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Abstract

We consider repeated games in which the player, instead of observing the action chosen

by the opponent in each game round, receives a feedback generated by the combined choice

of the two players. We study Hannan consistent players for these games, that is, randomized

playing strategies whose per-round regret vanishes with probability one as the number n of

game rounds goes to infinity. We prove a general lower bound of Ω(n−1/3) for the conver-

gence rate of the regret, and exhibit a specific strategy that attains this rate for any game for

which a Hannan consistent player exists.
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1 A motivating example

A simple yet nontrivial example of partial monitoring is the following dynamic pricing problem.

A vendor sells a product to a sequence of customers whom he attends one by one. To each

customer, the seller offers the product at a price he selects, say, from the interval [0, 1]. The cus-

tomer then decides to buy the product or not. No bargaining is possible and no other information

is exchanged between buyer and seller. The goal of the seller is to achieve an income almost as

large as if he knew the maximal price each customer is willing to pay for the product. Thus, if

the price offered to the t-th customer is pt and the highest price this customer is willing to pay is

yt ∈ [0, 1], then the loss of the seller is yt − pt if the product is sold and (say) a constant c > 0 if

the product is not sold. Formally, the loss of the vendor at time t is

ℓ(pt, yt) = (yt − pt)Ipt≤yt
+ c Ipt>yt

where c ∈ [0, 1]. (In another version of the problem the constant c may be replaced by yt. In this

case it is easy to see that all terms depending on yt cancel out when considering the regret, and we

obtain the bandit setting analyzed by Kleinberg and Leighton [28]—see below.) In either case,

if the seller knew in advance the empirical distribution of the yt’s then he could set a constant

price q ∈ [0, 1] which minimizes his overall loss. A natural question is whether there exists a

randomized strategy for the seller such that his average regret

1

n

n∑

t=1

ℓ(pt, yt) − min
q∈[0,1]

1

n

n∑

t=1

ℓ(q, yt)

is guaranteed to converge to zero as n → ∞ regardless of the sequence y1, y2, . . . of prices. The

difficulty in this problem is that the only information the seller (i.e., the forecaster) has access to

is whether pt > yt but neither yt nor ℓ(pt, yt) are revealed. One of the main results of this paper

describes a simple strategy such that the average regret defined above is of the order of n−1/5.

We treat such limited-feedback (or partial monitoring) prediction problems in a more general

framework which we describe next. The dynamic pricing problem described above, which is

a special case of this more general framework, has been also investigated by Kleinberg and

Leighton [28] in a simpler setting where the reward of the seller is defined as ρ(pt, yt) = pt Ipt≤yt
.

Note that, by using the feedback information (i.e., whether the customer bought the product or

not), here the seller can compute the value of ρ(pt, yt). Therefore, their game reduces to an

instance of the multi-armed bandit game (see Example 1 below) with a continuous action space.

2 Main definitions

We adopt a learning-theoretic viewpoint and describe partial monitoring as a repeated prediction

game between a forecaster (the player) and the environment (the opponent). In the same spirit,

we call outcomes the actions taken by the environment. At each round t = 1, 2 . . . of the game,

the forecaster chooses an action It from the set {1, . . . , N}, and the environment chooses an

action yt from the set {1, . . . ,M}. The losses of the forecaster are summarized in the loss matrix
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PREDICTION WITH PARTIAL MONITORING

Parameters: number of actions N , number of outcomes M , loss function ℓ, feedback func-

tion h.

For each round t = 1, 2 . . .,

(1) the environment chooses the next outcome yt ∈ {1, . . . ,M} without revealing it;

(2) the forecaster chooses a probability distribution pt over the set of N actions and draws

an action It ∈ {1, . . . , N} according to this distribution;

(3) the forecaster incurs loss ℓ(It, yt) and each action i incurs loss ℓ(i, yt), where none of

these values is revealed to the forecaster;

(4) the feedback h(It, yt) is revealed to the forecaster.

L = [ℓ(i, j)]N×M . (This matrix is assumed to be known by the forecaster.) Without loss of

generality, we rescale the losses so that they all lie in [0, 1]. If, at time t, the forecaster chooses

an action It ∈ {1, . . . , N} and the outcome is yt ∈ {1, . . . ,M}, then the forecaster’s suffers

loss ℓ(It, yt). However, instead of the outcome yt, the forecaster only observes the feedback

h(It, yt), where h is a known feedback function that assigns, to each action/outcome pair in

{1, . . . , N} × {1, . . . ,M} an element of a finite set S = {s1, . . . , sm} of signals. The values of

h are collected in a feedback matrix H = [h(i, j)]N×M .

Note that we do not make any restrictive assumption on the power of the opponent. The

environment may choose action yt at time t by considering the whole past, that is, the whole

sequence of action/outcome pairs (Is, ys), s = 1, . . . , t−1. Without loss of generality, we assume

that the opponent uses a deterministic strategy, so that the value of yt is fixed by the sequence

(I1, . . . , It−1). In comparison, the forecaster has access to significantly less information, since

he only knows the sequence of past feedbacks, (h(I1, y1), . . . , h(It−1, yt−1)).
We note here that some authors consider a more general setup in which the feedback may

be random. For the sake of clarity we treat the simpler model described above and return to the

more general case in Section 7.

It is an interesting and complex problem to investigate the possibilities of a predictor only

supplied with the limited information of the feedback. In this paper we focus on the average

regret

1

n

n∑

t=1

ℓ(It, yt) − min
i=1,...,N

1

n

n∑

t=1

ℓ(i, yt) ,

that is, the difference between the average (per-round) loss of the forecaster and the average

(per-round) loss of the best action. Forecasting strategies guaranteeing that the average regret

converges to zero almost surely for all possible strategies of the environment are called Hannan

consistent after James Hannan, who first proved the existence of a Hannan consistent strategy
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in the full information case [21] when h(i, j) = j for all i, j (i.e., when the true outcome yt

is revealed to the forecaster after taking an action). The full information case has been studied

extensively in the theory of repeated games, and in the fields of learning theory and information

theory. A few key references and surveys include Blackwell [6], Cesa-Bianchi, Freund, Haus-

sler, Helmbold, Schapire, and Warmuth [8], Cesa-Bianchi and Lugosi [9], Feder, Merhav, and

Gutman [14], Foster and Vohra [18], Hart and Mas-Colell [23], Littlestone and Warmuth [29],

Merhav and Feder [32], and Vovk [38, 37].

A natural question one may ask is under what conditions on the loss and feedback matrices it

is possible to achieve Hannan consistency, that is, to guarantee that, asymptotically, the cumula-

tive loss of the forecaster is not larger than that of the best constant action with probability one.

Naturally, this depends on the relationship between the loss and feedback functions. An initial

answer to this question has been provided by the work of Piccolboni and Schindelhauer [34].

However, since they are only concerned with expected performance, their results do not imply

Hannan consistency. In addition, their bounds have suboptimal rates of convergence. Below,

we extend those results by showing a forecaster that achieves Hannan consistency with optimal

convergence rates.

Note that the forecaster is free to encode the values h(i, j) of the feedback function by real

numbers. The only restriction is that if h(i, j) = h(i, j′) then the corresponding real numbers

should also coincide. To avoid ambiguities by trivial rescaling, we assume that |h(i, j)| ≤ 1
for all pairs (i, j). Thus, in the sequel we assume that H = [h(i, j)]N×M is a matrix of real

numbers between −1 and 1 and keep in mind that the forecaster may replace this matrix by

Hφ = [φi(h(i, j))]N×M for arbitrary functions φi : [−1, 1] → [−1, 1], i = 1, . . . , N . Note that

the set S of signals may be chosen such that it has m ≤ M elements, though after numerical

encoding the matrix may have as many as MN distinct elements.

The problem of partial monitoring was considered by Mertens, Sorin, and Zamir [33], Rus-

tichini [35], Piccolboni, and Schindelhauer [34], and Mannor and Shimkin [30]. The forecaster

strategy studied in Section 3 is first introduced in [34], where its expected regret is shown to

have a sub-linear growth. Rustichini [35] and Mannor and Shimkin [30] consider a more gen-

eral setup in which the feedback is not necessarily a deterministic function of the pair outcome

and forecaster’s action, but it may be random with a distribution indexed by this pair. Based on

Blackwell’s approachability theorem, Rustichini [35] establishes a general existence result for

strategies with asymptotically optimal performance in this more general framework. In this pa-

per we answer Rustichini’s question about the fastest achievable rate of convergence in the case

when Hannan consistent strategies exist. Mannor and Shimkin also consider cases when Hannan

consistency may not be achieved, give a partial solution, and point out important difficulties in

such cases.

Before introducing a general prediction strategy and sufficient conditions for its Hannan con-

sistency, we describe a few concrete examples of partial monitoring problems.

