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M to factor through the “lattice” of all closure operators on M , and to factor through certain
sublattices. This leads to the notion of regular closure operator. As one byproduct of these
results we not only arrive (in a novel way) at the Pumplün–Röhrl polarity between collections
of morphisms and collections of objects in such a category, but obtain many factorizations
of that polarity as well. (One of these factorizations constituted the main result of an earlier
paper by the same authors). Another byproduct is the clarification of the Salbany construction
(by means of relative dominions) of the largest idempotent closure operator that has a specified
class of X -objects as separated objects. The same relation that is used in Salbany’s relative
dominion construction induces classical regular closure operators as described above. Many
other types of closure operators can be obtained by this technique; particular instances of this
are the idempotent and modal closure operators that in a Grothendieck topos correspond to
the Grothendieck topologies.
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0 INTRODUCTION

The goal of this paper is to identify common principles that underlie the construction of various

types of closure operators, from regular closure operators induced by some class of objects by

means of Salbany’s relative dominion construction (cf. [13] and [10]), to idempotent modal

closure operators induced by some Grothendieck topology, and to pinpoint the differences

between these constructions. Our analysis will also shed additional light on the Pumplün–

Röhrl connection and its factorizations, previously dealt with in [5], and allows us to generalize

this connection (together with its factorizations) in two different directions.

Section 1 introduces the orthogonality relation ⊥ that underlies much of the theory. In

addition, we recall some background material on Galois connections.

In Section 2 for a category X with a factorization structure 〈E,M 〉 for sinks we recall

some basic material concerning closure operators on M . In particular the Galois connection

ω̇ from the power collection of the class M ⋄M of composable pairs of morphisms in M to
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the lattice M -CL of all closure operators on M , and its close relative, the Galois connection

∆̇ from the power collection of M to the lattice M -wCL of all weakly hereditary closure

operators on M are described. Moreover, Z -modal closure operators are introduced, where

Z is a class of morphisms in the category M (viewed as a full subcategory of X /X ) that

is stable under pullbacks. We obtain the new result that the interaction between idempotent

closure operators and weakly hereditary closure operators can be relativized to the Z -modal

setting, thereby exhibiting ω̇ and ∆̇ as functors into the category of Galois connections.

In Section 3 we introduce the concept of regular closure operators relative to arbitrary Galois

connections of the form (M ⋄M) PZ
ρ
−−• D and M PZ

τ
−−• D . This notion depends upon ρ

and τ factoring through the Galois connections ω̇Z and ∆̇Z of Section 2, respectively. We

analyze the conditions under which this happens.

Section 4 identifies certain restrictions and modifications of the orthogonality relation ⊥

such that the induced specific variants of the polarities ρ and τ factor as described in Section

3. In particular, we determine which types of conditions (like specific closed morphisms, or

specific separated objects) may be imposed such that there exists a largest Z -modal closure

operator that satisfies these conditions, and when this operator is idempotent. Such conditions

may be viewed as pairs 〈h,h〉 consisting of a morphism h and a source h with matching

codomain and domain. A key observation is that the Pumplün–Röhrl separating relation (cf.

[12]) can be expressed in terms of the orthogonality relation if one identifies objects with sources

consisting of two identity morphisms (rather than with empty sources or empty sinks, as is

usually done). Our shift of perspective allows us to obtain Salbany’s classical construction (cf.

[13]) of the largest closure operator with a specific class of separated objects without resorting

to equalizers of intersections. Consequently, we gain new insights into the Pumplün–Röhrl

polarity and its factorizations, which enables us to strengthen results obtained in [5] and to

put them into a broader perspective.

The types of conditions that may be imposed in section 4 are limited in as far as the pairs

〈h,h〉 have to be right-orthogonal to certain sinks in E . This initially eliminates the sheaf

relation (known from topos theory) and the corresponding variant of τ from consideration.

In Section 5 we show that for modal closure operators (i.e., when Z consists of all cartesian

morphisms in the category M ) that are idempotent this restriction on h may be dropped,

as long as certain sinks in E are colimit sinks. The proof indicates that other values of the

parameter Z are unlikely to work, and that idempotency is essential. This emphasizes the

very special role idempotent modal closure operators play.
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1 PRELIMINARIES

Our main tool will be a notion of orthogonality that generalizes the one introduced by Tholen

(cf. [15]) and encompasses part of the defining properties of factorization structures for sinks

and for sources as well as one of the essential features of closure operators (cf. Definition 2.00).

1.00 DEFINITION (cf. [11])

In a category X a pair 〈l, l〉 consisting of a sink l = 〈iA
il
−→ A′〉I and a morphism A′

l
−→ A′′

is called left orthogonal to a pair 〈r, r〉 consisting of a morphism B
r
−→ B′ and a source

b = 〈B′
jr
−−→ jB′′〉J , written as 〈l, l〉 ⊥ 〈r, r〉 , iff for any sink f = 〈iA

if
−−→ B〉I and any

source f ′′ = 〈A′′
jf ′′

−−−→ jB′′〉J with the property that for each i ∈ I and each j ∈ J the

outer square of following diagram commutes

iA
if

−−−−−−−−−−−−−−−−−−−−−→ B

il ; l
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@
ց
il r

ւ
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A′
f ′

−−→ B′

ւ
�
l jr

@
ց



















y

r ; jr

A′′ −−−−−−−−−−−−−−−−−−−−−→
jf ′′

jB′′

(1-00)

there exists a unique X -morphism A′
f ′

−−→ B′ such that all inner trapezoids commute. In

this case the pair 〈r, r〉 is called right orthogonal to 〈l, l〉 . We write l ⊥ r rather than

〈l, id〉 ⊥ 〈id, r〉 , i.e., we suppress the morphism-part of a pair in case it is an isomorphism.

L denotes the collection of all pairs 〈l, l〉 consisting of an X -sink l and an X -morphism

l with matching codomain and domain, and R stands for the corresponding collection of all

pairs consisting of an X -morphism and an X -source.

We say that 〈l, l〉 is separated from an object X iff 〈l, l〉 is left-orthogonal to the

2-source X
idX←−−− X

idX−−−→ X .

1.01 PROPOSITION

(0) If X is an 〈E,M 〉-category for sinks, then a sink a belongs to E iff a ⊥ m for every

m ∈M , and conversely, a morphism b belongs to M iff e ⊥ b for every e ∈ E .

(1) A morphism a and an object X are separated in the sense of Pumplün and Röhrl (cf.

[12]), if the singleton sink consisting of a is separated from X .

(2) A sink a is an epi-sink iff a is separated from every X -object.

Next we recall some facts about Galois connections between pre-ordered classes, especially

between power collections, and introduce some convenient notation.
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1.02 DEFINITION

For pre-ordered classes A = 〈A,≤〉 and B = 〈B,⊑〉 a Galois connection A
π=〈π∗,π

∗〉
−−−−−−−−• B

consists of two order-preserving functions A
π∗

←===→
π∗

B that satisfy idA ≤ π∗ ; π∗ and π∗ ; π∗ ⊑

idB . Then π∗ is the right adjoint part and π∗ is the left adjoint part of π . We write A π

and Bπ for the classes of left fixed points { a ∈ A | a ∼= aπ∗π
∗ } and right fixed points

{ b ∈ B | bπ∗π∗ ∼= b } with the induced orders, respectively. π is called a (co)reflection iff

π∗ (respectively π∗ ) is a one-to-one function, and an equivalence iff 〈π∗, π∗〉 is a Galois

connection from B to A . (Notice that π restricts to an equivalence from A π to Bπ .)

