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Abstract

This paper studies the regret bound of two
transfer learning algorithms in Bayesian opti-
misation. The first algorithm models any dif-
ference between the source and target func-
tions as a noise process. The second algo-
rithm proposes a new way to model the dif-
ference between the source and target as a
Gaussian process which is then used to adapt
the source data. We show that in both cases
the regret bounds are tighter than in the no
transfer case. We also experimentally com-
pare the performance of these algorithms rel-
ative to no transfer learning and demonstrate
benefits of transfer learning.

1 Introduction

Experimentation permeates human endeavour, pro-
pelling us towards unexplored frontiers - new under-
standing, formulation of novel materials, even biologi-
cal elements of life. The process of experimentation in-
volves conducting an experiment, measuring the qual-
ity of output, then repeating the process with insights
gained. This process and data acquired is inherently
iterative, dynamic, small-scale, expensive and limited
by resources of time, cost and even ideas. One of the
main characteristics of experimentation is that knowl-
edge is built over time through several sets of experi-
ments that vary in setting - thus “similar” experimen-
tal data is often available. For example, in machine
learning when hyperparameter tuning has been per-
formed in the past on a particular set of data then
this should be transferable to hyperparameter tuning
on a similar dataset.

Utilising such past and related (source) data to im-
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prove the output of the current experiment (target
function) is a natural use for transfer learning. This
needs to be incorporated into mechanisms that can
handle limited data. Bayesian optimisation is an ex-
citing sub-field of machine learning providing an ideal
platform to estimate such functions from limited data,
relating inputs to observed outputs via sequential op-
timisation (Mockus, 2002; Snoek et al., 2012). It
uses a Gaussian process (Rasmussen, 2006) to non-
parametrically model the black-box function and con-
verts the problem of optimising the unknown function
to a problem of optimising a known surrogate function
(acquisition function) constructed via the Gaussian
process. Transfer of knowledge into such a Bayesian
optimisation setting is desirable to solve the problem
we are addressing. Though transfer learning is an es-
tablished research area (Pan and Yang, 2010) for trans-
ferring knowledge from past data, limited work has fo-
cused on transfer learning for Bayesian optimisation
(Bardenet et al., 2013; Yogatama and Mann, 2014).

This paper examines the theoretical properties of
transfer learning in Bayesian optimisation. Specifi-
cally, we estimate the regret bounds of transfer learn-
ing in Bayesian optimisation for two algorithms. The
first algorithm, Env-GP (envelope-stretching Bayesian
optimisation) (Joy et al., 2016), models any differences
between the source and target functions as a noise pro-
cess, stretching the noise envelope in the source data
to fit it to the target, where the amount of stretch re-
quired is proportional to the difference between them.
By contrast the second algorithm, Diff-GP (difference-
modelling Bayesian optimisation), directly models the
difference between the source and target functions and
then corrects the source data to match the target func-
tion. To analyse the properties of Env-GP and Diff-
GP by comparison to the non-transfer context we start
with the work of Srinivas et al. (2010), which proves
the statistical bound on total regret whilst using GP-
UCB as a acquisition function

Pr
{
RT ≤ √

C1βTγTT + c0 ∀T ≥ 1
} ≥ 1− δ,

where γT is the maximum information gain and c0 is
a constant. We prove that both the maximum infor-
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mation gain γT and the noise dependent term C1 are
decreased in the transfer learning context, and hence
both Env-GP and Diff-GP are likely to find the opti-
mum in fewer steps when source data is available.

We demonstrate the efficacy of these algorithms, and
show that the Diff-GP outperform the Env-GP as the
source and target diverge. Our key contributions are:

• derivation of regret bounds for two transfer learn-
ing algorithms in the context of Bayesian optimi-
sation,

• presentation of a new transfer learning algorithm
(Diff-GP), and

• experimental verification of algorithms on both
simulated and real data.