Example 1 (Multi-armed bandit problem.) A well-studied special case of the partial monitoring

prediction problem is the so-called multi-armed bandit problem. Here the forecaster, after taking

an action, is able to measure his loss (or reward) but does not have access to what would have

happened had he chosen another possible action. Here H = L, that is, the feedback received by
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the forecaster is just his own loss. This problem has been widely studied both in a stochastic and

in a worst-case setting. The worst-case or adversarial setting considered in this paper was first

investigated by Baños [5] (see also Megiddo [31]). Hannan consistent strategies were constructed

by Foster and Vohra [17], Auer, Cesa-Bianchi, Freund, and Schapire [2], and Hart and Mas Colell

[22, 24] (see also Fudenberg and Levine [20]). Auer, Cesa-Bianchi, Freund, and Schapire [2]

(see also Auer [1] and the refined analysis of Cesa-Bianchi and Lugosi [11]) define a strategy

that guarantees a rate of convergence of the order O(
√

N(log N)/n) for the regret, which is

optimal up to the logarithmic factor.

Example 2 (Dynamic pricing.) Consider the dynamic pricing problem described in the introduc-

tion of the section under the additional restriction that all prices take their values from the finite

set {0, 1/N, . . . , (N − 1)/N} where N is a positive integer (see Example 6 for a non-discretized

version). Clearly, if N is sufficiently large, this discrete version approximates arbitrarily the

original problem. Now one may take M = N and the loss matrix is

L = [ℓ(i, j)]N×N where ℓ(i, j) =
j − i

N
Ii≤j + c Ii>j .

The information the forecaster (i.e., the vendor) receives is simply whether the predicted value

It is greater than the outcome yt or not. Thus, the entries of the feedback matrix H may be taken

to be h(i, j) = Ii>j or, after an appropriate re-encoding,

h(i, j) = a Ii≤j + b Ii>j i, j = 1, . . . , N

where a and b are constants chosen by the forecaster satisfying a, b ∈ [−1, 1].

Example 3 (Apple tasting.) This problem was first considered by Helmbold, Littlestone, and

Long [26] in a somewhat more restrictive setting. In this example N = M = 2 and the loss and

feedback matrices are given by

L =

[
0 1
1 0

]
and H =

[
a a
b c

]
.

Thus, the forecaster only receives feedback about the outcome yt when he chooses the first action.

(Imagine that apples are to be classified as “good for sale” or “rotten”. An apple classified as

“rotten” may be opened to check whether its classification was correct. On the other hand, since

apples that have been checked cannot be put on sale, an apple classified “good for sale” is never

checked.)

Example 4 (Label efficient prediction.) In the problem of label efficient prediction (see Helm-

bold and Panizza [25] and also Cesa-Bianchi, Lugosi, and Stoltz [12]) the forecaster, after choos-

ing its prediction for round t, decides whether to query the outcome yt, which he can only do for

a limited number of times. In [12] matching upper and lower bounds are given for the regret in

terms of the number of available labels, total number of rounds, and number of actions. A variant

5



of the label efficient prediction problem may also be cast as a partial monitoring problem. Let

N = 3, M = 2, and consider loss and feedback matrices of the form

L =




1 1
1 0
0 1


 and H =




a b
c c
c c


 .

In this example the only times useful feedback is received are when the first action is played but

in this case a maximal loss is incurred regardless of the outcome. Thus, just like in the problem

of label efficient prediction, playing the “informative” action has to be limited, otherwise there

is no hope for Hannan consistency.

3 General upper bounds on the regret

The purpose of this section is to derive general upper bounds for the rate of convergence of the

regret achievable under partial monitoring. This will be done by analyzing a forecasting strat-

egy inspired by Piccolboni and Schindelhauer [34]. This strategy is based on the exponentially

weighted average forecaster, a thoroughly studied predictor in the full information case, see,

for example, Auer, Cesa-Bianchi, and Gentile [3], Cesa-Bianchi, Freund, Haussler, Helmbold,

Schapire, and Warmuth [8], Littlestone and Warmuth [29], Vovk [38, 37]. In the special case

of the multi-armed bandit problem, the forecaster reduces to the strategy of Auer, Cesa-Bianchi,

Freund, and Schapire [2] (see also Hart and Mas-Colell [24] for a closely related method).

The crucial assumption under which the strategy is defined is that there exists an N × N
matrix K = [k(i, j)]N×N such that

L = KH ,

that is,

H and

[
H

L

]

have the same rank. In other words we may write, for all i ∈ {1, . . . , N} and j ∈ {1, . . . ,M},

ℓ(i, j) =
N∑

l=1

k(i, l) h(l, j) .

In this case one may define the estimated losses ℓ̃ by

ℓ̃(i, yt) =
k(i, It) h(It, yt)

pIt,t

, i = 1, . . . , N . (1)

(Note that the estimates proposed above are real-valued, and may even be negative.) We denote

the cumulative estimated losses at round t and for action i by L̃i,t =
∑t

s=1 ℓ̃(i, yt).
Consider the forecaster defined in Figure 1, where k∗ is defined in Theorem 1. Roughly

speaking, the two terms in the expression of pi,t correspond to “exploitation” and “exploration”.
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Parameters: matrix L of losses, feedback matrix H, matrix K such that L = KH

Initialization: L̃1,0 = · · · = L̃N,0 = 0.

For each round t = 1, 2, . . .

(1) let ηt = (k∗)−2/3((ln N)/N)2/3t−2/3 and γt = (k∗)2/3N2/3(ln N)1/3t−1/3;

(2) choose an action It from the set of actions {1, . . . , N} at random, according to the

distribution pt defined by

pi,t = (1 − γt)
e−ηt

eLi,t−1

∑N
k=1 e−ηt

eLk,t−1

+
γt

N
;

(3) let L̃i,t = L̃i,t−1 + ℓ̃(i, yt) for all i = 1, . . . , N .

Figure 1: The randomized forecaster for prediction under partial monitoring.

The first term assigns exponentially decreasing weights to the actions depending on their es-

timated cumulative losses, while the second term ensures sufficient exploration to guarantee

accurate estimates of the losses.

A key property of the loss estimates is their unbiasedness in the following sense. Denoting

by Et the conditional expectation given I1, . . . , It−1 (i.e., the expectation with respect to the

distribution pt of the random variable It), observe that this conditioning fixes the value of yt, and

thus,

Etℓ̃(i, yt) =
N∑

k=1

k(i, k) h(k, yt)

pk,t

pk,t

=
N∑

k=1

k(i, k) h(k, yt) = ℓ(i, yt) , i = 1, . . . , N ,

and therefore ℓ̃(i, yt) is an unbiased estimate of the loss ℓ(i, yt).
The main performance bound of this section is summarized in the next theorem. Note that

the average regret

1

n

(
n∑

t=1

ℓ(It, yt) − min
i=1,...,N

n∑

t=1

ℓ(i, yt)

)

decreases to zero at a rate n−1/3. This is significantly slower than the best rate n−1/2 obtained

in the “full information” case. In the next section we show that this rate cannot be improved

in general. Thus, the price paid for having access only to some feedback except for the actual

outcomes is the deterioration in the rate of convergence. However, Hannan consistency is still

achievable whenever the conditions of the theorem are satisfied.
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Theorem 1 Consider any partial monitoring problem such that the loss and feedback matrices

satisfy L = KH for some N × N matrix K with k∗ = max{1, maxi,j |k(i, j)|}, and consider

the forecaster of Figure 1. Let δ ∈ (0, 1). Then, for all strategies of the opponent, for all n, with

probability at least 1 − δ,

1

n

n∑

t=1

ℓ(It, yt) − min
i=1,...,N

1

n

n∑

t=1

ℓ(i, yt)

≤ 5

(
(k∗N)2 ln N

n

)1/3
(

1 +

√
3

2

ln((N + 4)/δ)

ln N

)

+

√
1

2n
ln

N + 4

δ
+ 5(k∗N)4/3n−2/3(ln N)−1/3 ln

N + 4

δ

+
1

n

(
1 + ((k∗N)2 ln N)1/3 + k∗N

)
ln

N + 4

δ
.

The main term in the performance bound has the order of magnitude n−1/3(k∗N)2/3(ln N)1/3.

Observe that this theorem directly implies Hannan consistency, by a simple application of the

Borel-Cantelli lemma.

Proof. The starting point of the proof of the theorem is an application of Theorem 5 (shown in

the Appendix) to the estimated losses. Since ℓ̃i,t lies between −Bt and Bt, where Bt = k∗N/γt,

the proposed values of γt and ηt imply that ηtBt 6 1 if and only if t > (ln N)/(Nk∗), that is, for

all t > 1. Therefore, defining for t = 1, . . . , n, the probability vector p̃t by its components

p̃i,t =
e−ηt

eLi,t−1

∑N
k=1 e−ηt

eLk,t−1

i = 1, . . . , N ,

we may apply Theorem 5 to obtain

n∑

t=1

N∑

i=1

p̃i,tℓ̃(i, yt) − min
j=1,...,N

L̃j,n 6
2 ln N

ηn+1

+
n∑

t=1

ηt

N∑

i=1

p̃i,tℓ̃(i, yt)
2 .