The composite A
π ; ρ
−−−−• C of two Galois connections A

π
−−• B and B

ρ
−−• C is defined

as 〈π∗ ; ρ∗, ρ
∗ ; π∗〉 , and the dual B

op πop

−−−• A
op

of a Galois connection A
π
−−• B is given

by π
op

= 〈π∗, π∗〉 . This defines a category G A L with a contravariant involution (−)
op

.

If A
ϕ
−−• C factors as A

ϕ̇
−−• B

ϕ̈
−−• C and if B is equivalent to both fixed point classes A ϕ

and Cϕ , then we call ϕ̇ ; ϕ̈ an essentially canonical factorization of ϕ with center B .

The dot notation will be employed throughout to indicate essentially canonical factorizations.

1.03 PROPOSITION

If A
ϕ̇
−−• B

ϕ̈
−−• C is an essentially canonical factorization of A

ϕ
−−• C with center B , then

ϕ̇∗ ; ϕ̇∗ ∼= idB
∼= ϕ̈∗ ; ϕ̈∗ .

1.04 PROPOSITION (cf. [9])

A relation R ⊆ A × B between classes A and B defines Galois connections AP
ϕ
−−• BP ,

called an axiality, and AP
ψ
−−• BP

op
, called a polarity, via

Uψ∗ := { b ∈ B | ∃a∈A 〈a, b〉 ∈ R and a ∈ U } for U ⊆ A

V ψ∗ := { a ∈ A | ∀b∈B 〈a, b〉 ∈ R implies b ∈ V } for V ⊆ B

Uϕ∗ := { b ∈ B | ∀a∈A a ∈ U implies 〈a, b〉 ∈ R } for U ⊆ A

V ϕ∗ := { a ∈ A | ∀b∈B b ∈ V implies 〈a, b〉 ∈ R } for V ⊆ B

2 CLOSURE OPERATORS

The topologically-motivated notion of a closure operator for a category X depends on a class

M of X -morphisms (corresponding to the embeddings in Top ). We regard M as a full

subcategory of the arrow category of X . By an M -morphism 〈f, g〉 from m ∈ M to

n ∈M we mean a pair of X -morphisms that satisfy m ; g = f ; n . The domain functor

M
U
−−→ X maps 〈f, g〉 to f , while the codomain functor V maps 〈f, g〉 to g . An M -

morphism m
〈f,g〉
−−−→ n is called cartesian iff it is V -initial (cf. [0]). This is equivalent to

m
〈f,g〉
−−−→ n constituting a pullback square in X .
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2.00 DEFINITION

A closure (resp. density) operator F = 〈( )F , ( )F 〉 on M maps each m ∈ M to a pair

〈mF ,m
F 〉 with m = mF ; mF and mF ∈M (resp. mF ∈M ) such that mF ⊥ nF for all

n ∈M .

If F is a closure or density operator, m ∈M is called F -closed (resp. F -dense) if mF

(resp. mF ) is an isomorphism. F∇∗ and F∆∗ denote the classes of F -closed and F -dense

members of M , respectively.

2.01 REMARKS

(0) A succinct categorical formulation of the concept of closure operator, first proposed

by Dikranjan and Giuli [7], views ( )F as an endofunctor M
( )F

−−−→ M that satisfies

( )FV = V , and views ( )F as the domain-part of a natural transformation idM

δ
−→ ( )F

that satisfies δidV = idV . The uniqueness part of the orthogonality condition then says

that 〈δ, ( )F 〉 is a pre-reflection in the sense of Börger [1], cf. also [16].

(1) If M satisfies the cancellation condition

n ; p ∈M and p ∈M implies n ∈M (2-00)

then every closure operator on M is automatically a density operator on M . Further-

more, if F is a closure operator on a class M of monos, as we will assume later, the

uniqueness part of the orthogonality condition is automatically satisfied.

In order to have analogues to the complete subspace lattices of topological spaces, for the

remainder of the paper we assume that X is an 〈E,M 〉-category for sinks. This insures that

X is sufficiently nice to support certain constructions (cf. Proposition 1.05 of [3]; for proofs

see Section 15 of [0]). In particular, M then consists of monos and satisfies the cancellation

condition (2-00). ≤ denotes the usual pre-order on M -subobjects. To minimize problems

resulting from the fact that this pre-order need not be antisymmetric, we assume that for

every sink s in X a specific 〈E,M 〉-factorization has been chosen. (This choice need not

be canonical in any sense.) Now we can speak about the infimum and the supremum of a sink

consisting of M -elements, as well as of the pullback of an M -element. We continue to use

the term lattice for a pre-ordered class that is finitely complete and finitely cocomplete. A

lattice is called complete if every subclass has an infimum or, equivalently, every subclass has

a supremum.

The codomain functor V now is a bi-fibration in the sense that all inverse images exist as

do all direct images. More precisely, for an X -morphism X
f
−→ Y the V - inverse image

functor V/Y
f←

−−−→ V/X maps an M -subobject of Y to its pullback along f , while its left

adjoint, the V -direct image functor V/X
f→−−→ V/Y , maps an M -subobject m of X to

the M -component of the chosen 〈E,M 〉-factorization of m ; f .
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2.02 DEFINITION

Pulling V back along U induces a category M ⋄M with composable pairs 〈n, p〉 ∈M ×M

as objects. Morphisms from 〈n, p〉 to 〈q, r〉 are triples 〈a, b, c〉 of X -morphisms with a ; q =

n ; b and b ; r = p ; c . The functor M ⋄M
W
−−→M maps 〈n, p〉

〈a,b,c〉
−−−−→ 〈q, r〉 to the M -mor-

phism n ; p
〈a,c〉
−−−→ q ; r . For m ∈M a pre-order on the fiber W/m is given by 〈n, p〉 ≪ 〈q, r〉

iff there exists a (necessarily unique) X -morphism b with n ; b = q and b ; r = p .

The W -fibers form (possibly large) complete lattices with respect to ≪ . Intersections and

〈E,M 〉-factorizations of the (collections of) second components yield infima and suprema,

respectively. W is also a bi-fibration. Given m
〈f,g〉
−−−→ n , the W -inverse image functor

W/n
〈f,g〉←
−−−−−→ W/m maps 〈s, t〉 ∈W/n to the unique 〈q, r〉 ∈W/m whose second component

is the chosen pullback of t along g . The W -direct image functor, W/m
〈f,g〉→−−−−−→ W/n ,

maps 〈q, r〉 ∈ W/m to the unique 〈s, t〉 ∈ W/n for which there exists an X -morphism d

such that 〈〈d, s〉, t〉 is the chosen 〈E,M 〉-factorization of the 2-sink •
r ; g
−−−→ •

n
←− • . This

yields a Galois connection from W/m to W/n with left adjoint 〈f, g〉→ and right adjoint

〈f, g〉← . Details can be found in [3]. The smallest class containing C ⊆ M ⋄M and stable

under the formation of W -direct images is denoted by C
di

.

2.03 DEFINITION

A closure operator F is called

(0) idempotent iff mF is F -closed for every m ∈M , i.e., iff ( )F ( )F ∼= ( )F ;

(1) weakly hereditary iff mF is F -dense for every m ∈M , i.e., iff ( )F ( )F ∼= ( )F .

(2) hereditary iff nF is a pullback of mF along p whenever 〈n, p〉 ∈W/m ;

(3) modal iff nF is a pullback of mF along g whenever n
〈f,g〉
−−−→ m is cartesian, i.e., iff

F preserves cartesian M -morphisms.

M -CL denotes the collection of all closure operators on M , pre-ordered by F ⊑ G iff mF ≪

mG for all m ∈M , while M -iCL , M -wCL , M -hCL , M -mCL , and M -iwCL stand

for the subcollections of idempotent, weakly hereditary, hereditary, modal, and idempotent

weakly hereditary closure operators, respectively.