2 Background

2.1 Gaussian Processes

AGaussian Process (GP) is a random distribution over
the set of smooth functions f : X ⊆ R

n → R on
compact X denoted

f (x) ∼ GP(μ (x) , k (x,x′)) ,

where μ : X → R, μ (x) = E (f (x)) is the mean
function of the Gaussian process; k : X × X → R,
k (x,x′) = E ((f (x)− μ (x)) (f (x′)− μ (x′))) is the
kernel or covariance function. Without loss of gen-
erality we may assume μ (x) = 0 and k (x,x) = 1 for
all x ∈ X . The kernel k is a prior that encodes our
underlying assumptions regarding smoothness of the
distribution. A popular choice of kernel function is

k (x,x′) = exp(− 1
2ν2 ‖x− x′‖2).

Given training data {(xa
t , y

a
t )| t ∈ ZT } generated from

yat = f (xa
t ) + εa, where εa ∼ N (

0, σ2
a

)
and ZT =

{0, 1, . . . , T − 1}, the posterior over f is

f (x|yAT ,XAT ) ∼ N (
μT (x) , σ2

T (x)
)
,

where

μT (x) = kT
AT

(x)
(
KAT+ σ2

aI
)−1

yAT ,

σ2
T (x) = k (x,x) − kT

AT
(x)
(
KAT+ σ2

aI
)−1

kAT (x) ;
(1)

and yAT = [ ya0 ya1 . . . yaT−1 ]T, KAT =

[ k
(
xa
i ,x

a
j

)
]i,j∈ZT , XAT = [ xa

0 xa
1 . . . xa

T−1 ] and

kAT (x) = [ k (xa
i ,x) ]

T
i∈ZT

.

2.2 Bayesian Optimisation

Let f (x) be a real-valued function over a compact do-
main X ⊆ R

n. Consider the problem

argmax
x∈X⊆Rn

f (x) , (2)

where it is assumed that f is computationally expen-
sive to evaluate, and observations of f may be affected
by noise. Examples of such systems include optimising
the performance of a machine learning technique for a
given set of hyperparameters, or maximising the yield
of a chemical reaction given temperature, pressure etc.
The aim is to solve (2) using the minimum evaluations
of f .

A popular approach to this problem is Bayesian
optimisation (Jones et al., 1998). Bayesian opti-
misation models f using a Gaussian process f ∼
GP(μ (x) , k (x,x′)) where without loss of generality
it is assumed that μ = 0 and hence the Gaussian pro-
cess is entirely specified by the kernel k. Bayesian
optimisation is an iterative method that optimises a
surrogate utility function (also known as acquisition
function) whose role is to guide the optimiser to the
optimum of the underlying function f in as few steps
as possible.

The generic Bayesian optimisation function is as fol-
lows:

1. Set t = 0.

2. Find xa
t = argmax

x∈X
α (x|XAt ,yAt).

3. Evaluate yat = f (xa
t ).

4. Add new observation to At as At = At ∪ {xa
t , y

a
t }

5. Set t = t+ 1 and repeat from step 2 if t < T .

where α is the acquisition function and T is the max-
imum budget on the number of function evaluations.
There are various acquisition functions e.g. probability
of improvement (Kushner, 1964), expected improve-
ment (Mockus, 2002) and Gaussian process upper con-
fidence bound (GP-UCB) (Srinivas et al., 2012). The
GP-UCB is especially amenable to theoretical analysis
and is defined as

α (x) = μt−1 (x) +
√
βtσt−1 (x) ,

where βt are a sequence of constants. The first term
in this acquisition function favours exploitation of pre-
dicted maxima, and the latter exploration of unknown
regions.
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2.3 Experimental Design, Information Gain,
and Regret Bounds

In experimental design (ED) (Chaloner and Verdinelli,
1995), information gain measures how informative
a dataset {(xa

i , y
a
i )| i ∈ ZT } generated from yat =

f (xa
t ) + εa, where εa ∼ N (

0, σ2
a

)
, is about a func-

tion f . Information gain is defined to be the mutual
information between f and yAT - that is,

I (yAT | f) = H (yAT )−H (yAT | f) .
For a Gaussian distribution H (N (µ,Σ)) =
1
2 log |2πeΣ| (Cover and Thomas, 2012), and hence

I (yAT | f) = 1
2 log

∣∣I+ σ−2
a KAT

∣∣ .
In Bayesian optimisation, regret measures the distance
from the optimal solution. For an optimiser following a
sequence of points xa

0 ,x
a
1 , . . . the instantaneous regret

at point t is

rt = f (x∗)− f (xa
t ) ≥ 0,

where x∗ is the true maximum of f . The cumulative
regret up to instance T is

RT =
∑

t∈ZT
rt.