Since pi,t = (1 − γt)p̃i,t + γt/N , the inequality above yields, after some simple bounding,

n∑

t=1

N∑

i=1

pi,tℓ̃(i, yt)− min
j=1,...,N

L̃j,n 6
2 ln N

ηn+1

+
n∑

t=1

ηt

N∑

i=1

p̃i,tℓ̃(i, yt)
2 +

n∑

t=1

γt

N∑

i=1

1

N
ℓ̃(i, yt) . (2)

Introduce the notation

L̂n =
n∑

t=1

ℓ(It, yt) and Lj,n =
n∑

t=1

ℓ(j, yt), j = 1, . . . , N .

Next we show that, with an overwhelming probability, the right-hand side of the inequality (2) is

less than something of the order n2/3, and that the left-hand side is close to the actual regret

n∑

t=1

ℓ(It, yt) − min
j=1,...,N

Lj,n .
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Our main tool is Bernstein’s inequality for martingales, see Lemma 7 in the Appendix. This

inequality implies the following four lemmas, whose proofs are similar, so we omit some of

them.

Lemma 1 With probability at least 1 − δ/(N + 4),

n∑

t=1

N∑

i=1

pi,tℓ(i, yt) 6

n∑

t=1

N∑

i=1

pi,tℓ̃(i, yt)

+

√√√√2(k∗N)2

(
n∑

t=1

1

γt

)
ln

N + 4

δ
+

√
2

3

(
1 +

k∗N

γn

)
ln

N + 4

δ
.

Proof. Define Zt = −
∑N

i=1 pi,tℓ̃(i, yt) so that Et[Zt] = −
∑N

i=1 pi,tℓ(i, yt), and consider Xt =
Zt − Et[Zt]. We note that

Et[X
2
t ] 6 Et[Z

2
t ] =

∑

i,j

pi,tpj,tEt

[
ℓ̃(i, yt)ℓ̃(j, yt)

]

=
∑

i,j

pi,tpj,t

N∑

k=1

pk,t
k(i, k)k(j, k)h(k, yt)

2

p2
k,t

6
(k∗N)2

γt

,

and therefore,

Vn =
n∑

t=1

Et[X
2
t ] 6 (k∗N)2

n∑

t=1

1

γt

.

On the other hand, |Xt| is bounded by K = 1+(k∗N)/γn. Bernstein’s inequality (see Lemma 7)

thus concludes the proof.

Lemma 2 For each fixed j, with probability at least 1 − δ/(N + 4),

L̃j,n 6 Lj,n + +

√√√√2(k∗N)2

(
n∑

t=1

1

γt

)
ln

N + 4

δ
+

√
2

3

(
1 +

k∗N

γn

)
ln

N + 4

δ
.

Lemma 3 With probability at least 1 − δ/(N + 4),

n∑

t=1

ηt

N∑

i=1

p̃i,tℓ̃(i, yt)
2

6

n∑

t=1

ηt
(k∗N)2

γt

+

√√√√2(k∗N)4

(
n∑

t=1

η2
t

γ3
t

)
ln

N + 4

δ
+

√
2

3
ln

N + 4

δ
.

Proof. Let Zt = ηt

∑N
i=1 p̃i,tℓ̃(i, yt)

2, and Xt = Zt − Et[Zt]. All |Xt| are bounded by

K = max
t=1,...,n

ηt
(k∗N)2

γ2
t

= 1 .
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On the other hand,

Vn =
n∑

t=1

Et[X
2
t ] 6 (k∗N)4

n∑

t=1

η2
t

γ3
t

.

Bernstein’s inequality (see Lemma 7) now concludes the proof, together with the inequality

Et[Zt] 6 ηt
(k∗N)2

γt

.

Lemma 4 With probability at least 1 − δ/(N + 4),

n∑

t=1

γt

N∑

i=1

1

N
ℓ̃(i, yt) 6

n∑

t=1

γt +

√√√√2(k∗N)2

(
n∑

t=1

γt

)
ln

N + 4

δ
+

√
2

3
(k∗N + γ1) ln

N + 4

δ
.

The next lemma is an easy consequence of the Hoeffding-Azuma inequality for sums of

bounded martingale differences (see Hoeffding [27], Azuma [4]).

Lemma 5 With probability at least 1 − δ/(N + 3),

n∑

t=1

ℓ(It, yt) 6

n∑

t=1

N∑

i=1

pi,tℓ(i, yt) +

√
n

2
ln

N + 4

δ
.

The proof of the main result follows now from a combination of Lemmas 1 to 5 with (2) (where

Lemma 2 is applied N times). Using a union-of-event bound, we see that, with probability 1− δ,

n∑

t=1

ℓ(It, yt) − min
j=1,...,N

Lj,n

6
2 ln N

ηn+1

+2




√√√√2(k∗N)2

(
n∑

t=1

1

γt

)
ln

N + 4

δ
+

√
2

3

(
1 +

k∗N

γn

)
ln

N + 4

δ




+
n∑

t=1

ηt
(k∗N)2

γt

+

√√√√2(k∗N)4

(
n∑

t=1

η2
t

γ3
t

)
ln

N + 4

δ
+

√
2

3
ln

N + 4

δ

+
n∑

t=1

γt +

√√√√2(k∗N)2

(
n∑

t=1

γt

)
ln

N + 4

δ
+

√
2

3
(k∗N + γ1) ln

N + 4

δ

+

√
n

2
ln

N + 4

δ
.
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Substituting the proposed values of γt and ηt, and using that for −1 < α 6 0

n∑

t=1

tα 6
1

α + 1
nα+1 ,

we obtain the claimed result with a simple calculation.

We close this section by considering the implications of Theorem 1 to the special cases men-

tioned in the introduction.

Example 5 (Multi-armed bandit problem.) Recall that in the case of the multi-armed bandit

problem H = L and the condition of the theorem is trivially satisfied. Indeed, one may take

K to be the identity matrix so that k∗ = 1. Thus, Theorem 1 implies a bound of the order of

((N2 ln N)/n)1/3. Even though, as it is shown in the next section, the rate O(n−1/3) cannot be

improved in general, faster rates of convergence are achievable for the special case of the bandit

problem. Indeed, for the bandit problem Auer, Cesa-Bianchi, Freund, and Schapire [2], Auer [1],

and Cesa-Bianchi and Lugosi [11] describe careful modifications of the forecaster of Theorem 1

that achieves an upper bound of the order of
√

N(ln N)/n. It remains a challenging problem to

characterize the class of problems that admit rates of convergence faster than O(n−1/3).

Example 6 (Dynamic pricing.) In the discretized version of the dynamic pricing problem (i.e.,

when all prices are restricted to the set {0, 1/N, . . . , (N − 1)/N}), the feedback matrix is given

by h(i, j) = a Ii≤j + b Ii>j for some arbitrarily chosen values of a and b. By choosing, for

example, a = 1 and b = 0, it is clear that H is an invertible matrix and therefore one may choose

K = LH
−1 and obtain a Hannan-consistent strategy with average regret of the order of n−1/3.

Thus, the seller has a way of selecting the prices It such that his loss is not much larger than what

he could have achieved had he known the values yt of all costumers and offered the best constant

price. Note that with this choice of a and b, the value of k∗ equals 1 (i.e., does not depend on N )

and therefore the upper bound has the form C((N2 log N)/n)1/3
√

ln(1/δ) for some constant C.

By choosing N ≈ n1/5 and running the forecaster into stages of doubling lengths the effect of

discretization decreases at about the same rate as the average regret, and for the original problem

with unrestricted price range one may obtain a regret bound of the form

1

n

n∑

t=1

ℓ(pt, yt) − min
q∈[0,1]

1

n

n∑

t=1

ℓ(q, yt) = O(n−1/5 ln n) .

We leave out the simple but tedious details of the proof. We simply note here that the discretiza-

tion to N prices is done by the mapping yt to YN(yt) = ⌊Nyt⌋/N .

Example 7 (Apple tasting.) In the apple tasting problem described above, one may choose the

feedback values a = b = 1 and c = 0. Then, the feedback matrix is invertible and, once again,

Theorem 1 applies.

Example 8 (Label efficient prediction.) Recall next the variant of the label efficient prediction

problem described in the previous section. Here the rank of L equals two, so it is necessary

11



(and sufficient) to encode the feedback matrix such that its rank equals two. One possibility is to

choose a = 1, b = 1/2, and c = 1/4. Then we have L = KH for

K =




0 2 2
2 −2 −2
−2 4 4


 .