Notice that under our assumptions arbitrary suprema and infima of closure operators exist.

They are formed pointwise in the fibers. In particular, M -wCL is stable under the formation

of suprema and M -iCL is stable under the formation of infima in M -CL . Thus every

closure operator F has an idempotent hull (i.e., reflection) F
i ∈ M -iCL as well as a

weakly hereditary core (i.e., coreflection) Fw ∈M -wCL . The first construction of these

hulls and cores that did not rely on smallness properties of X with respect to M can be

found in [11], Theorem 1.12, cf. also [5], Lemma 1.10. For additional background on closure

operators see, e.g., [2], [7], and [8].
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2.04 REMARK

From [3] we recall the following commuting diagrams of Galois connections the individual parts

of which are explained below.

M P
∆̇
−−−• M -wCL

γ
•

∣

∣

∣

•

∣

∣

∣
∆̈

(M ⋄M) P −−−•
ω̇

M -CL

and

M -wCL
ǫ̇

−−−• M -iwCL

∆̈
•

∣

∣

∣

•

∣

∣

∣
ǫ̈

M -CL −−−•
∇̇

M -iCL

(2-01)

(0) M P
γ
−−• (M ⋄M) P is the axiality induced by the opposite of the graph of the first

projection M ⋄M −→M , i.e., Aγ∗ = { 〈n, p〉 ∈M ⋄M | n ∈ A } for A ⊆M .

(1) The polarity (M ⋄M)P
ω
−−• (M ⋄M)P

op induced by restricting ⊥ to M ⋄M ad-

mits an essentially canonical factorization ω = ω̇ ; ω̈ . The first factor is given by

mCω̇∗ :=
(

C
di ∩W/m

)

sup≪ and Fω̇∗ := {mF | m ∈M }ω∗ , and the second fac-

tor M -CL
ω̈
−−• (M ⋄M) P

op
is defined symmetrically. Elements of Fω̇∗ are called

relatively F -dense pairs 〈n, p〉 ∈ M ⋄M , and they satisfy 〈n, p〉 ⊥ mF for each

m ∈M . Both Galois fixed point lattices of ω are equivalent to M -CL .

(2) ∆∗ maps a closure operator to its class of dense M -elements (cf. Definition 2.00).

The induced Galois connection M P
∆
−−• M -CL factors through ω̇ by means of γ :

if A ⊆ M then A∆∗ is weakly hereditary and maps m ∈M to the supremum of all

those 〈n, p〉 ∈ W/m that are a W -direct image of some 〈q, r〉 ∈M ⋄M with q ∈ A .

Both fixed point lattices of ∆ are equivalent to M -wCL , hence we get an essentially

canonical factorization ∆ = ∆̇ ; ∆̈ . This makes more precise the observation in [11] that

(up to isomorphism) a weakly hereditary closure operator F is determined by F∆∗ .

(3) ∇̇∗ maps a closure operator F to its idempotent hull, and the composite ∆̈ ; ∇̇ is

a Galois connection denoted by M -wCL
ǫ
−−• M -iCL . It has the property that its

equivalent Galois fixed point lattices in M -wCL and in M -iCL actually coincide:

they are equal to M -iwCL .

For the remainder of this paper Z is a collection of M -morphisms that is stable under

pullbacks in M . Under ordinary inclusion these collections form a partial order category Z .

Of particular interest are the following collections of cartesian M -morphisms:

H = { 〈f, g〉 ∈M -Mor | f is iso and g ∈M }

C = { 〈f, g〉 ∈M -Mor | 〈f, g〉 is cartesian }

I = M -Iso

The full subcategory of Z spanned by pullback-stable collections of cartesian M -morphisms

is denoted by C . We wish to interpret the diagrams in (2-01) as instances at Z = I of
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similar diagrams of natural transformations between functors with codomain G A L . In the

right diagram Z may be used as domain of the functors, but in the left diagram we need to

restrict our attention to C .

2.05 DEFINITION

(0) A closure operator F on M is called Z -modal if F commutes with W - inverse images

along members of Z ; i.e., if m
〈f,g〉
−−−→ n belongs to Z , then mF ∼= nF 〈f, g〉← . We

write CLZ for the collection of all Z -modal closure operators on M , and wCLZ ,

iCLZ , iwCLZ for the corresponding collections of Z -modal closure operators that

are either weakly hereditary, or idempotent, or both.

(1) C ⊆ M ⋄M is called Z -stable if whenever m
〈f,g〉
−−−→ n belongs to Z , then the

W - inverse image of any 〈s, t〉 ∈ C ∩ W/n along 〈f, g〉 belongs to C . A collection

A ⊆M is called Z -stable, if Aγ∗ has this property. (M ⋄M) PZ and M PZ denote

the corresponding subcollections of the power collections, respectively.

(2) 〈s, t〉 ∈M ⋄M is called left-Z -orthogonal to 〈r, r〉 ∈ R , written as 〈s, t〉 ⊥Z 〈r, r〉 ,

if for every 〈f, g〉 ∈ Z with codomain q ; r any W - inverse image 〈n, p〉 of 〈s, t〉 along

〈f, g〉 is left-orthogonal to 〈r, r〉 . The polarity from (M ⋄M) P to (M ⋄M) P
op

induced by ⊥Z restricts to a Galois connection (M ⋄M) PZ
ωZ−−−• (M ⋄M) P

op .

(3) W is said to satisfy the Beck-Chevalley condition relative to Z if for any pullback

m
〈a′,b′〉
←−−−− o

〈f ′,g′〉
−−−−−→ p of m

〈f,g〉
−−−→ n

〈a,b〉
←−−− p in M with 〈f, g〉 ∈ Z and for every

〈q, r〉 ∈W/m we have

(〈q, r〉) 〈f, g〉→〈a, b〉
← ∼= (〈q, r〉) 〈a′, b′〉←〈f ′, g′〉→

2.06 REMARKS

(0) If Y is the compositive hull of Z , then CLY and CLZ clearly coincide. Hence

without loss of generality one may assume that Z is closed under composition.

(1) Since each Z ∈ Z is stable under pullbacks, Z -stability of A ⊆ M is equivalent to

the requirement that whenever m
〈f,g〉
−−−→ n belongs to Z and n ∈ A , then m ∈ A .

(2) For the specific values of Z described above we have

M -hCL = CLH , M -mCL = CLC and M -CL = CLI

Hereditary closure operators are well-known to be weakly hereditary. Hence for H ⊆ Z

we have CLZ = wCLZ and iCLZ = iwCLZ .

(3) Since for any M -morphism 〈f, g〉 the W - inverse image functor 〈f, g〉← is right adjoint

and hence preserves infima, CLZ clearly is closed under the formation of infima in

CLI = M -CL . In particular, every closure operator F has a Z -modal hull FZ .

8



Since iCLI = M -iCL also is closed under the formation of infima in CLI , this is true

for iCLZ = CLZ ∩ iCLI as well. Hence every closure operator F has an idempotent

Z -modal hull F (iZ) as well.

2.07 LEMMA

(0) If F is idempotent, so is its weakly hereditary core Fw .

(1) If F is weakly hereditary, so is its idempotent hull F
i
.

(2) If F is Z -modal, so is its weakly hereditary core Fw .

(3) If F is weakly hereditary, so is its Z -modal hull FZ .

(4) If F is idempotent and Z -modal, so is its weakly hereditary core Fw .

(5) If F is weakly hereditary, so is its idempotent and Z -modal hull F (iZ) .