In Srinivas et al. (2012) a number of statistical bounds
are presented for the total regret in a GP-UCB con-
text. These bounds take the form

Pr
{
RT ≤ √

C1βTγTT + c0 ∀T ≥ 1
} ≥ 1− δ, (3)

where the sequence β0, β1, . . . is specified, C1 is a term
dependent on measurement noise, and

γT = max
AT⊂X| |AT |=T

I (yAT | fAT ) (4)

is the maximum information gain where f =
[f(xa

0), f(x
a
1), . . . , f(x

a
T−1)]. In the context of

Bayesian optimisation our aim is to get (sufficiently
close) to the optimum in the minimal number T of
evaluations of f . The cumulative regret RT provides
a measure of closeness to optimality after T steps.
Thus the term

√
C1βTγTT provides a bound on perfor-

mance. In this paper we will demonstrate that both
the maximum information gain γT and the term C1

may be decreased through the use of transfer learn-
ing, enabling us to get closer to the optimum in fewer
evaluations than in the non-transfer learning case.

3 Transfer Learning in Bayesian
Optimisation

Standard Bayesian optimisation starts with no obser-
vations of the function f and proceeds with a sequence

of test evaluations at points xa
0 ,x

a
1 , . . . to find the max-

imum of f . As such it suffers from a cold-start problem
(Swersky et al., 2013; Joy et al., 2016). Transfer learn-
ing is a means of overcoming this problem and also of
speeding up the convergence of the optimisation.

In the transfer learning case it is assumed that there
is a set of source data {xs

i , y
s
i | i ∈ ZNs} given a-priori,

where ysi = f ′ (xs
i ) + ε′, ε′ ∼ N (

0, σ′2). Limited work
has focused on transfer learning in Bayesian optimisa-
tion. Bardenet et al. (2013) built a transfer learning
model under the rigid assumption that if f ′(x) ≥ f ′(y)
for some x, y for the source function then f(x) ≥ f(y)
for the target function. This strong assumption rarely
holds in practice, e.g. this assumption is violated for
any two functions where one is a lagged version of the
other. Yogatama and Mann (2014) built a transfer
learning model to utilise past data assuming that the
deviations of a function from its mean are transferable.
Once again, this assumption holds only for highly sim-
ilar functions.

We present two approaches to transfer learning in this
section. The first, envelope-stretching Bayesian op-
timisation (Env-GP), was previously presented in Joy
et al. (2016). The latter, difference-modelling Bayesian
optimisation (Diff-GP), is presented here for the first
time. The key difference between Env-GP and Diff-GP
is illustrated in Figure 1:

• Env-GP: the Env-GP method models the source
data using the target function by treating the dif-
ference between the source and target functions as
part of the noise model - that is, ysi = f (xs

i )+ εs,
εs ∼ N (

0, σ2
s

)
, where σ2

s > σ′2 is sufficiently large
to incorporate any source/target differences as a
noise term.

• Diff-GP: the Diff-GP method explicitly models
the difference between source and target functions
as a Gaussian process and uses the prior obtained
to construct a bias-corrected source data set. This
bias-corrected source data may then be used di-
rectly for the target without further stretching the
envelope.

In sections 3.1 and 3.2, we describe both these meth-
ods. Then in section 3.3, following Srinivas et al.
(2012) we present a theoretical analysis of both meth-
ods in terms of regret bounds, demonstrating how both
proposed methods result in a tighter regret bound than
the no transfer learning case.
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Figure 1: Env-GP and Diff-GP operation. Env-GP (left figure) works by stretching the envelope about the
source function f ′ to encompass the target function f so that source data can be modelled in terms of the target
function. Diff-GP (right figure), by contrast, constructs a bias-corrected source f ′ + Δf to better match the
target.