The obtained rate of convergence O(n−1/3) may be shown to be optimal. In fact, it is this example

that we use in Section 5 to show that this rate of convergence cannot be improved in general.

Remark 1 It is interesting to point out that the bound of Theorem 1 does not depend explicitly

on the value of the cardinality M of the set of outcomes. Of course, in some problems the value

k∗ may depend on M . However, in some important special cases, such as the multi-armed bandit

problem for which k∗ = 1, this value is independent of M . In such cases the result extends easily

to an infinite set of outcomes. In particular, the case when the loss matrix may change with time

can be encoded this way.

4 Other regret-minimizing strategies

In the previous section we saw a forecasting strategy that guarantees that the average regret is

of the order of n−1/3 whenever the loss matrix L can be expressed as KH for some matrix

K. In this section we discuss some alternative strategies that yield small regret under different

conditions.

First note that it is not true that the existence of a Hannan consistent predictor is guaranteed

if and only the loss matrix L can be expressed as KH. The following example describes such a

situation.

Example 9 Let N = M = 3,

L =




1 0 0
0 1 0
0 0 1


 and H =




a b c
d d d
e e e


 .

Clearly, for all choices of the numbers a, b, c, d, e, the rank of the feedback matrix is at most two

and therefore there is no matrix K for which L = KH. However, note that whenever the first

action is played, the forecaster has full information about the outcome yt. Formally, an action

i ∈ {1, . . . , N} is said to be revealing for a feedback matrix H if all entries in the i-th row of H

are different. Below we prove the existence of a Hannan consistent forecaster for all problems in

which there exists a revealing action.

Theorem 2 Consider an arbitrary partial monitoring problem (L,H) such that L has a re-

vealing action. Let δ ∈ (0, 1). If the randomized forecasting strategy of Figure 2 is run with

parameters

ε = max

{
0,

m −
√

2m ln(4/δ)

n

}
and η =

√
2ε ln N

n

12



Parameters: 0 ≤ ε ≤ 1 and η > 0. Action r is revealing.

Initialization: w1,0 = · · · = wN,0 = 1.

For each round t = 1, 2, . . .

(1) draw an action Jt from {1, . . . , N} according to the distribution

pi,t =
wi,t−1∑N
j=1 wj,t−1

, i = 1, . . . , N ,

(2) draw a Bernoulli random variable Zt such that P[Zt = 1] = ε;

(3) if Zt = 1 then play a revealing action, It = r, observe yt, and compute

wi,t = wi,t−1e
−η ℓ(i,yt)/ε for each i = 1, . . . , N ;

(4) otherwise, if Zt = 0, play It = Jt and let wi,t = wi,t−i for each i = 1, . . . , N .

Figure 2: The randomized forecaster for feedback matrices with a revealing action.

where m = (4n)2/3(ln(4N/δ))1/3, then

1

n

(
n∑

t=1

ℓ(It, yt) − min
i=1,...,N

L1,n

)
≤ 8n−1/3

(
ln

4N

δ

)1/3

holds with probability at least 1 − δ for any strategy of the opponent.

Proof. The forecaster of Figure 2 chooses at each round a revealing action with a small proba-

bility ε ≈ m/n (of the order of n−1/3). At these m stages where a revealing action is chosen, the

forecaster suffers a total loss of about m = O(n2/3) but gets full information about the outcome

yt. This situation is a modification of the problem of label efficient prediction studied in Helm-

bold and Panizza [25], and in Cesa-Bianchi, Lugosi, and Stoltz [12]. In particular, the algorithm

proposed in Figure 2 coincides with that of of Theorem 2 of [12]–except maybe at those rounds

when Zt = 1. Indeed, Theorem 2 of [12] ensures that, with probability at least 1 − δ, not more

than m among the Zt have value 1, and that

n∑

t=1

ℓ(Jt, yt) − min
j=1,...,N

n∑

t=1

ℓ(j, yt) 6 8n

√
ln(4N/δ)

m
.

This in turn implies that

n∑

t=1

ℓ(It, yt) − min
j=1,...,N

n∑

t=1

ℓ(j, yt) 6 m + 8n

√
ln(4N/δ)

m
,
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and substituting the proposed value for the parameter m concludes the proof.

Remark 2 (Dependence on N .) Observe that, even when the condition of Theorem 1 is satisfied,

the bound of Theorem 2 is considerably tighter. Indeed, even though the dependence on the time

horizon n is identical in both bounds (of the order of n−1/3), the bound of Theorem 2 depends

on the number of actions N in a logarithmic way only. As an example, consider the case of the

multi-armed bandit problem. Recall that here H = L and there is a revealing action if and only

if the loss matrix has a row whose elements are all different. In such a case Theorem 2 provides a

bound of the order of ((ln N)/n)1/3. On the other hand, there exist bandit problems for which, if

N ≤ n, it is impossible to achieve a regret smaller than (1/20)(N/n)1/2 (see [2]). If N is large,

the logarithmic dependence of Theorem 2 gives a considerable advantage.

Interestingly, even if L cannot be expressed as KH, if a revealing action exists, the strategy of

Section 3 may be used to achieve a small regret. This may be done by using a trick of Piccolboni

and Schindelhauer [34] to first convert the problem into another partial-monitoring problem for

which the strategy of Section 3 can be used. The basic step of this conversion is to replace the

pair of N × M matrices (L,H) by a pair of mN × M matrices (L′,H′) where m ≤ M denotes

the cardinality of the set S = {s1, . . . , sm} of signals (i.e., the number of distinct elements of

the matrix H). In the obtained prediction problem the forecaster chooses among mN actions at

each time instance. The converted loss matrix L
′ is obtained simply by repeating each row of the

original loss matrix m times. The new feedback matrix H
′ is binary and is defined by

H ′(m(i − 1) + k, j) = Ih(i,j)=sk
, i = 1, . . . , N, k = 1, . . . ,m, j = 1, . . . ,M .

Note that this way we get rid of the inconvenient problem of how to encode in a natural way the

feedback symbols. If the matrices

H
′ and

[
H

′

L
′

]

have the same rank, then there exists a matrix K
′ such that L

′ = K
′
H

′ and the forecaster of

Section 3 may be applied to obtain a forecaster that has an average regret of the order of n−1/3

for the converted problem. However, it is easy to see that any forecaster A with such a bounded

regret for the converted problem may be trivially transformed into a forecaster A′ for the original

problem with the same regret bound: A′ simply takes an action i whenever A takes an action of

the form m(i − 1) + k for any k = 1, . . . ,m.

The above conversion procedure guarantees Hannan consistency for a large class of partial

monitoring problems. For example, if the original problem has a revealing action i, then m = M
and the M ×M sub-matrix formed by the rows M(i−1)+1, . . . ,Mi of H

′ is the identity matrix

(up to some permutations over the rows), and therefore has full rank. Then obviously a matrix

K
′ with the desired property exists and the procedure described above leads to a forecaster with

an average regret of the order of n−1/3.

This last statement may be generalized, in a straightforward way, to an even larger class of

problems as follows.
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Corollary 1 (Distinguishing actions) Assume that the feedback matrix H is such that for each

outcome j = 1, . . . ,M there exists an action i ∈ {1, . . . , N} such that for all outcomes j′ 6= j,

h(i, j) 6= h(i, j′). Then the conversion procedure described above leads to a Hannan consistent

forecaster with an average regret of the order of n−1/3.

The rank of H
′ may be considered as a measure of the information provided by the feedback.

The highest possible value is achieved by matrices H
′ with rank M . For such feedback matrices,

Hannan consistency may be achieved for all associated loss matrices L
′.

Even though the above conversion strategy applies to a large class of problems, the associ-

ated condition fails to characterize the set of pairs (L,H) for which a Hannan consistent fore-

caster exists. Indeed, Piccolboni and Schindelhauer [34] show a second simple conversion of

the pair (L′,H′) that can be applied in situations when there is no matrix K
′ with the prop-

erty L
′ = K

′
L

′. (This second conversion basically deals with some actions which they define

as “non-exploitable” and which correspond to Pareto-dominated actions.) In these situations a

Hannan consistent procedure may be constructed based on the forecaster of Section 3. On the

other hand, Piccolboni and Schindelhauer also show that if the condition of Theorem 1 is not

satisfied after the second step of conversion, then there exists an external randomization over the

sequences of outcomes such that the sequence of expected regrets grows at least as n, where the

expectations are understood with respect to the forecaster’s auxiliary randomization and the ex-

ternal randomization. Thus, a proof by contradiction using the dominated-convergence theorem

shows that Hannan consistency is impossible to achieve in these cases. This result combined

with Theorem 1 implies the following gap theorem.