Proof:

(0) and (1) are well-known, cf. [7] and [11].

(2) Let F be Z -modal, and let 〈q, r〉 be the W - inverse image of nFw along an M -

morphism m
〈f,g〉
−−−→ n in Z . Write d for the corresponding pullback of g along nFw .

The M -morphism 〈f, d〉 as a pullback of 〈f, g〉 in the category M belongs again to Z .

Since nF
w

is F -dense and F is Z -modal, q is F -dense as well. By Theorem 1.12

of [11] mFw = { 〈s, t〉 ∈W/m | s is F -dense }sup≪ . In particular, 〈q, r〉 ≪ mFw .

On the other hand, by the definition of closure operator and the universal property of

the pullback we have an M ⋄M -morphism from mFw to nFw , which implies that

mFw ≪ 〈q, r〉 . Hence 〈q, r〉 ∼= mFw , and therefore Fw is Z -modal.

(3) Let F be weakly hereditary. Since (FZ )w by (0) is Z -modal, and since F ∼= Fw ⊑

(FZ)w ⊑ F
Z , it follows that (FZ)w

∼= FZ , i.e., FZ is weakly hereditary.

(4) and (5) follow by combining (0) with (2) and (1) with (3), respectively.

2.08 PROPOSITION

(0) There exists functors CL and wCL from Z to G A L such that for any inclusion

Y ⊆ Z in Z the left adjoints

CLY
(CLY,Z)∗−−−−−−−→ CLZ and wCLY

(wCLY,Z)∗−−−−−−−−→ wCLZ

map a closure operator F to its Z -modal hull FZ , and the corresponding right adjoints

are inclusions.

(1) There exists functors iCL and iwCL from Z to G A L such that for any inclusion

Y ⊆ Z in Z the left adjoints

iCLY
(iCLY,Z)∗−−−−−−−−→ iCLZ and iwCLY

(iwCLY,Z)∗−−−−−−−−−→ iwCLZ
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map a closure operator F to its idempotent Z -modal hull F (iZ) , and the corresponding

right adjoints are inclusions.

(2) There exists natural transformations ∆̈ and ǫ̈ that are point-wise coreflections, and

there exist natural transformations ǫ̇ and ∇̇ that are point-wise reflections such that

the following diagram commutes

wCL
∆̈
−−→ CL

ǫ̇





y





y
∇̇

iwCL −−→
ǫ̈

iCL

Specifically, for Z ∈ Z the left adjoints (ǫ̇Z)∗ and (∇̇Z)∗ map a closure operator to its

idempotent Z -modal hull, and the right adjoints (∆̈Z)∗ and (ǫ̈Z)∗ map a closure op-

erator to its weakly hereditary core. The corresponding right adjoints resp. left adjoints

are inclusions. Moreover, ǫ̇ ; ǫ̈ is point-wise essentially canonical with center iwCL .

Proof:

Consider Y ⊆ Z in Z .

(0) The existence of Z -modal hulls (cf. Remark 2.06(3)) yields the Galois reflection CLY,Z .

Similarly, part (3) of Lemma 2.07 induces the Galois reflection wCLY,Z . The functo-

riality of these assignments is trivial.

(1) The existence of idempotent Z -modal hulls (cf. Remark 2.06(3)) yields the Galois

reflection iCLY,Z . Similarly, part (5) of Lemma 2.07 induces the Galois reflection

iwCLY,Z . The functoriality of these assignments again is trivial.

(2) The Galois coreflections ∆̈Z and ǫ̈Z are induced by parts (2) and (4) of Lemma 2.07,

respectively. Forming the idempotent Z -modal hull preserves Z -modality (trivially),

which yields the Galois reflection ∇̇Z , and weak hereditariness, cf. 2.07(5), which yields

the Galois reflection ǫ̇Z . The fact that ǫ̇Z ; ǫ̈Z is essentially canonical with center

iwCLZ is immediate.

To complete the proof, it now suffices to show that the following cube commutes:

wCLZ
∆̈Z

−−−−−−−−−−−−−−−−−−−−−−• CLZ

ǫ̇Z

•

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

•
@

@
wCLY,Z CLY,Z

�
�
•

wCLY
∆̈Y
−−−• CLY

ǫ̇Y
•

∣

∣

∣

•

∣

∣

∣
∇̇Y

iwCLY −−−•
ǫ̈Y

iCLY

•�
�
iwCLY,Z iCLY,Z

@
@• •

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∇̇Z

iwCLZ −−−−−−−−−−−−−−−−−−−−−−•
ǫ̈Z

iCLZ

(2-02)
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The commutativity of the upper trapezoid follows, since both (wCLY,Z)∗ ; (∆̈Z )∗ and

(∆̈Y)∗ ; (CLY,Z)∗ map a weakly hereditary Y -modal closure operator to its Z -modal

hull. A similar argument works for the lower trapezoid, where both left adjoints map

an idempotent weakly hereditary Y -modal closure operator to its idempotent Z -modal

hull.

Since iCLZ is the intersection of iCLY and CLZ , both of which are closed under the

formation of infima in CLY , we immediately get that iCLZ is closed under the for-

mation of infima both in iCLY and in CLZ . This that the right trapezoid commutes.

A very similar argument together with Lemma 2.07(5) works for the left trapezoid.

Since all trapezoids commute, the known commutativity of the square at Z = I can be

used to derive the commutativity of all other squares.

Now we turn to the left diagram in (2-01). The question as to which subclasses of M ⋄M

(resp M ) under (ω̇I)∗ (resp. (∆̇I)∗ ) give rise to Z -modal closure operators was already

addressed in Proposition 3.02 of [4]. Originally that result had been proved under the assump-

tion that Z consists of cartesian morphisms. Unfortunately the hypothesis of this proposition

was not adjusted after that assumption had been dropped. Here is the corrected version of

that proposition, the proof of which requires only minor adjustments.

2.09 PROPOSITION

Suppose that W satisfies the Beck-Chevalley condition relative to Z , and that 〈f, g〉← is

left adjoint (i.e., preserves suprema) for each 〈f, g〉 ∈ Z .

(0) If C ⊆M ⋄M is Z -stable, then C(ω̇I)∗ ∈M -CL is Z -modal.

(1) If A ⊆M is Z -stable, then A(∆̇I)∗ ∈M -wCL is Z -modal.

How can we be certain that W satisfies the Beck-Chevalley condition for, if not every, then

at least a reasonable number of collections Z ∈ Z ?

2.10 PROPOSITION

If E is stable under pullbacks and Z consists of cartesian M -morphisms then W satisfies

the Beck-Chevalley condition relative to Z and for each 〈f, g〉 ∈ Z the W - inverse image

functor 〈f, g〉← is left adjoint and hence preserves suprema.

Proof:

The Beck-Chevalley condition relative to Z follows since the collection E2 of 2-sinks with

one member in M is stable under pullbacks along g whenever 〈f, g〉 ∈ Z . The fact that the

collection EM of supremum sinks (which consist entirely of M -elements) are stable under

the same types of pullbacks implies that 〈f, g〉← is left adjoint for each 〈f, g〉 ∈ Z .
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The hypothesis on E holds in every famillialy regular category in the sense of Street

[14], and hence in every Grothendieck topos. It can even be weakened by requiring only

Ē := E2 ∪EM to be stable under pullbacks. In Sections 4 and 5 this will be useful.

In view of Proposition 2.10 it is no longer surprising that all collections Z that occur

in practice consist of cartesian M -morphisms. This justifies restricting our attention to the

subcategory C of Z . We use the same names for the correspondingly restricted functors and

natural transformations. Notice that the collection C of all cartesian M -morphisms is is the

terminal object of C .

