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REGULAR ADDITIVELY INVERSE SEMIRINGS

M. K. SEN and S. K. MAITY

Abstract. In this paper we show that in a regular additively inverse semiring
(S, +, ·) with 1 satisfying the conditions

(A) a(a + a′) = a + a′;
(B) a(b + b′) = (b + b′)a

and (C) a + a(b + b′) = a, for all a, b ∈ S, the sum of two principal left ideals is
again a principal left ideal. Also, we decompose S as a direct sum of two mutually
inverse ideals.

1. Introduction

A semiring is a nonempty set S on which operations of addition, +, and multipli-
cation, ·, have been defined such that the following conditions are satisfied:

(1) (S,+) is a semigroup.
(2) (S, ·) is a semigroup.
(3) Multiplication distributes over addition from either side.

A semiring (S,+, ·) is called an additive inverse semiring if (S,+) is an inverse
semigroup, that is, for each a ∈ S there exists a unique element a′ ∈ S such that
a + a′ + a = a and a′ + a + a′ = a′. In 1974, Karvellas [3] studied additive inverse
semiring and he proved the following:

(Karvellas (1974), Theorem 3(ii) and Theorem 7) Take any additive inverse
semiring (S,+, ·).

(i) For all x, y ∈ S, (x · y)′ = x′ · y = x · y′ and x′ · y′ = x · y
(ii) If a ∈ aS ∩ Sa for all a ∈ S then S is additively commutative.

We say that an additive inverse semiring S satisfies conditions (A), (B) and (C) if
for all a, b ∈ S,

(A) a(a + a′) = a + a′;
(B) a(b + b′) = (b + b′)a;
(C) a + a(b + b′) = a.

Clearly, rings, distributive lattices and direct products of a distributive lattice
and ring are natural examples of these types of semirings. Semirings satisfying
conditions (A), (B) and (C) were first introduced and studied by Bandelt & Petrich
[1].
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We consider the set S = {0, a, b}. On S we define addition and multiplication
by the following Cayley tables:

+ 0 a b
0 0 a b
a a 0 b
b b b b

· 0 a b
0 0 0 0
a 0 0 0
b 0 0 b

It is easy see that (S,+, ·) is an additive inverse semiring satisfying conditions (A),
(B) and (C).

In the remaining part of this paper we assume that S denotes an additive
inverse semiring with 1 satisfying conditions (A), (B) and (C). Also we assume
that E+(S) = {a ∈ S : a + a = a} and E•(S) = {e ∈ S : e · e = e}. Note that
E+(S) is an ideal of S. For notations and terminologies not given in this paper,
the reader is referred to the monograph of Golan [2] and Neumann [4].

2. Mutually inverse ideals in S

In this section we define the notion of mutually inverse ideals in S. Then we
establish the actual form of two ideals such that these two ideals become mutually
inverses.

Lemma 2.1. If e ∈ E•(S) then 1 + e′ ∈ E•(S).

Proof. Now, (1+e′)2 = (1+e′)+e′(1+e′) = 1+e′+e′+e′e′ = 1+e′+e′+e = 1+e′.
Hence (1 + e′) ∈ E•(S). �

Definition 2.2. For every right ideal A of S we define

Al = {y ∈ S : for every z ∈ A, yz ∈ E+(S)}
and for every left ideal B of S we define

Br = {z ∈ S : for every y ∈ B, yz ∈ E+(S)}.
Notation 2.3. The sets of all left ideals and right ideals of S are denoted by

LS and RS respectively.

From the Definition 2.2, we have the following result.

Corollary 2.4. Al is a left ideal and Br is a right ideal. The transformation
A −→ Al maps RS on a part of LS and the transformation B −→ Br maps LS

on a part of RS.

Lemma 2.5. Let A,B be two left ideals. Then

(i) A ⊆ B implies Br ⊆ Ar,
(ii) A ⊆ Arl(≡ (Ar)l),
(iii) Ar = Arlr.