Corollary 2 Consider a partial monitoring forecasting problem with loss and feedback matrices

L and H. If Hannan consistency can be achieved for this problem, then there exists a Hannan

consistent forecaster whose average regret vanishes at rate n−1/3.

Thus, whenever it is possible to force the average regret to converge to zero, a convergence

rate of the order of n−1/3 is also possible. In some special cases, such as the multi-armed bandit

problem, even faster rates of the order of n−1/2 may be achieved (see Auer, Cesa-Bianchi, Freund,

and Schapire [2] and Auer [1]). However, as it is shown in Section 5 below, for certain problems

in which Hannan consistency is achievable, it can only be achieved with rate of convergence not

faster than n−1/3.

5 A lower bound on the regret

Next we show that the order of magnitude (in terms of the length of the play n) of the bound of

Theorem 1 is, in general, not improvable. A closely related idea in a somewhat different context

appears in Mertens, Sorin and Zamir [33, page 290].

Theorem 3 Consider the partial monitoring problem of label efficient prediction introduced in

Example 4 and defined by the pair of loss and feedback matrices

L =




1 1
1 0
0 1


 and H =




a b
c c
c c


 .
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Then, for any n > 8 and for any (randomized) forecasting strategy there exists a sequence

y1, . . . , yn of outcomes such that

E

[
1

n

n∑

t=1

ℓ(It, yt)

]
− min

i=1,2,3

1

n

n∑

t=1

ℓ(i, yt) >
n−1/3

5
,

where E denotes the expectation with respect to the auxiliary randomization of the forecaster.

Remark 3 Using techniques as in [12], it is easy to extend the theorem above to get a lower

bound of the order of ((ln N)/n)1/3. In view of the upper bound obtained in Theorem 2, this

lower bound is the best possible for the variant of label efficient prediction described in Exam-

ple 4, extended to the case of N + 1 actions and N outcomes. However, we conjecture that for

many other prediction problems with partial monitoring, significantly larger lower bounds (as a

function of N ) hold.

Proof. The proof proceeds by constructing a random sequence of outcomes and showing that,

for any (possibly randomized) forecaster, the expected value of the regret with respect both to

the random choice of the outcome sequence and to the forecaster’s random choices is bounded

from below by the claimed quantity.

More precisely, fix n ≥ 8 and denote by U1, . . . , Un the auxiliary randomization which the

forecaster has access to. Without loss of generality, it can be taken as an i.i.d. sequence of uniform

random variables in [0, 1]. The underlying probability space is equipped with the σ-algebra of

events generated by the random sequence of outcomes Y1, . . . , Yn and by the randomization

U1, . . . , Un. The random sequence of outcomes is independent of the auxiliary randomization,

whose associated probability distribution is denoted by PA.

We define three different probability distributions, P ⊗ PA, Q ⊗ PA, and R ⊗ PA, formed by

the product of the auxiliary randomization and one of the three probability distributions P, Q,

and R over the sequence of outcomes defined as follows. Under P the sequence Y1, Y2, . . . , Yn

is formed by independent, identically distributed {1, 2}-valued random variables with parameter

1/2. Under Q (respectively R) the Yi are also i.i.d. and {1, 2}-valued but with parameter 1/2− ε
(respectively 1/2 + ε), where ε > 0 is chosen below.

We denote by EA (respectively, EP, EQ, ER, EP⊗PA
, EQ⊗PA

, ER⊗PA
) the expectation with

respect to PA (respectively, P, Q, R, P ⊗ PA, Q ⊗ PA, R ⊗ PA). Obviously,

sup
yn
1

(
EA

[
L̂n

]
− min

j=1,2,3
Lj,n

)
> EP

[
EA

[
L̂n

]
− min

j=1,2,3
Lj,n

]
. (3)

Now,

EQ

[
min

j=1,2,3
Lj,n

]
6 min

j=1,2,3
EQ [Lj,n] =

n

2
− nε ,

whereas

EQ

[
L̂n

]
=

n

2
+

1

2
EQ [N1] + εEQ [N3] − εEQ [N2] ,
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where Nj is the random variable denoting the number of times the forecaster chooses the action

j over the sequence Y1, . . . , Yn, given the state U1, . . . , Un of the auxiliary randomization, for

j = 1, 2, 3. Thus, using Fubini’s theorem,

EQ

[
EA

[
L̂n

]
− min

j=1,2,3
Lj,n

]
>

1

2
EQ⊗PA

[N1] + ε (n − EQ⊗PA
[N2]) .

A similar argument shows that

ER

[
EA

[
L̂n

]
− min

j=1,2,3
Lj,n

]
>

1

2
ER⊗PA

[N1] + ε (n − ER⊗PA
[N3]) .

Averaging the two inequalities we get

EP

[
EA

[
L̂n

]
− min

j=1,2,3
Lj,n

]
>

1

2
EP⊗PA

[N1] + ε

(
n − 1

2
(EQ⊗PA

[N2] + ER⊗PA
[N3])

)
. (4)

Consider first a deterministic forecaster. Denote by T1, . . . , TN1
∈ {1, . . . , n} the times when the

forecaster chose action 1. Since action 1 is revealing, we know the outcomes at these times, and

denote them by Zn+1 = (YT1
, . . . , YTN1

). Denote by Kt the (random) index of the largest integer

j such that Tj 6 t − 1. Each action It of the forecaster is determined by the random vector (of

random length) Zt =
(
Y1, . . . , YTKt

)
. Since the forecaster we consider is deterministic, Kt is

fully determined by Zn+1. Hence, It may be seen as a function of Zn+1 rather than a function

of Zt only. This implies that, denoting by Pn (respectively Qn) the distribution of Zn+1 under

P (respectively Q), we have Q [It = 2] = Qn [It = 2] and P [It = 2] = Pn [It = 2]. Pinsker’s

inequality (see, e.g., [13, Lemma 12.6.1]) then ensures that, for all t,

Q [It = 2] 6 P [It = 2] +

√
1

2
K (Pn, Qn) , (5)

where K denotes the Kullback-Leibler divergence. The right-hand side may be further bounded

using the following lemma.

Lemma 6 Consider a deterministic forecaster. For 0 6 ε 6 1/
√

6,

K (Pn, Qn) 6 6EP [N1] ε
2 .

Proof. We note that Zn+1 = Zn, except when In = 1. In this case, Zn+1 = (Zn, Yn). Therefore,

using the chain rule for relative entropy (see, e.g., [13, Lemma 2.5.3]),

K (Pn, Qn) 6 K (Pn−1, Qn−1) + P [In = 1]K
(
B1/2, B1/2−ε

)

6 K (Pn−1, Qn−1) + P [In = 1]
2ε2

1 − 4ε2
,

where Bp denotes the Bernoulli distribution with parameter p. We conclude by iterating the

argument and using that 1 − 4ε2 > 1/3 for 0 6 ε 6 1/
√

6.
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Summing (5) over t = 1, . . . , n, we have proved that

EQ [N2] 6 EP [N2] + nε
√

3EP [N1] ,

and this holds for any deterministic strategy. (Note that considering a deterministic strategy

amounts to conditioning on the auxiliary randomization U1, . . . , Un.)

Consider now an arbitrary (possibly randomized) forecaster. Using Fubini’s theorem and

Jensen’s inequality, we get

EQ⊗PA
[N2] 6 EP⊗PA

[N2] + nε
√

3EP⊗PA
[N1] . (6)

Symmetrically,

ER⊗PA
[N3] 6 EP⊗PA

[N3] + nε
√

3EP⊗PA
[N1] . (7)

Using EP⊗PA
[N2] + EP⊗PA

[N3] 6 n, and substituting (6) and (7) into (4) yield

EP

[
EA

[
L̂n

]
− min

j=1,2,3
Lj,n

]
>

1

2
m0 + nε

(
1

2
− ε

√
3m0

)
, (8)

where m0 denotes EP⊗PA
[N1]. If m0 6 1/8 then for ε = 1/

√
6 the right-hand side of (8)

is at least n/10, which is greater than n2/3/5 for n > 8. Otherwise, if m0 > 1/8, we set

ε =
(
4
√

3m0

)−1
, which still satisfies 0 6 ε 6 1/

√
6. The lower bound then becomes

EP

[
EA

[
L̂n

]
− min

j=1,2,3
Lj,n

]
>

1

2
m0 +

n

16
√

3m0

and the right-hand side may be seen to be always bigger than n2/3/5. An application of (3)

concludes the proof.