2.11 PROPOSITION

(0) If Y ⊆ Z in C the inclusions (M ⋄M) PY ←− (M ⋄M) PZ and M PY ←− M PZ

preserve intersections, hence induce Galois reflections

(M ⋄M)PY
(M⋄M)PY,Z−−−−−−−−−−• (M ⋄M)PZ and M PY

MPY,Z−−−−−−• M PZ

with left adjoint parts that map C ⊆ M ⋄M and A ⊆ M to the smallest Z -stable

subclasses of M ⋄M and M containing C and A , respectively. Thus (M ⋄M) P

and M P may be viewed a functors from C to G A L .

(1) The Galois connections (M ⋄M) PZ
ωZ−−−• (M ⋄M) P

op
, Z ∈ C , constitute a natural

transformation (M ⋄M) P
ω
−→ (M ⋄M)P

op with constant codomain.

(2) For any Z ∈ C , if C ⊆M ⋄M is Z -stable and D ⊆M ⋄M satisfies C(ωZ)∗ = D and

D(ωZ)∗ = C the closure operator C(ω̇Z)∗ = C(ω̇I)∗ is isomorphic to the Z -modal

hull of D(ω̈I)
∗ . Hence the essentially canonical factorization ωI = ω̇I ; ω̈I (cf. Remark

2.04(1)) extends to a factorization ω = ω̇ ; ω̈ that is point-wise essentially canonical

with center CL .

(3) There exists natural transformations ∆̇ , γ , ∆̈ , and ω̇ such that the following diagram

commutes:

M P
∆̇
−−→ wCL

γ





y





y
∆̈

(M ⋄M) P −−→
ω̇

CL

In addition, ∆̇ ; ∆̈ is point-wise essentially canonical with center wCL .

12



3 REGULAR CLOSURE OPERATORS

In the following Z is an arbitrary collection of cartesian M -morphisms that is pullback

stable, D is an arbitrary pre-ordered class, and (M ⋄M) PZ
ρ
−−• D as well as M PZ

τ
−−• D

are arbitrary but fixed Galois connections. In the applications these will in fact be restrictions

of polarities induced by suitable relations.

3.00 DEFINITION

A closure operator F ∈ CLZ (resp. F ∈ wCLZ ) is called ρ-regular (resp. τ -regular), if

(0) there exists a Galois connection CLZ
µZ−−−• D (resp. wCLZ

νZ−−−• D ) such that

(M ⋄M) PZ
ρ

−−−−−−−−−−−• D

ω̇Z

@
@• �

�
•

µZ

CLZ

(resp.

M PZ
τ

−−−−−−−−−−−• D

∆̇Z
@

@• �
�
•

νZ

wCLZ

) (3-00)

is a commuting diagram of Galois connections; and

(1) F is a left fixed point of µZ (resp. of νZ ).

3.01 REMARKS

(0) Proposition 2.11 shows that γ ; ω̇ = ∆̇ ; ∆̈ . Hence the right triangle of (3-00) can be

constructed from the left one, and the left fixed points of µZ that belong to wCLZ

are precisely the left fixed points of νZ whenever τ is taken to be γZ ; ρ .

(1) To recover classical regular closure operators, one sets Z = I , considers for D the

power collection of all X -objects ordered by ⊇ , and takes for ρ the polarity induced

by a variant of the separatedness relation of Pumplün and Röhrl. Section 4 addresses

this special case in detail.

Let us first consider the question of the existence of Galois connections µZ and νZ that

make the diagrams in (3-00) commute. It will turn out that if such µZ and νZ do exist,

they are unique up to isomorphism. To find suitable candidates for such Galois connections,

we use the fact that ω̇Z and ∆̇Z as first factors of an essentially canonical factorization are

well-behaved in the sense of the following lemma.

3.02 LEMMA

If Galois connections α , β and γ are such that α satisfies α∗ ; α∗ ∼= id , and α ; β = γ ,

then α∗ ; γ∗ ∼= β∗ and γ∗ ; α∗ ∼= β∗ .
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Since by Proposition 1.03 (ω̇Z)∗ ; (ω̇Z)∗ ∼= idCLZ
and (∆̇Z)∗ ; (∆̇Z)∗ ∼= idwCLZ

, if µ

(resp. ν ) exists, then up to isomorphism we must have

µZ = 〈(ω̇Z)∗ ; ρ∗, ρ
∗ ; (ω̇Z)∗〉 (resp. νZ = 〈(∆̇Z )∗ ; τ∗, τ

∗ ; (∆̇Z)∗〉 )

and the notion of regularity in Definition 3.00 indeed is well-defined.

3.03 PROPOSITION

If we set (µZ)◦ := (ω̇Z)∗ ; ρ∗ , (µZ)◦ := ρ∗ ; (ω̇Z)∗ , (νZ)◦ := (∆̇Z)∗ ; τ∗ , and (νZ )◦ :=

τ∗ ; (∆̇Z)∗ then both (µZ)◦ ; (µZ )◦ and (νZ)◦ ; (νZ)◦ are increasing.

Proof:

ρ and τ are Galois connections, so ρ∗ ; ρ∗ and τ∗ ; τ∗ are increasing. By Proposition 1.03

(ω̇Z)∗ ; (ω̇Z)∗ ∼= idCLZ
and (∆̇Z)∗ ; (∆̇Z )∗ ∼= idwCLZ

, and all the maps preserve order.

However, (µZ )◦ ; (µZ)◦ and (νZ )◦ ; (νZ)◦ can fail to be decreasing. If this happens, there

is no factorization of ρ through ω̇Z (resp. of τ through ∆̇Z ). As the next proposition shows,

this problem cannot occur if ρ and τ are reasonably well-behaved.

3.04 PROPOSITION

If for every element D of D

(0) Dρ∗ is a left fixed point of ω̇Z , then µZ = 〈(µZ)◦, (µZ )◦〉 is a Galois connection;

(1) Dτ∗ is a left fixed point of ∆̇Z , then νZ = 〈(νZ )◦, (νZ )◦〉 is a Galois connection.

Proof:

(0) If Dρ∗ is a left fixed point of ω̇Z , then Dρ∗(ω̇Z)∗(ω̇Z)∗ρ∗ ∼= ρ∗ρ∗ . Since ρ is a Galois

connection, we have Dρ∗ρ∗ ⊒ D , i.e., (ω̇Z)∗ ; ρ∗ ; ρ∗ ; (ω̇Z)∗ is decreasing

(1) Similar.

3.05 REMARK

By Theorem 2.08(4) of [3] ω̇I and the polarity ω induced by the orthogonality relation on

M ⋄M have the same left fixed points. Hence we can use their characterization in Theorem

2.05 of [3] when applying part (0) of Proposition 3.04 for Z = I . By Proposition 2.02 of [4] we

then know that for Z ∈ C the left fixed points of ω̇Z , i.e., the classes F (ω̇I)
∗ for Z -modal

closure operators F , are precisely the left fixed points of ω̇I that are Z -stable (cf. Definition

2.05). Recall that C ⊆ M ⋄M is a left fixed point of ω (and hence of ω̇I ) iff C satisfies

the conditions

(C0) C is stable under the formation of W -direct images.

(C1)
(

C ∩W/m
)

sup≪ ∈ C for every m ∈M .
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(C2) C ∩W/m is a lower segment for every m ∈M .

We proceed by characterizing the left fixed points of ∆̇Z . Using Proposition 2.02 of [4]

again, these are the left fixed points of ∆̇I , i.e., the classes F (∆̇I)
∗ with F weakly hereditary,

that are Z -stable.