3.1 Transfer Learning in Bayesian
Optimisation 1: Env-GP

By definition ysi = f ′ (xs
i ) + ε′ and f, f ′ ∼

GP(μ (x) , k (x,x′)). It follows that there exists σs ≥
σ′ such that the observations ysi may be modelled by
ysi = f (xs

i )+ εs, where εs ∼ N (
0, σ2

s

)
. The amount of

“stretch” required to fit the source data to the target
function depends on the magnitude of the difference
between f ′ − f between source and target functions.

Given a set of source data {xs
i , y

s
i | i ∈ ZNs} gener-

ated as described and an appropriate σs, the envelope-
stretching Bayesian optimisation procedure (Env-GP)
is:

1. Set t = 0.

2. Find xa
t = argmax

x∈X
α (x| [XS ,XAt ] , [yS ,yAt ]).

3. Evaluate yat = f (xa
t ).

4. Add new observation to At as At = At ∪ {xa
t , y

a
t }

5. Set t = t+ 1 and repeat from step 2 if t < T .

which differs from the standard Bayesian optimisation
algorithm through the inclusion of source data at step
2. Note that f

(
x| [ XS XAt

]
,
[
yS yAt

]) ∼
N (

μ̃t (x) , σ̃
2
t (x)

)
, where

μ̃t (x) =

[
kS (x)
kAt (x)

]T
Q−1

[
yS

yAt

]
,

σ̃2
t (x) = k (x,x) −

[
kS (x)
kAt (x)

]T
Q−1

[
kS (x)
kAt (x)

]

Q =

[
KS + σ2

sI KSAt

KT
SAt

KAt + σ2
aI

] (5)

and yS = [ ys0 ys1 . . . ysNs−1 ]T, KS =

[ k
(
xs
i ,x

s
j

)
]i,j∈ZNs

, XS = [ xs
0 xs

1 . . . xs
Ns−1 ],

KSAt = [ k
(
xs
i ,x

a
j

)
]i∈ZNs ,j∈Zt , and kS (x) =

[ k (xs
i ,x) ]i∈ZNs

. This method has been presented
in Joy et al. (2016), which also proposed a method for
estimating σs from observations.

3.2 Transfer Learning in Bayesian
Optimisation 2: Diff-GP

Let {xs
i , y

s
i | i ∈ ZNs} be the source data generated

by ysi = f ′ (xs
i ) + ε′, where ε′ ∼ N (

0, σ′2). Then

f ′ (x|XS ,yS) ∼ N (
μS (x) , σ2

S (x)
)
, where

μS (x) = kT
S (x)

(
KS + σ′2I

)−1
yS ,

σ2
S (x) = k (x,x) − kT

S (x)
(
KS + σ′2I

)−1
kT
S (x) .

and the same covariance function has been used for
both f and f ′. Let {xa

i , y
a
i | i ∈ Zt} be the target data

to time t. Defining g (x) = f (x)− f ′ (x) and

Δyai (x
a
i ) = yai − μS (xa

i ) ,

ΔyAt (XAt) =
[
Δya0 Δya1 . . . Δyat−1

]T
,

it follows that Δyai (x) = g (x) + εg (x), where
εg (x) ∼ N (

0, σ2
a + σ2

S (x)
)
, and g (x|XAt ,ΔyAt) ∼

N (
μDt (x) , σ

2
Dt

(x)
)
, where

μDt (x) = kT
At

(x)
(
KAt +

(
σ2
a + σ2

S (x)
)
I
)−1

. . .
. . .ΔyAt (XAt) ,
σ2
Dt

(x) = k (x,x) . . .

. . .− kT
At

(x)
(
KAt +

(
σ2
a + σ2

S (x)
)
I
)−1

kAt (x) ,

and the subscript Dt indicates the value for the “dif-
ference” function g (x). This allows us to construct
the bias-corrected source data{

xs
i , y

cs
i,t (x

s
i ) = ysi + μDt (x

s
i )
∣∣ i ∈ ZNs

}
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where ycsi,t (x) = f (x)+εs,t (x) is the sum of the (noisy)
source sample ysi = f ′ (xs

i )+ ε′ and a correction factor
μDt (x

s
i ) equal to the expected (mean) difference be-

tween target and source function at xs
i and hence can

be treated as a noisy sample of the target function; and
εs,t (x) ∼ N (

0, σ′2 + σ2
Dt

(x)
)
. This bias-corrected

source data may therefore be used for transfer learning
in the Bayesian optimisation algorithm without addi-
tional stretching of the envelope. We note that the
target mean μDt (x

s
i ) will change with each addition of

a new target observation, so the bias-corrected source
data is a function of t, and moreover that there is
some t-dependent envelope stretching built in to the
bias-corrected source noise variance - i.e.