(The left-right symmetric results will be denoted by (i)′, (ii)′, (iii)′)
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Proof. (i) If y ∈ Br then for every z ∈ B we have zy ∈ E+(S). Then in
particular for every z ∈ A we have zy ∈ E+(S) and hence y ∈ Ar. Thus Br ⊆ Ar.

(ii) Let u ∈ A and consider y ∈ Ar. Now z ∈ A implies zy ∈ E+(S). Hence in
particular uy ∈ E+(S) and u ∈ Arl. Thus A ⊆ Arl.

(iii) Since A ⊆ Arl, Arlr ⊆ Ar, by (i). But by (ii)′ with A replaced by Ar,
Ar ⊆ Arlr. Hence Ar = Arlr. �

Definition 2.6. An ideal I of a semiring S is called full if E+(S) ⊆ I. The
principal left ideal of S of the form E+(S)+ (a)l is called a full principal left ideal
of S.

Lemma 2.7. E+(S) is a full principal left ideal.

Proof. Let e ∈ E+(S). Since S is an additive inverse semiring so we have
E+(S)+(e)l ⊆ E+(S). Let f ∈ E+(S). Now by condition (C), f = f +f(e+e′) =
f + fe ∈ E+(S) + (e)l. Hence E+(S) = E+(S) + (e)l and consequently E+(S) is
a full principal left ideal. �

Remark 2.8. We note that for any g ∈ E+(S), we have g = g+ga = g(1+a) ∈
(1 + a)l. Thus any principal left (right) ideal of the form (1 + a)l (resp. (1 + a)r)
is a full ideal of S. Hence in particular for any e ∈ E•(S), (1 + e)l is also a full
left ideal of S. In this connection we have the following result.

Theorem 2.9. Let e ∈ E•(S). Then the principal left ideal (e)l is full if and
only if (e)l = (1 + f ′)l for some f ∈ E•(S).

Proof. First suppose that (e)l is a full ideal. Since e ∈ E•(S) we have (1+e′) ∈
E•(S). Let f = 1+e′. Now, 1+f ′ = 1+1′+e ∈ (e)l. This leads to (1+f ′)l ⊆ (e)l.
Also, e = e + e′ + e = e + e′ + e2 = e(1 + 1′ + e) = e(1 + f ′) ∈ (1 + f ′)l. Thus
(e)l ⊆ (1 + f ′)l. Consequently, (e)l = (1 + f ′)l. �

Converse part follows from Remark 2.8.

Lemma 2.10. Let a, b ∈ S be such that a + b′ ∈ E+(S) and a + a′ = b + b′.
Then a = b.

Proof. Since a + b′ ∈ E+(S) so we have

a + b′ = (a + b′) + (a + b′)′ = a + b′ + b + a′ = a + a′ + b + b′ = b + b′.

This leads to,

a + b′ + b = b + b′ + b, i.e., a + a′ + a = b.

Hence a = b. �
We now give the following definition.

Definition 2.11. Two left ideals A and B of a semiring S are said to be
mutually inverses if A + B = S and A∩B = E+(S). A left ideal B of S is said to
be an inverse of a left ideal A of S if A and B are mutually inverses.

Lemma 2.12. In S the principal left ideals (1 + e′)l and (1 + 1′ + e)l where
e ∈ E•(S) are mutually inverses.
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Proof. First, (1+e′)l+(1+1′+e)l contains 1+e′+1+1′+e = 1+e+e′+1+1′ = 1,
whence (1 + e′)l + (1 + 1′ + e)l = S. Now, if x ∈ (1 + e′)l ∩ (1 + 1′ + e)l then
x = x(1 + e′) = x(1 + 1′ + e). Now, x = x(1 + 1′ + e) = x + x(1′ + e) = x + x′

(since x = x(1 + e′)) ∈ E+(S). Thus, (1 + e′)l ∩ (1 + 1′ + e)l = E+(S) and hence
(1 + e′)l is inverse to (1 + 1′ + e)l. �

We now prove the following theorem.