3.06 THEOREM

A ⊆M is a left fixed point of ∆̇I iff A satisfies the following conditions

(C̄0) A(γI)∗ is stable under the formation of W -direct images;

(C̄1)
(

A(γI)∗ ∩W/m
)

sup≪ ∈ A(γI)∗ for every m ∈M .

Proof:

(⇒). Let F be a weakly hereditary closure operator, and set A = F (∆̇I)
∗ , i.e., A is the

class of F -dense elements of M .

(C̄0) For an M -morphism m
〈f,g〉
−−−→ n consider 〈q, r〉 ∈ A(γI)∗ ∩W/m and let 〈〈d, s〉, t〉

be the 〈E,M 〉-factorization of the 2-sink •
r ; g
−−−→ •

n
←− • . Thus 〈s, t〉 ∈ W/n is the

W -direct image of 〈q, r〉 along 〈f, g〉 . It suffices to show that s ∈ A . Since q ∈ A we

have that 〈q, id〉 ⊥ sF . So there exists a unique w with q ; w = f ; sF and w ; sF = d .

Now the fact that •
d
−→ •

s
←− • belongs to E and hence is left-orthogonal to sF ∈M

implies the existence of a unique z with s ; z = sF , d ; z = w , and z ; sF = id . In

particular, sF ∈ X -Mono is a retraction and hence is an iso, i.e., s is F -dense.

Consequently, 〈s, t〉 ∈ A(γI)∗ .

(C̄1) Proposition 1.09(1) of [11] shows
(

A(γI)∗ ∩W/m
)

sup≪ ∼= mF ∈ A(γI)∗ for each m ∈

M , since A = F (∆̇I)
∗ = F (∆I)

∗ . By (C̄0) the supremum belongs to A(γI)∗ as well.

(⇐). Suppose that A ⊆ M satisfies (C̄0) and (C̄1), and set F = A(∆̇I)∗ = A∆∗ . Since

(∆̇I)∗ ; (∆̇I)
∗ is increasing, it suffices to show A ⊇ F (∆̇I)

∗ = F (∆I)
∗ . The hypothesis and

Remark 2.04(2) yield mF =
(

(A(γI)∗)
di ∩W/m

)

sup≪ =
(

A(γI)∗ ∩W/m
)

sup≪ ∈ A(γI)∗

for each m ∈M . If m is F -dense, then m ∼= mF and by (C̄0) belongs to A .

It is important to notice that (C̄0) is not equivalent to A being stable under the formation

of V -direct images. If m = n ; p , then 〈p, idpV 〉 always is an 〈n, idpV 〉-direct image of

〈m, idmV 〉 , but p need not be an idmV -direct image of m .

Translating (C2) for A(γI)∗ in terms of A results in the following cancellation property

(C̄2) n ; p ∈ A and p ∈M implies n ∈ A .

But this is just the condition that characterizes hereditary closure operators, cf. Proposition

3.02 of [4]. The fact that this condition is not needed to characterize the left fixed points of

∆̇I indicates that A may be a left fixed point of ∆̇I without A(γI)∗ being a left fixed point

of ω . This is no real surprise, since the inclusion F (∆̇I)
∗(γI)∗ ⊆ F (ω̇I)

∗ is only reversible
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if F is hereditary. In particular, for every weakly hereditary closure operator F that is not

hereditary there exist relatively dense pairs 〈n, p〉 ∈ F (ω̇I)
∗ for which n is not dense. An

example of such a closure operator is the weakly hereditary core of the classical regular closure

operator induced by class of Hausdorff spaces, cf. Example 3.08 of [4] and Section 4.

We conclude this section with a characterization of the classes F (ω̇I)
∗ for idempotent

closure operators F as well as the classes G(∆̇I)
∗ for idempotent weakly hereditary closure

operators G .

3.07 PROPOSITION

(0) C ⊆ M ⋄M is of the form F (ω̇I)
∗ for some idempotent closure operator F iff in

addition to conditions (C0) – (C2) of Remark 3.05 we have

(C3) C is stable under left-shifting, i.e., 〈l, q〉 ∈ C ∩W/m and 〈n, p〉 ∈ C ∩W/q

implies 〈l ; n, p〉 ∈ C ∩W/m .

(1) A ⊆M is of the form G(∆̇I)
∗ for some idempotent weakly hereditary closure operator

F iff in addition to conditions (C̄0) and (C̄1) of Theorem 3.06 we have

(C̄3) A is closed under composition.

Proof:

(0) (⇒). Let F be an idempotent closure operator with F (ω̇I)
∗ = C . In particular then

C as a left fixed point of ω̇ satisfies (C0) – (C2). If 〈l, n ; p〉, 〈n, p〉 ∈ F (ω̇I)
∗ , for any

m ∈M we have 〈l, n ; p〉 ⊥ mF and 〈n, p〉 ⊥ mFF . Since by the idempotency mF
F

is an isomorphism, this implies 〈l ; n, p〉 ⊥ mF , and so 〈l ; n, p〉 ∈ F (ω̇I)
∗ = C .

(⇐). Suppose that C ⊆M ⋄M satisfies (C0) – (C3), and set F = C(ω̇I)∗ . Since C

by Remark 3.05 is a left fixed point of ω̇ , for m ∈ M both mF and mFF belong

to C . Thus 〈mF ; mF
F ,m

FF 〉 ∈ C by (C3), and hence 〈mF ; mF
F ,m

FF 〉 ≪ mF (cf.

Remark 2.04(1)). Therefore mF
F is an isomorphism and so mF is F -closed.

(1) (⇒). Let G be an idempotent weakly hereditary closure operator with G(∆̇I)
∗ = A .

In particular then A as a left fixed point of ∆̇I satisfies (C̄0) and (C̄1). If 〈l, n〉 ∈

(M ⋄M )∩ (A×A) , then for m = l ; n we have 〈l, n〉 ⊥ mG and 〈n, id〉 ⊥ mGG . Since

by the idempotency mG
G is an isomorphism, this implies 〈l ; n, id〉 ⊥ mG . But this

means that l ; n is G-dense and hence belongs to A .

(⇐). Suppose that A ⊆ M satisfies (C̄0), (C̄1) and (C̄3), and set G = A(∆̇I)∗ . By

Theorem 3.06 we then have A = G(∆̇I)
∗ . Thus for m ∈M both mG and mG

G and

hence mG ; mG
G are G-dense. But mG = { 〈s, t〉 ∈W/m | s is G-dense }sup≪ by

Theorem 1.12 of [11], so mGG ≤ mG . The other inequality always holds, which implies

mGG ∼= mG . Thus mG
G is iso, and hence mG is G-closed.
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4 APPLICATIONS OF

PUMPLÜN-RÖHRL-SALBANY-TYPE

Since the restriction of the orthogonality relation ⊥ to M ⋄M and the induced polarity

(M ⋄M)P
ω
−−• (M ⋄M)P

op
lie at the heart of the theory of closure operators (after all

M -CL is equivalent to the fixed point lattices of ω ) one can clearly construct a largest closure

operator F with a prescribed class C ⊆M ⋄M of composable pairs that are relatively F -

closed. In particular, it is possible to construct a largest closure operator for which the members

of a given class B ⊆M of M -elements are F -closed.

Grothendieck topologies on a Grothendieck topos can be identified with idempotent modal

closure operators on the class of monomorphisms. Although one is usually interested in the

largest Grothendieck topology that has a certain class of presheaves as sheaves, occasionally

the question arises as to whether a largest Grothendieck topology can be constructed for which

all members of a given class B of monos are closed. A moment’s thought will convince the

reader that this indeed is possible, and that the obvious construction works (declare to be

dense every mono that has the property that each of its pullbacks is left-orthogonal to every

member of B ). Nevertheless, both problems are fundamentally different, and in this section

and the following one we shall explain why.