σ2
cs,t (x) = σ′2 + σ2

Dt
(x) .

Given a set of source data the difference-modelling
Bayesian optimisation procedure (Diff-GP) is:

1. Set t = 0.

2. Calculate the bias-corrected source data{
xs
i , y

cs
i,t (x

s
i ) = ysi + μDt (x

s
i )
∣∣ i ∈ ZNs

}
3. Find xa

t = argmax
x∈X

α (x| [XS ,XAt ] , [yCSt ,yAt ]),

where yCSt = [ ycs0,t (x
s
0) . . . y

cs
Ns−1,t

(
xs
Ns−1

)
]T

4. Evaluate: yat = f (xa
t ).

5. Add new observation to At as At = At ∪ {xa
t , y

a
t }

6. Set t = t+ 1 and repeat from step 2 if t < T .

Note that f
(
x| [ XS XAt

]
,
[
yCSt yAt

]) ∼
N (

μ̆t (x) , σ̆
2
t (x)

)
, where

μ̆t (x) =

[
kS (x)
kAt (x)

]T
R−1

[
yCSt

yAt

]

σ̆2
t (x) = k (x,x)−

[
kS (x)
kAt (x)

]T
R−1

[
kS (x)
kAt (x)

]
,

R =

[
KS +Σ2

cs,t KSAt

KT
SAt

KAt + σ2
aI

] (6)

and

Σ2
cs,t = diag

(
σ2
cs,t (x

s
0) , σ

2
cs,t (x

s
1) , . . . , σ

2
cs,t

(
xs
Ns−1

))
3.3 Regret Bounds

Our aim in this section is to study the effect of source
data in the GP-UCB transfer learning scenario on the
regret bound (3). Recall that the regret bound of in-
terest has the form

Pr{RT ≤ √
C1βTγTT + c0 ∀T ≥ 1} ≥ 1− δ

where the sequence β0, β1, . . . is specified, C1 is a term
dependent on measurement noise, and γT is the max-
imum information gain. We consider the impact of
the source data separately on the maximum informa-
tion gain γT and C1 and demonstrate that both are
decreased in the transfer learning case for both Env-
GP and Diff-GP, and hence that the bounding term√
C1βTγTT on the convergence of the GP-UCB error

bound is tighter in the presence of source data.

Theorem 1. Let γT be the maximum information
gain of the GP-UCB in the standard (no transfer
learning) case and γ̃T the maximum information gain
in the Env-GP (or Diff-GP) case, assuming Ns > 0.
Then γ̃T < γT .

Proof. See appendix A.

Theorem 2. Let C1 be the relevant term in the regret
bound (3) of the GP-UCB in the standard (no transfer
learning) case and C̃1 the same term in the Env-GP
(or Diff-GP) case, assuming Ns > 0. Then C̃1 < C1.

Proof. See appendix A.

Theorems 1 and 2 together imply that

√
C̃1βT γ̃TT <√

C1βTγTT , and hence, in both the Env-GP and Diff-
GP transfer learning algorithms we have a tighter re-
gret bound in the transfer learning case,

Pr{RT ≤
√
C̃1βT γ̃TT + c0 ∀T ≥ 1} ≥ 1− δ, (7)

compared to the bound (3) for the non-transfer learn-
ing case. This implies that both Env-GP and Diff-
GP should be able to find the optimal solution more
quickly than the standard (no transfer learning) case,
on average.

Of course if the source function f ′ is sufficiently dif-
ferent from the target function f , or the source points
are located too far from the region where f is optimal,
then it may be assumed that there is no useful speed-
up to be gained from the application of transfer learn-
ing. For the Env-GP algorithm in this case we may
expect that the envelope will need to be stretched sig-
nificantly (so σs will be large). The following theorem
shows that in such situations the benefits of transfer
learning vanish:

Theorem 3. Using the notation of Theorems 1 and
2,

lim
σ̃s→∞

√
C̃1βT γ̃TT =

√
C1βTγTT ,

where σ̃s = σs in the Env-GP case, σ̃s = σcs,t in the
Diff-GP case.