6 Internal regret

In this section we deal with the stronger notion of internal (or conditional) regret. Internal regret

is concerned with consistent modifications of the forecasting strategy. Each of these possible

modifications is parameterized by a departure function Φ : {1, . . . , N} → {1, . . . , N}. After

round n, the cumulative loss of the forecaster is compared to the cumulative loss that would

have been accumulated had the forecaster chosen action Φ(It) instead of action It at round t,
t = 1, . . . , n. If such a consistent modification does not result in a much smaller accumulated

loss then the strategy is said to have small internal regret. Formally, we seek strategies achieving

1

n

n∑

t=1

ℓ(It, yt) −
1

n
min

Φ

n∑

t=1

ℓ(Φ(It), yt) = o(1)

where the minimization is over all possible functions Φ. We can extend the notion of Hannan

consistency to internal regret by requiring that the above average regret vanishes with probability

1 as n → ∞.
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The notion of internal regret has been shown to be useful in the theory of equilibria of re-

peated games. Foster and Vohra [16, 18] showed that if all players of a finite game choose a

strategy that is Hannan consistent with respect to the internal regret, then the joint empirical fre-

quencies of play converge to the set of correlated equilibria of the game (see also Fudenberg and

Levine [19], Hart and Mas-Colell [22]). Foster and Vohra [16, 18] proposed internal regret mini-

mizing strategies for the full-information case, see also Cesa-Bianchi and Lugosi [10]. We design

here such a procedure in the setting of partial monitoring. The key tool is a conversion trick de-

scribed in Stoltz and Lugosi [36] (see also Blum and Mansour [7] for a similar procedure). This

trick essentially converts external regret minimizing strategies into internal regret minimizing

strategies, under full information. We extend it here to prediction under partial monitoring.

The forecaster we propose is formed by a sub-algorithm and a master algorithm. The param-

eters ηt and γt used below are tuned as in Section 3. At each round t the sub-algorithm outputs a

probability distribution

ut =
(
ui→j

t

)
(i,j) : i6=j

over the set of pairs of different actions; with the help of ut the master algorithm computes a

probability distribution pt over the actions.

Consider the loss estimates ℓ̃(i, yt) defined in (1). For a given distribution p over {1, . . . , N},

denote

ℓ̃(p, y) =
N∑

k=1

pk ℓ̃(k, y) .

Now introduce the cumulative losses

L̃i→j
t−1 =

t−1∑

s=1

ℓ̃(pi→j
s , ys)

where p
i→j
s denotes the probability distribution obtained from ps by moving the probability mass

pi,s from i to j; that is, we set pi→j
s,i = 0 and pi→j

s,j = ps,j + ps,i. The distribution ut computed by

the sub-algorithm is an exponentially weighted average associated to the cumulative losses L̃i→j
t−1 ,

that is,

ui→j
t =

exp
(
−ηtL̃

i→j
t−1

)

∑
k 6=l exp

(
−ηtL̃k→l

t−1

) .

Now let p̃t be the probability distribution over the set of actions defined by the equation
∑

(i,j) : i6=j

ui→j
t p̃

i→j
t = p̃t . (9)

Such a distribution exists, and can be computed by a simple Gaussian elimination (see e.g., Foster

and Vohra [18], or Stoltz and Lugosi [36]). The master algorithm then chooses, at round t, the

action It drawn according to the probability distribution

pt = (1 − γt)p̃t +
γt

N
1 (10)

where 1 = (1, . . . , 1).
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Theorem 4 Consider any partial monitoring problem such that the loss and feedback matrices

satisfy L = KH for some N × N matrix K with k∗ = max{1, maxi,j |k(i, j)|}, and consider

the forecaster described above. Let δ ∈ (0, 1). Then, for all n, with probability at least 1− δ, the

cumulative internal regret is bounded as

1

n

n∑

t=1

ℓ(It, yt) − min
Φ

1

n

n∑

t=1

ℓ(Φ(It), yt)

≤ 9

(
(k∗)2N5 ln N

n

)1/3
(

1 +

√
3

2

ln(2N2)/δ)

ln N

)

+N

√
1

2n
ln

2N2

δ
+ 4(k∗N)4/3n−2/3(ln N)−1/3 ln

2N2

δ

+
1

n

(
2N + ((k∗N)2 ln N)1/3 + k∗N

)
ln

2N2

δ

where the minimum is taken over all functions Φ : {1, . . . , N} → {1, . . . , N}.

Note that with the help of Borel-Cantelli lemma, Theorem 4 shows that, under the same con-

ditions on L and H, the forecaster decribed above achieves Hannan consistency with respect to

internal regret.

Proof. First observe that it suffices to consider departure functions Φ that differ from the identity

function in only one point of their domain. This follows simply from

n∑

t=1

ℓ(It, yt) − min
Φ

n∑

t=1

ℓ(Φ(It), yt) 6 N

(
max
i6=j

n∑

t=1

IIt=i (ℓ(i, yt) − ℓ(j, yt))

)
.

We now bound the right-hand side of the latter inequality.

For a given t, the estimated losses ℓ̃(pi→j
t , yt), i 6= j, fall in the interval [−k∗N/γt, k∗N/γt].

Since γt and ηt are tuned as in Theorem 1, k∗Nηt/γt 6 1, and we may apply Theorem 5 to derive

n∑

t=1

∑

i6=j

ui→j
t ℓ̃(pi→j

t , yt) − min
i6=j

n∑

t=1

ℓ̃(pi→j
t , yt)

6
2 ln N(N − 1)

ηn+1

+
n∑

t=1

ηt

∑

i6=j

ui→j
t

(
ℓ̃(pi→j

t , yt)
)2

. (11)

For i 6= j, 1i→j is the vector v such that vi = 0, vj = 2, and vk = 1 for all k 6= i and k 6= j. Use
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first (10) and then (9) to rewrite the first term of the left-hand side of (11) as

n∑

t=1

∑

i6=j

ui→j
t ℓ̃(pi→j

t , yt) =
n∑

t=1

∑

i6=j

ui→j
t

(
(1 − γt)ℓ̃(p̃

i→j
t , yt) +

γt

N
ℓ̃(1i→j, yt)

)

=
n∑

t=1

(1 − γt)ℓ̃(p̃t, yt) +
n∑

t=1

γt

N

∑

i6=j

ui→j
t ℓ̃(1i→j, yt)

=
n∑

t=1

ℓ̃(pt, yt) +
n∑

t=1

γt

N

∑

i6=j

ui→j
t

(
ℓ̃(1i→j, yt) − ℓ̃(1, yt)

)

=
n∑

t=1

ℓ̃(pt, yt) +
n∑

t=1

γt

N

∑

i6=j

ui→j
t

(
ℓ̃(j, yt) − ℓ̃(i, yt)

)
.

Substituting into (11), we have

max
i6=j

n∑

t=1

pi,t

(
ℓ̃(i, yt) − ℓ̃(j, yt)

)

=
n∑

t=1

ℓ̃(pt, yt) − min
i6=j

n∑

t=1

ℓ̃(pi→j
t , yt) (12)

6
4 ln N

ηn+1

+
n∑

t=1

ηt

∑

i6=j

ui→j
t

(
ℓ̃(pi→j

t , yt)
)2

+
n∑

t=1

γt

N

∑

i6=j

ui→j
t

(
ℓ̃(i, yt) − ℓ̃(j, yt)

)
.

Now, we apply Bernstein’s inequality (see Lemma 7) several times again and mimic the proofs

of Lemmas 1 and 2. For all pairs i 6= j, with probability at least 1 − δ/(2N(N − 1) + 2),

n∑

t=1

pi,t

(
ℓ̃(i, yt) − ℓ̃(j, yt)

)
>

n∑

t=1

pi,t (ℓ(i, yt) − ℓ(j, yt))

−




√√√√4(k∗N)2

(
n∑

t=1

1

γt

)
ln

2N(N − 1) + 2

δ
+

2
√

2

3

(
1 +

k∗N

γn

)
ln

2N(N − 1) + 2

δ


 .