Another type of condition that may be imposed on a closure operator is evident in two other

motivating examples that we wish to explain: namely the factorization of the Pumplün–Röhrl

polarity established in [5], and the Salbany construction of a closure operator induced by a

class of objects by means of relative dominions, cf. [13] and [10]. In both cases one considers the

class {X
idX←−−− X

idX−−−→ X | X ∈X -Ob} of identity 2-sources, which we temporarily identify

with X -Ob . Using the notation of the present paper, in [5] we established the commutativity

of the diagram

(X -Mor) P
σ

−−−−−−−−−−−• (X -Ob) P
op ,

ς
@

@• �
�
•

κ

M -iCL

(4-00)

provided that X has equalizers and M contains all regular monomorphisms, or equivalently

that E consists of epi-sinks. σ ( = (α, β) in [5]) is the Pumplün–Röhrl connection, i.e., the

polarity between (X -Mor) P ( = H(X ) in [5]) and (X -Ob) P
op

( = S(X ) in [5]) induced

by the “separating relation” S ⊆ X -Mor × X -Ob . cf. Definition 1.00 and Proposition

1.01(1). The Galois connection ς was constructed under the name (S,R) in [5]. ς∗ ( = R )

maps F ∈M -iCL to the class of F -dense X -morphisms. To define ς∗ ( = S ), for a class

N ⊆ X -Mor declare all elements of M that are right-orthogonal to every element of N

to be N -closed. The N ς∗ -closure of m ∈ M then is the smallest N -closed subobject of

mV that is greater than or equal to m . Finally, κ ( = (D,K) in [5]) goes back to [6]. κ∗

( = D ) maps F ∈M -iCL to the class of F -separated objects, i.e., those objects X that
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are separated from mF for every m ∈M (cf. Proposition 1.01(1)), while κ∗ ( = K ) maps

Y ⊆ X -Ob to the Salbany closure operator induced by Y . The Salbany closure mY κ∗ of

m ∈ M is defined as the dominion of m relative to Y , i.e., as the intersection of all

equalizers of parallel pairs 〈r, s〉 of X -morphisms with codomain belonging to Y and the

property that m ; r = m ; s . However, in this section we prefer to view mY κ∗ as a supremum

in W/m of all those pairs 〈n, p〉 with the property that if m equalizes any parallel pair 〈r, s〉

with codomain in Y , so does p . Hence

• Y κ∗ is the largest idempotent closure operator with respect to which all objects

in Y are separated.

Our program hence boils down to answering the following question: What kinds of condi-

tions (of the type that prescribe certain sheaves, or separated objects, or closed morphisms,

etc.) can we impose such that a largest closure operator (possibly with additional properties

like idempotency or Z -modality) exists that satisfies these conditions?

In order to provide some of the answers, we now specialize the Galois connections ρ and

τ of Section 3 to polarities induced by (suitable restrictions of) the orthogonality relation ⊥

and modifications thereof. In 1.00 we defined ⊥ as a relation between collections L and R .

On the left side we want to restrict L to M ⋄M , or to M ⋄X -Iso∼= M (or in case of the

Pumplün-Röhrl connection to X -Mor ⋄X -Iso ∼= X -Mor ). On the right side it will be

necessary to distinguish the subcollections Rm and Ri of R that consist of those pairs 〈r, r〉

that have a monosource in the second component, resp. an isomorphism in the first component,

and their intersection R
i
m . The inclusions

R
i
m −֒→ Rm −֒→ R and R

i
m −֒→ R

i −֒→ R

via their graphs induce axialities

R
i
mP

ϕ
−−• RmP

ψ
−−• RP and R

i
mP

ι
−−• R

i
P

ϑ
−−• RP

whose left adjoint parts are the inclusions of the respective power collections, and that satisfy

ϕ ; ψ = ι ; ϑ .

Unfortunately, still further restrictions on the subcollections of R we can select as condi-

tions for a closure operator to satisfy seem to be necessary. Recall the collection Ē of sinks

that naturally appeared in the proof of Proposition 2.10. We denote by R̄ the subcollection

of all pairs in R hat are right orthogonal to every sink in Ē . For the intersections with Rm ,

Ri , and R
i
m we write R̄m , R̄i , and R̄

i
mono , respectively. Finally ϕ̄ , ψ̄ , ῑ and ϑ̄ denote

the corresponding variants of ϕ , ψ , ι , and ϑ above.
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4.00 DEFINITION (cf. Definition 2.05(2))

The polarities from (M ⋄M)P to RP
op

and R̄P
op

induced by ⊥Z restrict to Galois

connection (M ⋄M) PZ
ρZ−−−• RP

op
and (M ⋄M)PZ

ρZ−−−• R̄P
op

, respectively. Similarly

we obtain Galois connections M PZ
τZ−−−• RP

op
and M PZ

τ̄Z−−−• R̄P
op

.

Clearly, the Galois connections ρ̄Z and τ̄Z , Z ∈ C , constitute natural transforma-

tions (M ⋄M) P
ρ̄
−→ R̄mP

op and M P
τ̄
−→ R̄P

op with constant codomain (cf. Proposition

2.11(1)). We now address the question as to whether or not ρ and τ factor through ω̇ and

∆̇ , respectively. A closure operator F is said to satisfy J ⊆ R if mF ⊥ 〈r, r〉 for each

m ∈M and every 〈r, r〉 ∈ J .

4.01 THEOREM

Suppose that Ē is stable under pullbacks, and interpret ϕ̄
op

, ψ̄
op

, ῑ
op

, and ϑ̄
op

as constant

natural transformations between constant functors defined on C .

(0) There exist natural transformations CL
µ
−→ R̄mP

op
and iCL

µ̂
−→ R̄

i
mP

op
such that

both parts of the following diagram commute

ρ̄

�
ր

(M ⋄M) P

ω̇
@
ց

R̄mP
op

ϕ̄op

−−−−−−−−→ R̄
i
mP

op

µ

x



















x



















µ̂

CL −−−−−−−−→
∇̇

iCL

(4-01)

More specifically, for any Z ∈ C and for any subclass J of R̄m there exists a largest

Z -modal closure operator F that satisfies J ; in fact F (ω̇Z)∗ = J(ρ̄Z )∗ . If J ⊆ R̄
i
m ,

then F is even idempotent.

(1) There exist natural transformations wCL
ν
−→ R̄ and iwCL

ν̄
−→ R̄i such that both

parts of the following diagram commute

τ̄

�
ր

M P

∆̇
@
ց

R̄P
op

ψ̄op

−−−−−−−−→ R̄iP
op

ν

x



















x



















ν̂

wCL −−−−−−−−→
ǫ̇

iwCL

(4-02)
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More specifically, for any Z ∈ C and for any subclass J of R̄ there exists a largest

weakly hereditary Z -modal closure operator G that satisfies J ; in fact G(∆̇Z )∗ =

J(τ̄Z)∗ . If J ⊆ R̄i , then G is even idempotent.