Proof. See appendix A.
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The response of the Diff-GP algorithm in such circum-
stances is less clear. It may be that σcs,t (x) (like σs

in the Env-GP case) will become large, in which case
from Theorem 3 we may expect the benefit to vanish.
However this depends entirely on whether Diff-GP is
(a) able to learn the difference between f ′ and f and
(b) whether the source data samples xs

i are close to
the optimum of the target function. For example, if
the difference between f and f ′ is simple - for exam-
ple, if f (x) = f ′ (x) + const - and the source samples
are close to the target optimum then the Diff-GP al-
gorithm may be expected to perform well even though
‖f − f ′‖∞ may be large.

4 Experimental Results

We consider two sets of experiments here. The first
considers a simulated data set where we can control
the similarity of the source and target functions. The
target and source functions are

f (x) = exp(− 1
2 |x− μ1|2) and

f ′ (x) = exp(− 1
2 |x− μ′1|2),

where μ′ = μ + s√
n
, s is the shift factor and we have

fixed the dimensionality to n = 2. By tuning s between
0 and 2 we are able to adjust the similarity between
f and f ′ directly, where s = 0 implies identical source
and target functions and s = 2 gives very dissimi-
lar functions. 20 source observations were generated
uniformly randomly. Noise for both source and tar-
get measurements was fixed with standard deviations
σ = σ′ = 0.1. For comparative purposes all simu-
lations in the simulated data were run for T = 20
samples. The squared exponential kernel of the form
k (x,x′) = exp(− 1

2ν2 ‖x− x′‖2) has been used for all
experiments with the length scale ν set to 0.1.

Results for the simulated dataset are shown in Figure
2. As may be seen from these graphs both the Env-GP
and Diff-GP algorithms outperformed the no-transfer-
learning case for source shifts up to at least s = 0.5.
It may be noted that for small s (up to approximately
s = 0.2) the Env-GP and Diff-GP algorithm performed
very similarly. However for moderate shifts (s = 0.4
and s = 0.5) Diff-GP outperforms Env-GP, which sup-
ports our earlier discussion regarding the advantages of
Diff-GP when the difference between source and target
is moderate but simple in structure (or learnable).

In our second experiment we performed tuning of hy-
perparameters for a support vector machine. For this
experiment we have used the 7-class UCI Image Seg-
mentation Dataset (Lichman, 2013). The data was
normalised to zero mean, unit variance on each fea-
ture and split into 70/30 ratio for training and val-
idation purposes. Our goal was to learn one-vs-rest

classifiers for all the classes. The first learning task
(i.e. class 1-vs-rest) was used as a source function and
all others (e.g. class 2-vs-rest) were separately treated
as target functions. We used the LibSVM (Chang and
Lin, 2011) toolbox, which has two hyperparameters for
SVM using rbf kernel: kernel scale γ and the cost pa-
rameter C. Both were varied from [10−1, 104]. The
functions are learnt in the exponent space, with range
[−1, 4] for both the hyperparameters. The source func-
tion was sampled on the full integer grid, whilst the
target functions were optimized over the continuous
space. Figure 3 shows the results of performance
on the validation set vs evaluations for two transfer
learning and the no-transfer learning (i.e. standard
Bayesian optimization using only target data) algo-
rithms. Evidently, within a fixed number of evalua-
tions transfer learning algorithms (Env-GP and Diff-
GP) are able to suggest better hyperparameters com-
pared to no-transfer learning algorithm. When com-
paring the two transfer learning algorithms, we note
that in four out of six cases, the Diff-GP algorithm
converged significantly faster than the Env-GP algo-
rithm, resulting in higher accuracy performance with
the budget of 20 iterations.