(13)

Similarly to Lemma 3, we also have, with probability at least 1 − δ/(2N(N − 1) + 2),

n∑

t=1

ηt

∑

i6=j

ui→j
t

(
ℓ̃(pi→j

t , yt)
)2

≤
n∑

t=1

ηt
(k∗N)2

γt

+

√√√√2(k∗N)4

(
n∑

t=1

η2
t

γ3
t

)
ln

2N(N − 1) + 2

δ
+

√
2

3
ln

2N(N − 1) + 2

δ
(14)
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whereas, similarly to Lemma 4, with probability at least 1 − δ/(2N(N − 1) + 2),

n∑

t=1

γt

N

∑

i6=j

ui→j
t

(
ℓ̃(i, yt) − ℓ̃(j, yt)

)
≤ 1

N

n∑

t=1

γt

+

√√√√4(k∗)2

(
n∑

t=1

γt

)
ln

2N(N − 1) + 2

δ
+

√
2

3

(
k∗ +

γ1

N

)
ln

2N(N − 1) + 2

δ
. (15)

We then use the Hoeffding-Azuma inequality (see Hoeffding [27], Azuma [4]) N(N − 1) times

to show that for every pair i 6= j, with probability at least 1 − δ/(2N(N − 1) + 2),

n∑

t=1

pi,t (ℓ(i, yt) − ℓ(j, yt)) ≥
n∑

t=1

IIt=i (ℓ(i, yt) − ℓ(j, yt)) −
√

2n ln
N(N − 1) + 3

δ
. (16)

Finally, we substitute inequalities (13)–(16) into (12) and use a union-of-event bound to obtain

that, with probability at least 1 − δ,

max
i6=j

n∑

t=1

IIt=i (ℓ(i, yt) − ℓ(j, yt))

6
4 ln N

ηn+1

+

√√√√4(k∗N)2

(
n∑

t=1

1

γt

)
ln

1

δ′
+

2
√

2

3

(
1 +

k∗N

γn

)
ln

1

δ′

+
n∑

t=1

ηt
(k∗N)2

γt

+

√√√√2(k∗N)4

(
n∑

t=1

η2
t

γ3
t

)
ln

1

δ′
+

√
2

3
ln

1

δ′

+
1

N

n∑

t=1

γt +

√√√√4(k∗)2

(
n∑

t=1

γt

)
ln

1

δ′
+

√
2

3

(
k∗ +

γ1

N

)
ln

1

δ′

+

√
2n ln

1

δ′
,

where we used the notation δ′ = δ/(2N(N − 1) + 2), with δ′ > δ/(2N2) when N > 2. The

proof is now concluded as that of Theorem 1.

7 Random feedback

Several authors consider an extended setup in which the feedbacks are random variables. See

Rustichini [35], Mannor and Shimkin [30], Weissman and Merhav [39], Weissman, Merhav, and
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Somekh-Baruch [40] for examples. In this section we briefly point out that most of the results of

this paper extend effortlessly to this more general case.

To describe the model, denote by ∆(S) the set of all probability distributions over the set

of signals S. The signaling structure is formed by a collection of NM probability distributions

µ(i,j) over S, for i = 1, . . . , N and j = 1, . . . ,M . At each round, the forecaster now observes

a random variable H(It, yt), drawn independently from all the other random variables, with

distribution µ(It,yt).

We may easily generalize the results of Theorems 1 and 4 to the case of random feedbacks.

As above, each element of S is encoded by a real number in [−1, 1]. Let E be the N ×M matrix

whose elements are given by the expectations of the random variables H(i, j). Theorems 1 and 4

remain true under the condition that there exists a matrix K such that L = KE. The only

necessary modification is how the losses are estimated. Here the forecaster uses the estimates

ℓ̆(i, yt) =
k(i, It)H(It, yt)

pIt,t

i = 1, . . . , N

instead of the estimates defined in Section 3. Conditioned on I1, . . . , It−1, the expectation of

ℓ̆(i, yt) is the loss ℓ(i, yt). Since this, together with boundedness, are the only conditions that were

needed in the proofs, the extension of the results to this more general framework is immediate.

The results of Section 4 may be generalized to the case of random feedbacks as well. For

example, to construct H
′ when H is a matrix of probability distributions over S, we proceed as

follows: for 1 6 i 6 N and s ∈ S, denote by H(i,s) the row vector of elements in [0, 1], such

that the k-th element of H(i,s) is µ(i,k)(s). Now, the ((k1 − 1)m + k2)-th row of H
′, 1 6 k1 6 N ,

1 6 k2 6 m, is H(k1,sk2
). All the other details of the construction and the proofs go through.

Appendix: Bernstein’s inequality

Bernstein’s inequality (see, e.g. [15]) is used several times in the proofs.

Lemma 7 (Bernstein’s inequality) Let X1, X2, . . . , Xn be a bounded martingale difference se-

quence (with respect to the filtration F = (Ft)16t6n)), with increments bounded in absolute

values by K, and

Mn =
n∑

t=1

Xt

the associated martingale. Denote its predictable quadratic variation by

Vn =
n∑

t=1

E
[
X2

t | Ft−1

]

and assume that Vn 6 v for some constant v. Then, for all u > 0,

P [Mn > u] 6 exp

(
− u2

2 (v + Ku/3)

)
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and in particular, for all x > 0,

P

[
Mn >

√
2vx + (

√
2/3)Kx

]
6 e−x .

Appendix: basic lemmas

Theorem 5 Consider any sequence of losses ℓi,t ∈ [−Bt, Bt], i = 1, . . . , N , Bt > 0, t =
1, . . . , n, and any non-increasing sequence of tuning parameters ηt > 0, t = 1, . . . , n, such that

ηtBt 6 1 for all t. Then, the forecaster which uses the exponentially weighted averages

qi,t =
wi,t∑N
j=1 wj,t

, i = 1, . . . , N,

where

wi,t = exp

(
−ηt

t−1∑

s=1

ℓi,s

)
,

satisfies

n∑

t=1

N∑

i=1

qi,tℓi,t − min
j=1,...,N

n∑

t=1

ℓj,t 6

(
2

ηn+1

− 1

η1

)
ln N +

n∑

t=1

ηt

N∑

i=1

qi,t ℓ
2
i,t .

The proof below is a simple modification of an argument first proposed in [3]. Denote the

numerator of the defining expression of qi,t by wi,t = e−ηtLi,t−1 , where Li,t−1 = ℓi,1 + . . .+ ℓi,t−1,

and use w′
i,t = e−ηt−1Li,t−1 to denote the weight wi,t where the parameter ηt is replaced by ηt−1.

The normalization factors will be denoted by Wt =
∑N

j=1 wj,t and W ′
t =

∑N
j=1 w′

j,t. Finally, we

use kt to denote the expert whose loss after the first t rounds is the lowest (ties are broken by

choosing the expert with smallest index). That is, Lkt,t = mini≤N Li,t.

In the proof of the theorem, we also make use of the following technical lemma.

Lemma 8 For all N ≥ 2, for all β ≥ α ≥ 0, and for all d1, . . . , dN ≥ 0 such that
∑N

i=1 e−αdi ≥
1,

ln

∑N
i=1 e−αdi

∑N
j=1 e−βdj

≤ β − α

α
ln N .

Proof. We begin by writing

ln

∑N
i=1 e−αdi

∑N
j=1 e−βdj

= ln

∑N
i=1 e−αdi

∑N
j=1 e(α−β)dje−αdj

= − ln E
[
e(α−β)D

]

≤ (β − α)E [D]
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where we applied Jensen inequality to the random variable D taking value di with probability

e−αdi/
∑N

j=1 e−αdj for each j = 1, . . . , N . Since D takes at most N distinct values, its entropy

H(D) is at most ln N . Therefore

ln N ≥ H(D) =

∑N
i=1 e−αdi

∑N
j=1 e−βdj

(
αdi + ln

N∑

j=1

e−βdj

)

= αE [D] + ln
N∑

j=1

e−βdj ≥ αE [D]

where the last inequality holds since
∑N

i=1 e−αdi ≥ 1. Hence E [D] ≤ (ln N)/α. As β > α by

hypothesis, we can plug the bound on E [D] in the upper bound above and conclude the proof.

Proof. As it is usual in the analysis of the exponentially weighted average predictor, we study the

evolution of ln(Wt+1/Wt). However, here we need to couple this term with ln(wkt−1,t/wkt,t+1)
including in both terms the time-varying parameter ηt. Tracking the currently best expert kt is

used to lower bound the weight ln(wkt,t+1/Wt+1). In fact, the weight of the overall best expert

(after n rounds) could get arbitrarily small during the prediction process. We thus obtain the

following

1

ηt

ln
wkt−1,t

Wt

− 1

ηt+1

ln
wkt,t+1

Wt+1

=

(
1

ηt+1

− 1

ηt

)
ln

Wt+1

wkt,t+1

+
1

ηt

ln
w′

kt,t+1/W
′
t+1

wkt,t+1/Wt+1

+
1

ηt

ln
wkt−1,t/Wt

w′
kt,t+1/W

′
t+1

= (A) + (B) + (C) .

We now bound separately the three terms on the right-hand side. The term (A) is easily bounded

by using ηt+1 6 ηt and using the fact that kt is the index of the expert with smallest loss after the

first t rounds. Therefore, wkt,t+1/Wt+1 must be at least 1/N . Thus we have

(A) =

(
1

ηt+1

− 1

ηt

)
ln

Wt+1

wkt,t+1

≤
(

1

ηt+1

− 1

ηt

)
ln N .