Theorem 2.13. Two left ideals A and B of S are mutually inverses if and
only if there exists e ∈ E•(S) such that A = (1 + 1′ + e)l and B = (1 + e′)l.

Proof. The reverse implication follows from Lemma 2.12. Let A and B be
two mutually inverse left ideals. Then there exist elements x, y with x + y = 1,
x ∈ A, y ∈ B. Now, x + y = 1 implies x = x2 + xy. This leads to (x2)′ + x =
(x2)′ + x2 + xy ∈ A ∩ B = E+(S). Also, x2 + (x2)′ = x + x′ (by condition
(A) ). Hence by Lemma 2.10, we have x2 = x and hence x ∈ E•(S). Now,
1 + 1′ + x ∈ A. This gives (1 + 1′ + x)l ⊆ A. Let z ∈ A. Now, x + y = 1 implies
that z = zx + zy. This leads to, zx′ + z = zx′ + zx + zy ∈ A∩B = E+(S). Hence
(zx′ + z)′ = (zx′ + z) + (zx′ + z)′ = zx′ + zx + z + z′ = z + z′ (by condition (C) )
i.e., z + z′ = z′ + zx. This gives

z = z + z′ + z = z + z′ + zx = z(1 + 1′ + x) ∈ (1 + 1′ + x)l.

Thus A ⊆ (1 + 1′ + x)l. Consequently, A = (1 + 1′ + x)l. Similarly, we can show
that B = (1 + x′)l. Thus e = x is effective in this theorem. �

3. Principal ideals in S

In this section we study the principal ideals in S. We generalize some results of
regular ring to regular semiring. Finally, we prove that the set of all full principal
left ideals of S is a complemented modular lattice. This is the main theorem of
this section.

Definition 3.1. A semiring S is called a regular semiring if for each a ∈ S
there exists an element x ∈ S such that a = axa.

A regular semiring S contains element e such that e · e = e.
Note that every regular ring and every distributive lattice is regular semiring.

So the direct product of a regular ring and a distributive lattice is also regular
semiring.

We now consider the following example.

Example 3.2. Let D denote the distributive lattice D given by
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Let R = R×R and I = R× {0}, where R is the ring of all real numbers. Then
S = (I × {a, c}) ∪ (R × {b, d}) is a regular semiring which is not the whole direct
product of a regular ring and a distributive lattice.

Theorem 3.3. The following statements are equivalent in S:
(1) Every principal left ideal of the form E+(S) + (a)l has an inverse.
(2) For every a ∈ S there exists e ∈ E•(S) such that E+(S) + (a)l = (1 + e′)l.
(3) S is regular.
(4) For every a ∈ S there exists e ∈ E•(S) such that E+(S) + (a)r = (1 + e′)r.
(5) Every principal right ideal of the form E+(S) + (a)r has an inverse.

Proof. (1) =⇒ (2): This follows from Theorem 2.13.
(2) =⇒ (1): This follows from Theorem 2.13.
(2) =⇒ (3): Now, a ∈ E+(S)+ (a)l = (1+ e′)l. This implies that a = a(1+ e′).

Again (1 + e′) ∈ (1 + e′)l = E+(S) + (a)l. This leads to, 1 + e′ = g + za for some
g ∈ E+(S) and z ∈ S. Then a = ag + aza. This implies that

a = a + a′ + a = a + a′ + ag + aza = a + a′ + aza (by condition (C))

= a(a + a′ + z)a = axa where x = a + a′ + z ∈ S.

Thus, for each a ∈ S there exists an element x ∈ S such that a = axa. Hence S is
regular.

(3) =⇒ (2): Let a ∈ S. Then a = axa for some x ∈ S. Let c = xa. Then
c ∈ E•(S). Let e = 1 + c′. Now

a = a + a′ + a = a + a′ + axa = a(1 + 1′ + c) = a(1 + e′) ∈ (1 + e′)l.