5 Conclusion

This paper has derived the regret bounds for two trans-
fer learning algorithms in Bayesian optimisation us-
ing GP-UCB as the acquisition function. The first al-
gorithm (Env-GP) models the difference between the
source and target functions as a noise process, whereas
the second algorithm (Diff-GP) models the difference
as a Gaussian process that is in turn used to correct
targets in the source data. In addition to the regret
bound the algorithms have been verified using both
synthetic and real data to demonstrate the utility of
these transfer learning methods. Our future work will
examine the problem of how to derive similar trans-
fer learning enabled tighter regret bounds for other
acquisition functions such as expected improvement,
predictive entropy search and so on.

A Proof of Theorems 1-3

Theorem 1: The maximum information gain for the
non transfer learning case is given by (4), where
I (yAT | f) = 1

2 log
∣∣I+ σ−2

a KAT

∣∣. The distribution of
the combined source/target datasets in the transfer
learning case is

[
yS

fAT

]
∼ N

([
0
0

]
,

[
KS + Σ̃

2

s KSAT

KT
SAT

KAT

])
,
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Figure 2: Simulated data results showing efficacy of transfer learning as a function of f ′ − f . In each graph
the x-axis shows evaluations and the y-axis shows the “best” solution found to that point. For all the graphs,
the results are averaged over 20 optimization trials, each starting with 3 random observations from the target
function. Error bars denote the standard errors.
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Figure 3: Hyperparameter tuning results for SVM with rbf kernel on UCI Image Segmentation dataset.
Hyperparameter-vs accuracy for Class 1 vs rest is used as a source function whilst all other one-vs-rest tun-
ing problems are separately treated as target functions. In each graph the x-axis shows evaluations and the
y-axis shows the “best” solution found to that point. For all the graphs, the results are averaged over 20 op-
timization trials, each starting with 3 random observations from the target function. Error bars denote the
standard errors.
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where Σ̃
2

s = σ2
sI in the Env-GP case and Σ̃

2

s =
diag

(
σ2
cs,t (xs)

)
in the Diff-GP case. It follows that,

in the transfer learning case, fAT ∼ N (m̃AT , K̃AT ),
where

m̃AT = KT
SAT

(
KS + Σ̃

2

s

)−1

fAT ,

K̃AT = KAT −KT
SAT

(
KS + Σ̃

2

s

)−1

KSAT

(8)

and by definition KA and KS are both positive semi-
definite. Assume without loss of generality that
m̃AT = 0. The information gain in the transfer learn-
ing case is therefore Ĩ (yAT ; f) =

1
2 log |I + σ−2

a K̃AT |,
where it should be noted that the sequence of points
xa
0 ,x

a
1 , . . . ,x

a
T−1 will in general be different from the

standard (non transfer learning) case. Using the fact
that |A+B| ≥ |A|+ |B| for positive definite matrices
A, B,

Ĩ (yAT ; f) = 1
2 log |I+ σ−2

a KAT − . . .

. . . σ−2
a KT

SAT

(
KS + Σ̃

2

sI
)−1

KSAT |
≤ 1

2 log
∣∣I+σ−2

a KAT

∣∣ .
(9)

Using (9), it follows that, defining γ̃T as the maximum
information gain in the transfer learning case,

γ̃T = max
AT⊂D:|AT |=T

Ĩ (yAT ; fAT )

= max
AT⊂D:|AT |=T

1
2 log |I+ σ−2

a KAT − . . .

. . . σ−2
a KT

SAT

(
KS + Σ̃

2

s

)−1

KSAT |

Using the Minkowski inequality on determinants of
two positive definite matrices A and B, we have
|A + B| ≥ |A| + |B| > |A|. Assuming A = I +

σ−2
a KAT − σ−2

a KT
SAT

(
KS + Σ̃2

s

)−1

KSAT and B =

σ−2
a KT

SAT

(
KS + Σ̃2

s

)−1

KSAT , we can write log|A| <
log|A + B| and thus conclude that γ̃T < γT . This
completes the proof.

Theorem 2: In the original derivation of (3) in Srini-
vas et al. (2012) the term C1 arises in the context of
Lemma 5.4 in Srinivas et al. (2012). A key step in the
proof of this lemma is the observation that

σ−2
a σ2

t−1 (xt) ≤ σ−2
a k (xt,xt)

≤ σ−2
a maxx∈A k (x,x) = σ−2

a ,

which relies on the fact that k (x,x) = 1 for all x ∈ X .
This leads to

C1 = 8

log(1+σ−2
a )

maxx∈AT k (x,x) = 8

log(1+σ−2
a )

.