We proceed to bounding the term (B) as follows

(B) =
1

ηt

ln
w′

kt,t+1/W
′
t+1

wkt,t+1/Wt+1

=
1

ηt

ln

∑N
i=1 e−ηt+1(Li,t−Lkt,t)

∑N
j=1 e−ηt(Lj,t−Lkt,t)

≤ ηt − ηt+1

ηtηt+1

ln N =

(
1

ηt+1

− 1

ηt

)
ln N

where the inequality is proven by applying Lemma 8 with di = Li,t − Lkt,t. Note that di ≥ 0

since kt is the index of the expert with smallest loss after the first t rounds and
∑N

i=1 e−ηt+1di ≥ 1
as for i = kt we have di = 0. The term (C) is first split as follows

(C) =
1

ηt

ln
wkt−1,t/Wt

w′
kt,t+1/W

′
t+1

=
1

ηt

ln
wkt−1,t

w′
kt,t+1

+
1

ηt

ln
W ′

t+1

Wt

.
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We bound separately each one of the two terms on the right-hand side. For the first one, we have

1

ηt

ln
wkt−1,t

w′
kt,t+1

=
1

ηt

ln
e−ηtLkt−1,t−1

e−ηtLkt,t
= Lkt,t − Lkt−1,t−1 .

For the second term, we consider the random variable Zt that takes value ℓi,t with probability

qi,t = wi,t/Wt for each i = 1, . . . , N . As ηtBt 6 1, we have in particular ηtℓi,t 6 1, so we may

use the inequality ex 6 1 + x + x2 for x 6 1, and ln(1 + u) 6 u for u > −1, to obtain

1

ηt

ln
W ′

t+1

Wt

=
1

ηt

ln

∑N
i=1 wi,te

−ηtℓi,t

Wt

=
1

ηt

ln
N∑

i=1

qi,te
−ηtℓi,t

≤ 1

ηt

ln

(
N∑

i=1

qi,t

(
1 − ηtℓi,t + η2

t ℓ
2
i,t

)
)

6 −
N∑

i=1

qi,tℓi,t + ηt

N∑

i=1

qi,tℓ
2
i,t .

Finally, we plug back in the main equation the bounds on the first two terms (A) and (B), and

the bounds on the two parts of the term (C). After rearranging we obtain

N∑

i=1

qi,tℓi,t ≤
(
Lkt,t − Lkt−1,t−1

)
+ ηt

N∑

i=1

qi,tℓ
2
i,t

− 1

ηt+1

ln
wkt,t+1

Wt+1

+
1

ηt

ln
wkt−1,t

Wt

+ 2

(
1

ηt+1

− 1

ηt

)
ln N .

We apply the above inequalities to each t = 1, . . . , n and sum up using

n∑

t=1

(
Lkt,t − Lkt−1,t−1

)
= min

j=1,...,N
Lj,n ,

n∑

t=1

(
− 1

ηt+1

ln
wkt,t+1

Wt+1

+
1

ηt

ln
wkt−1,t

Wt

)
≤ − 1

η1

ln
wk0,1

W1

=
ln N

η1

to conclude the proof.

References

[1] P. Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Ma-

chine Learning Research, 3:397–422, 2002. A preliminary version has appeared in Proc.

of the 41th Annual Symposium on Foundations of Computer Science.

26



[2] P. Auer, N. Cesa-Bianchi, Y. Freund, and R.E. Schapire. The nonstochastic multiarmed

bandit problem. SIAM Journal on Computing, 32:48–77, 2002.

[3] P. Auer, N. Cesa-Bianchi, and C. Gentile. Adaptive and self-confident on-line learning

algorithms. Journal of Computer and System Sciences, 64:48–75, 2002.

[4] K. Azuma. Weighted sums of certain dependent random variables. Tohoku Mathematical

Journal, 68:357–367, 1967.

[5] A. Baños. On pseudo-games. Annals of Mathematical Statistics, 39:1932–1945, 1968.

[6] D. Blackwell. An analog of the minimax theorem for vector payoffs. Pacific Journal of

Mathematics, 6:1–8, 1956.

[7] A. Blum and Y. Mansour. From external to internal regret. In Proceedings of the 18th

Annual Conference on Computational Learning Theory, 2005. To appear.

[8] N. Cesa-Bianchi, Y. Freund, D.P. Helmbold, D. Haussler, R. Schapire, and M.K. Warmuth.

How to use expert advice. Journal of the ACM, 44(3):427–485, 1997.

[9] N. Cesa-Bianchi and G. Lugosi. On prediction of individual sequences. Annals of Statistics,

27, 1999.

[10] N. Cesa-Bianchi and G. Lugosi. Potential-based algorithms in on-line prediction and game

theory. Machine Learning, 51:239–261, 2003.

[11] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University

Press, to appear.

[12] N. Cesa-Bianchi, G. Lugosi, and Gilles Stoltz. Minimizing regret with label efficient pre-

diction. IEEE Transactions on Information Theory, to appear.

[13] T.M. Cover and J.A. Thomas. Elements of Information Theory. John Wiley, New York,

1991.

[14] M. Feder, N. Merhav, and M. Gutman. Universal prediction of individual sequences. IEEE

Transactions on Information Theory, 38:1258–1270, 1992.

[15] D. A. Freedman. On tail probabilities for martingales. The Annals of Probability, 3:100–

118, 1975.

[16] D. Foster and R. Vohra. Calibrated learning and correlated equilibrium. Games and Eco-

nomic Behavior, 21:40–55, 1997.

[17] D. Foster and R. Vohra. Asymptotic calibration. Biometrika, 85:379–390, 1998.

[18] D. Foster and R. Vohra. Regret in the on-line decision problem. Games and Economic

Behavior, 29:7–36, 1999.

27



[19] D. Fudenberg and D. Levine. Universal consistency and cautious fictitious play. Journal of

Economic Dynamics and Control, 19:1065–1089, 1995.

[20] D. Fudenberg and D.K. Levine. The Theory of Learning in Games. MIT Press, 1998.

[21] J. Hannan. Approximation to Bayes risk in repeated play. Contributions to the theory of

games, 3:97–139, 1957.

[22] S. Hart and A. Mas-Colell. A simple adaptive procedure leading to correlated equilibrium.

Econometrica, 68:1127–1150, 2000.

[23] S. Hart and A. Mas-Colell. A general class of adaptive strategies. Journal of Economic

Theory, 98:26–54, 2001.

[24] S. Hart and A. Mas-Colell. A reinforcement procedure leading to correlated equilibrium.

In G. Debreu, W. Neuefeind, and W. Trockel, editors, Economic Essays: A Festschrift for

Werner Hildenbrand, pages 181–200. Srpinger, New York, 2002.

[25] D. P. Helmbold and S. Panizza. Some label efficient learning results. In Proceedings of the

10th Annual Conference on Computational Learning Theory, pages 218–230. ACM Press,

1997.

[26] D.P. Helmbold, N. Littlestone, and P.M. Long. Apple tasting. Information and Computa-

tion, 161(2):85–139, 2000.

[27] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of

the American Statistical Association, 58:13–30, 1963.

[28] R. Kleinberg and T. Leighton. The value of knowing a demand curve: Bounds on regret

for on-line posted-price auctions. In Proceedings of the 44th Annual IEEE Symposium on

Foundations of Computer Science, pages 594–605. IEEE Press, 2003.

[29] N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Information and

Computation, 108:212–261, 1994.

[30] S. Mannor and N. Shimkin. On-line learning with imperfect monitoring. In Proceedings

of the 16th Annual Conference on Learning Theory, pages 552–567. Springer, New York,

2003.

[31] N. Megiddo. On repeated games with incomplete information played by non-Bayesian

players. International Journal of Game Theory, 9:157–167, 1980.

[32] N. Merhav and M. Feder. Universal prediction. IEEE Transactions on Information Theory,

44:2124–2147, 1998.

[33] J.-F. Mertens, S. Sorin, and S. Zamir. Repeated games. CORE Discussion paper, no.

9420,9421,9422, Louvain-la-Neuve, 1994.

28



[34] A. Piccolboni and C. Schindelhauer. Discrete prediction games with arbitrary feedback and

loss. In Proceedings of the 14th Annual Conference on Computational Learning Theory,

pages 208–223, 2001.

[35] A. Rustichini. Minimizing regret: The general case. Games and Economic Behavior,

29:224–243, 1999.

[36] G. Stoltz and G. Lugosi. Internal regret in on-line portfolio selection. Machine Learning,

to appear.

[37] V. Vovk. Competitive on-line statistics. International Statistical Review, 69:213–248, 2001.

[38] V.G. Vovk. Aggregating strategies. In Proceedings of the 3rd Annual Workshop on Com-

putational Learning Theory, pages 372–383, 1990.

[39] T. Weissman and N. Merhav. Universal prediction of binary individual sequences in the

presence of noise. IEEE Transactions on Information Theory, 47:2151–2173, 2001.

[40] T. Weissman, N. Merhav, and Somekh-Baruch. Twofold universal prediction schemes for

achieving the finite state predictability of a noisy individual binary sequence. IEEE Trans-

actions on Information Theory, 47:1849–1866, 2001.

29