Thus, E+(S) + (a)l ⊆ (1 + e′)l. Again, let y ∈ (1 + e′)l. Then y = b(1 + e′) for
some b ∈ S. Then

y = b(1 + e′) = b(1 + 1′ + xa) = b + b′ + bxa ∈ E+(S) + (a)l.

Thus,

(1 + e′)l ⊆ E+(S) + (a)l and hence E+(S) + (a)l = (1 + e′)l.

The equivalence of (3), (4), (5) is right-left symmetric to that of (1), (2), (3).
Hence the proof is completed. �

Lemma 3.4. A semiring S is regular if and only if for any a ∈ S there exists
an element e ∈ E•(S) such that Sa = Se.

Proof. The proof is similar to ring theory and we omit the proof.
In the remaining part of the section we assume that S is regular and an additive

inverse semiring with 1 satisfying conditions (A), (B) and (C). �

Lemma 3.5. (i) If A = (1 + e′)l (e ∈ E•(S)) is a full principal left ideal
then A = Cl wherel C = (1 + 1′ + e)r.

(ii) If A is a full principal left ideal then A = Arl.
(iii) If A is a full principal left ideal, Ar is a full principal right ideal.
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Proof.

(i) A = (1 + e′)l = {x : x = x(1 + e′)}
= {x : x + x(1 + e′)′ = x(1 + e′) + x(1 + e′)′}
⊆ {x : x(1 + 1′ + e) ∈ E+(S)}
= {x : for all u ∈ S, x(1 + 1′ + e)u ∈ E+(S)}
= {x : for all y ∈ (1 + 1′ + e)r, xy ∈ E+(S)}
= Cl where C = (1 + 1′ + e)r.

Again, let x ∈ cl. Then for all y ∈ C = (1 + 1′ + e)r, we have xy ∈ E+(S), i.e.,
for all u ∈ S, x(1 + 1′ + e)u ∈ E+(S). This implies x(1 + 1′ + e) ∈ E+(S). Hence,

x(1 + 1′ + e) = x(1 + 1′ + e) + x(1 + 1′ + e)′ = x + x′.

This leads to
x′ = x′ + x + x′ = x′ + xe = x′(1 + e′),

i.e.,
x = x(1 + e′) ∈ (1 + e′)l = A.

Thus, Cl ⊆ A and hence A = Cl.
(ii) Since S is regular and A is a full principal left ideal so A = (1+ e′)l = (f)l

where f = 1 + e′. Then A = (f)l = Cl where C = (1 + f ′)r [by (i)]. Then
Arl = Clrl = Cl = A.

(iii) A = Cl where C is a full principal right ideal, whence Ar = Clr = C [by
(ii)′]. Hence Ar is a full principal right ideal. �

Theorem 3.6. In S, the sum of two principal left ideals of S is again a principal
left ideal.

Proof. Let Sa and Sb be two principal ideals in a regular semiring S. Then
there exists an idempotent e ∈ S such that Sa = Se. Now,

Sa + Sb = Se + Sb

= {re + tb : r, t ∈ S}
= {re + tb + tbe + tbe′ : r, t ∈ S} (by condition (C))

= {(r + tb)e + tb(1 + e′) : r, t ∈ S}
⊆ Se + Sb(1 + e′).

Let re + tb(1 + e′) ∈ Se + Sb(1 + e′). Then

re + tb(1 + e′) = re + tb + tbe′

= re + tb + tb(e + e′) + tbe′

= (r + tb′ + tb)e + tb(1 + e′)

= (r1 + tb)e + tb(1 + e′) where r1 = r + tb′ ∈ S.

