimistic policy more efficiently than by an iteration over all policies.
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