In the context of transfer learning KA is replaced
by K̃A as defined by (8), the diagonals of which are

k̃ (xt,xt) = k (xt,xt)− kT
S (xt) (KS + Σ̃

2

s)
−1kS (xt) ∈

(0, 1). So, for transfer learning,

σ−2
a σ2

t−1 (xt) ≤ σ−2
a k̃ (xt,xt)

≤ σ−2
a maxx∈A k̃ (x,x)

< σ−2
a ,

and hence, using the notation C̃1 to distinguish from
the non transfer learning term C1,

C̃1 = 8

log(1+σ−2
a )

maxx∈AT k̃ (x,x) < C1,

which completes the proof.

Theorem 3: By (8) we have K̃AT = KAT −
Σ̃

−2

s KT
SAT

(Σ̃
−2

s KS + I)−1KSAT . Noting that

limσ̃s→∞(Σ̃
−2

s KS + I) = I, it follows that
limσ̃s→∞K̃AT = KAT . Hence it follows from the
proofs of theorems 1 and 2 that C̃1 → C1 and γ̃T →
γT , and the result follows.
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(2013). Collaborative hyperparameter tuning. In
Proceedings of the 30th International Conference on
Machine Learning (ICML-13), pages 199–207.

Chaloner, K. and Verdinelli, I. (1995). Bayesian exper-
imental design: A review. Statistical Science, pages
273–304.

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A li-
brary for support vector machines. ACM Transac-
tions on Intelligent Systems and Technology, 2:27:1–
27:27. Software available at http://www.csie.ntu.
edu.tw/~cjlin/libsvm.

Cover, T. M. and Thomas, J. A. (2012). Elements of
information theory. John Wiley & Sons.

Jones, D. R., Schonlau, M., and Welch, W. J. (1998).
Efficient global optimization of expensive black-
box functions. Journal of Global optimization,
13(4):455–492.

Joy, T. T., Rana, S., Gupta, S. K., and Venkatesh,
S. (2016). Flexible transfer learning framework
for bayesian optimisation. In Advances in Knowl-
edge Discovery and Data Mining, pages 102–114.
Springer.

Kushner, H. J. (1964). A new method of locating the
maximum point of an arbitrary multipeak curve in
the presence of noise. Journal of Basic Engineering,
86(1):97–106.

Lichman, M. (2013). UCI machine learning repository.

Mockus, J. (2002). Bayesian heuristic approach to
global optimization and examples. Journal of Global
Optimization, 22(1-4):191–203.



Shilton, Gupta, Rana, Venkatesh

Pan, S. J. and Yang, Q. (2010). A survey on transfer
learning. Knowledge and Data Engineering, IEEE
Transactions on, 22(10):1345–1359.

Rasmussen, C. E. (2006). Gaussian processes for ma-
chine learning.

Snoek, J., Larochelle, H., and Adams, R. P. (2012).
Practical bayesian optimization of machine learning
algorithms. In Advances in neural information pro-
cessing systems, pages 2951–2959.

Srinivas, N., Krause, A., Kakade, S., and Seeger, M.
(2010). Gaussian process optimization in the ban-
dit setting: No regret and experimental design. In
Proc. International Conference on Machine Learn-
ing (ICML).

Srinivas, N., Krause, A., Kakade, S. M., and Seeger,
M. W. (2012). Information-theoretic regret bounds
for gaussian process optimization in the bandit set-
ting. IEEE Transactions on Information Theory,
58(5):3250–3265.

Swersky, K., Snoek, J., and Adams, R. P. (2013).
Multi-task bayesian optimization. In Burges, C.
J. C., Bottou, L., Welling, M., Ghahramani, Z., and
Weinberger, K. Q., editors, Advances in Neural In-
formation Processing Systems 26, pages 2004–2012.
Curran Associates, Inc.

Yogatama, D. and Mann, G. (2014). Efficient transfer
learning method for automatic hyperparameter tun-
ing. In Proceedings of the 17th International Con-
ference on Artificial Intelligence and Statistics (AIS-
TATS).