Hence, Sa + Sb = Se + Sb(1 + e′). Let c = b(1 + e′). Then ce ∈ E+(S). Now by
Lemma 3.4., Sc = Sf for some idempotent f ∈ S. Also, f ∈ Sf = Sc This implies
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f = yc = yb(1 + e′). This leads to, fe = yb(1 + e′)e = yb(e + e′) ∈ E+(S). Hence,
Sa + Sb = Se + Sf , where e2 = e, f2 = f and fe ∈ E+(S). Let g = (1 + e′)f .
Then eg = e(1 + e′)f = (e + e′)f and ge = (1 + e′)fe. Thus, eg, ge ∈ E+(S).
Also,

g2 = g(1 + e′)f = gf + ge′f = gf = g.

Now,

Sg = S(1 + e′)f ⊆ Sf = Sff

= Scf = Sb(1 + e′)f
= Sbg ⊆ Sg.

Hence,
Sf = Sg.

Then Sa + Sb = Se + Sg, where e2 = e, g2 = g and eg, ge ∈ E+(S).
We show that Se + Sg = S(e + g). Clearly, S(e + g) ⊆ Se + Sg.
Now,

e = e2 + eg = e(e + g) ∈ S(e + g).

Then Se ⊆ S(e + g). Similarly, Sf ⊆ S(e + g). Hence, Se + Sg ⊆ S(e + g).
Consequently,

Sa + Sb = S(e + g).

Thus, the proof is completed. �

Corollary 3.7. The sum of two full principal left ideals of S is again a full
principal left ideal.

Lemma 3.8. If C,D are left ideals of S then (C + D)r = Cr ∩ Dr.

Proof.

Cr ∩ Dr = {y : for all z ∈ C, zy ∈ E+(S) and for all z ∈ D, zy ∈ E+(S)}
= {y : for all t ∈ C + D, ty ∈ E+(S)}
⊆ (C + D)r.

Let y ∈ (C + D)r. Then for all t ∈ C + D, ty ∈ E+(S). Let c ∈ C and d ∈ D.
Now by condition (C), c = c + c(d + d′). Hence

cy =
(
(c + c(d + d′)

)
y = cy + c(d + d′)y ∈ E+(S).

Thus y ∈ Cr. Similarly, y ∈ Dr. Hence y ∈ Cr ∩ Dr. Consequently,

Cr ∩ Dr = (C + D)r.

�

Lemma 3.9. Let A,B be two full principal left ideals of S. Then A ∩ B is
again a full principal left ideal.
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Proof.

A ∩ B = Arl ∩ Brl

= (Ar + Br)l.

But Ar, Br are full principal right ideals by Lemma 3.5(iii). Hence again by
Corollary 3.7, (Ar + Br) is a full principal right ideal. Thus, A ∩ B is a full
principal left ideal by 3.5 (iii)′. �

Theorem 3.10. The set LS of all full principal left ideals of S is a comple-
mented modular lattice, partially ordered by set inclusion relation, the meet being
∩ and the join is the sum of two ideals, its least element is E+(S) and its greatest
element is S.

Proof. The fact that LS is a lattice follows from Corollary 3.7 and Lemma 3.9
The regularity of S and Theorem 2.13, yields that LS is complemented. The
modularity is established as follows. Let A,B,C be full right ideals with A ⊆ C.
Clearly, A + (B ∩ C) ⊆ (A + B) ∩ C. Let x ∈ (A + B) ∩ C. Then x = a + b for
some a ∈ A, b ∈ B and x ∈ C. Then

a′ + x = a′ + a + b ∈ B ∩ C.

Now, a′ + x = a′ + a + b implies that a + a′ + x = a + b = x. Hence

x = a + a′ + x ∈ A + (B ∩ C).

Thus, (A + B) ∩ C ⊆ A + (B ∩ C). Therefore,

(A + B) ∩ C = A + (B ∩ C)

and the proof is completed. �

4. Decomposition of S

In this section we decompose S as direct sum of two mutually inverse ideals.
We now define the center of a semiring.

Definition 4.1. Let S be a semiring. The center Z(S) of S is the set Z(S) =
{a ∈ S : ax = xa for every x ∈ S}.

Definition 4.2. A subsemiring A is called a full subsemiring if E+(S) ⊆ A.

Lemma 4.3. The center Z(S) of S is a multiplicative commutative, regular
and additive inverse full subsemiring of S with 1.

Proof. The proof is similar to ring theory and we omit the proof. �
Lemma 4.4. For every a ∈ Z(S) the principal left ideal (a)l and the principal

right ideal (a)r are the same. They will be denoted by (a)∗. Moreover, if a ∈ Z(S),
(a)l

∗ = (a)r
∗ and the common value will be denoted by (a)∗∗.

Proof. Follows from [4, Lemma 2.5]. �
Lemma 4.5. (i) If A is both left and right ideal of the form (e)l ( or (e)r)

with e ∈ E•(S), then e is unique, e ∈ Z(S) and A = (e)∗.



REGULAR ADDITIVELY INVERSE SEMIRINGS 145

(ii) A principal left ideal A is a right ideal if and only if there exists a unique
e ∈ E•(S) such that e ∈ Z(S) and A = (e)∗.

Proof. (i) Let A = (e)l be a right ideal, e ∈ E•(S). For every y ∈ S, ey ∈ (e)l

whence eye = ey, i.e., ey(1 + e′) ∈ E+(S). Now for every x ∈ S, there is some
y ∈ S with

(1 + e′)xey(1 + e′)xe = (1 + e′)xe.

Since ey(1 + e′) ∈ E+(S), it follows that

(1 + e′)xe = xe + e′xe ∈ E+(S).

Also
exe + exe′ = (ex + ex′)e = e(ex + ex′) (by condition (C))

= ex + ex′.

Hence by Lemma 2.10, we have ex = exe and hence ex = xe. This shows that
e ∈ Z(S) and a = (e)∗. The uniqueness of e follows from [4, Lemma 2.6(i)].

(ii) The reverse implication is trivial. suppose A is a principal left ideal and
also a right ideal. Then there exists an element e ∈ E•(S) such that A = (e)l,
since S is regular. Then by part (i), e is unique, e ∈ Z(S) and A = (e)∗. �

Definition 4.6. A semiring S is said is said to be the direct sum of two full
subsemirings S1 and S2 if every element x ∈ S is expressible in the form y + z, y ∈
S1, z ∈ S2 and yz, zy ∈ E+(S) for every y ∈ S1, z ∈ S2.

Theorem 4.7. If S is the direct sum of S1 and S2, then S1 and S2 are mutually
inverse ideals (both left or right ideals). Conversely, any two mutually inverse left
ideals yields a direct sum decomposition of S.

Proof. If y ∈ S1, x ∈ S, then x = y′ +z′, y′ ∈ S1, z
′ ∈ S2, and yx = y(y′ +z′) =

yy′+yz′ ∈ S1, whence S1 is a right ideal. Likewise xy = (y′+z′)y = y′y+z′y ∈ S1,
whence S1 is a left ideal. Thus S1 is an ideal. Similarly, S2 is an ideal. Let
x ∈ S1 ∩ S2. Now, 1 = y1 + z1, y1 ∈ S1, z1 ∈ S2. Then

x = x · 1 = x(y1 + z1) = xy1 + xz1 ∈ E+(S).

Moreover, S1 + S2 = S. Hence S1 and S2 are inverses to each other.
Converse part is obvious. �

Theorem 4.8. The only direct sum decompositions of S are those of the form

S = (1 + e′)∗ + (1 + 1′ + e)∗,(1)

where e ∈ E•(S) and in Z(S).

Proof. Clearly, any decomposition of the form (1) a direct sum decomposition.
Let S = A + B, A ∩ B = E+(S), with A,B ideals. Then by Theorem 2.13, there
exists an element e ∈ E•(S) such that A = (1 + e′)r, B = (1 + 1′ + e)r. But
since A,B are also left ideals, Lemma 4.5(i), yields that e ∈ Z(S), A = (1 + e′)∗,
B = (1 + 1′ + e)∗. �
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