(2) Every cell of the following diagrams commutes

M P
τ̄

−−−−−−−−−−→ R̄P
op

γ

































y

@
ց
∆̇ ν

�
ր

wCL

∆̈





y

CL

�
ր
ω̇ µ

@
ց

































y

ϑ̄op

(M ⋄M) P −−−−−−−−−−→
ρ̄

R̄mP
op

and

R̄P
op

ψ̄op

−−−−−−−−−−−−−−−−−→ R̄iP
op

ϑ̄op

































y

տ
@
ν ν̂

�
ր

wCL
ǫ̇

−−→ iwCL

∆̈





y





y
ǫ̈

CL −−→
∇̇

iCL

ւ
�
µ µ̂

@
ց

































y

ῑop

R̄mP
op −−−−−−−−−−−−−−−−−→

ϕ̄op

R̄
i
mP

op

(4-03)

Proof:

(0) Fix Z ∈ C . First we establish the existence of a Galois connection CLZ
µZ−−−• R̄mP

op

with ρ̄Z = ω̇Z ; µZ . Since (ρ̄Z)∗ maps unions to intersections, and every H ⊆ R̄m

is a union of singletons, we only need to check whether C = {〈h,h〉}(ρ̄Z )∗ satisfies

conditions (C0), (C1), and (C2) of Remark 3.05 for each fixed 〈h,h〉 ∈ R̄m .

If Z = I = M -Iso , then the hypotheses are trivially satisfied. Conditions (C0) and

(C1) easily follow from the fact that h is right-orthogonal to all sinks in E2 and in

EM , respectively. Moreover, since h is a monosource, we also get (C2).

For general Z conditions (C0) – (C2) can be derived from the corresponding conditions

in the case that Z = I by using Proposition 2.10. For (C0) this is possible because W

satisfies the Beck-Chevalley condition relative to Z . For (C1) use the fact that 〈f, g〉←

preserves suprema for each 〈f, g〉 ∈ Z . And for (C2) notice that W - inverse image

functors preserve order.

Since C is Z -stable by construction, we now can apply Proposition 3.04(0) to get that

µZ = 〈(ω̇Z)∗ ; (ρ̄Z )∗, (ρ̄Z )∗ ; (ω̇Z)∗〉 is a Galois connection and satisfies ρ̄Z = ω̇Z ; µZ .

If h is an isomorphism, then condition (C3) of Proposition 3.07 is easily verified.

Hence µZ ; (ϕ̄op)Z factors through CLZ
∇̇Z−−−• iCLZ by means of a Galois connec-

tion iCLZ
µ̂Z−−−• R̄

i
mP

op
.

(1) The proof proceeds in a similar fashion to that of part (0), except that now the class

{〈h,h〉}(τ̄Z)∗ only needs to satisfy conditions (C̄0) and (C̄1) of Theorem 3.06. Since

there is no counterpart to condition (C2), h need not be a monosource as in part (0).
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(2) All inner cells of the left diagram except the right trapezoid are known to commute. Its

commutativity is easily established by considering the right adjoint part and by using

the construction of weakly hereditary cores given in Theorem 1.12 of [11].

In the right diagram again the only cell that needs attention is the right trapezoid. The

same type of argument as in before works.

Since M ⋄M ⊆ R̄m , one can always prescribe relatively closed pairs in M ⋄M , hence in

particular closed elements of M . Whether or not we can prescribe, e.g., separated objects,

may depend upon additional properties of Ē or of X . Proposition 1.01(2) yields

4.02 COROLLARY

Suppose Ē is stable under pullbacks. If Ē consists of epi-sinks, then for any Z ∈ C and for

any class Y of X -objects

{X
idX←−−− X

idX−−−→ X | X ∈ Y }(τZ)∗

is the class of dense M -elements for the largest Z -modal closure operator F with respect to

which all objects in Y are separated. Moreover, F is idempotent.

In order to derive the factorization of the Pumplün-Röhrl connection displayed in Diagram

(4-00) from this result, identify X -Ob with H = {X
idX←−−− X

idX−−−→ X | X ∈ X -Ob} . Let

S be the separatedness relation of Pumplün and Röhrl (cf. 1.01(1)), i.e., the restriction of

⊥ to X -Mor×H , and let (X -Mor) P
σ̄I−−−• HP

op
be the induced polarity. We need to

define σ̄Z for arbitrary Z ∈ C and link the resulting natural transformation σ̄ between the

constant functors (X -Mor)P and HP
op with M P

τ̄
−→ R̄P

op .

4.03 DEFINITION

Consider the relation Q ⊆X -Mor×M defined by

〈f,m〉 ∈ Q ⇐⇒ ∃e∈E f = e ; m

This induces an axiality (X -Mor)P
δI−−−• M PI (cf. Definition 1.04). For Z ∈ C define

δZ := δI ; PI,Z to obtain a natural transformation δ from the constant functor (X -Mor) P

to M P .

21



4.04 PROPOSITION

Suppose that Ē is stable under pullbacks and consists of epi-sinks. Then the class H =

{X
idX←−−− X

idX−−−→ X | X ∈X -Ob} is contained in R̄
i
m , and this inclusion induces an axiality

HP
π
−−• R̄

i
mP . Viewed as a constant natural transformation, its dual can be used to define a

natural transformation (X -Mor) P
σ̄
−→HP

op via the diagram

(X -Mor) P
δ
−→M P

τ̄ ; ψop

−−−−−−−−−−−−−−−−−→ R̄
i
P

op

γ

































y

@
ց
∆̇ ν̂

�
ր

wCL
ǫ̇

−−→ iwCL

∆̈





y





y
ǫ̈

CL −−→
∇̇

iCL

�
ր
ω̇ µ̂

@
ց

































y

ιop

(M ⋄M)P −−−−−−−−−−−−−−−−−→
ρ̄ ; ϕop

R̄
i
mP

op πop

−−−→HP
op

(4-04)

If singleton E -sinks are epis as well, then σ̄I is the Pumplün–Röhrl connection of Diagram

(4-00), and up to isomorphism (π
op
I )∗ ; (µ̂I)

∗ agrees with the Salbany construction κ∗ .

Proof:

Ē needs to consist of epi-sinks for H to be contained in R̄
i
m , and thus for π to be well-

defined. Diagram (4-04) then is just a combination of the Diagrams (4-03)

If singleton E -sinks are epis as well, then the left-orthogonality of an X -morphism f to a

2-source X
idX←−−− X

idX−−−→ X is equivalent to to the left-orthogonality of the M -component of

the 〈E,M 〉-factorization of f to X
idX←−−− X

idX−−−→ X . This establishes σ̄I as the Pumplün–

Röhrl connection.

By Theorem 4.01(0), (µ̂I)∗ ; (πop
I )∗ maps F ∈ iCLI to those elements of H that are

right-orthogonal to every relatively F -dense pair, and thus in particular are F -separated

when viewed as X -objects. Conversely, if 〈n, p〉 ∈ M ⋄M is relatively F -dense and if X

is F -separated, then for m = n ; p we have 〈n, p〉 ⊥ mF ⊥ (X
idX←−−− X

idX−−−→ X) , which

since n is mono implies 〈n, p〉 ⊥ (X
idX←−−− X

idX−−−→ X) . Hence (µ̂I)∗ ; (π
op
I )∗ essentially maps

F ∈ iCLI to the class of all F -separated objects. Up to isomorphism, this identifies the

right adjoint (π
op
I )∗ ; (µ̂I)

∗ as the Salbany construction.

The hypotheses that Ē is pullback-stable or consists of epi-sinks are frequently satisfied.

Of particular importance is the case that X is finitely complete, M consists of all monos and

E is stable under pullbacks. Such categories X are called familially regular in [14]. In this

setting the sinks in E actually are colimit sinks, a property we will exploit in the following

section.
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5 APPLICATIONS OF GROTHENDIECK-TYPE

Our results so far do not cover the case of sheaves in a Grothendieck topos: in general empty

sources are not right-orthogonal to the sinks in Ē . As we have seen above, whenever Ē satis-

fies stronger conditions then the corresponding collection R̄ of pairs that are right-orthogonal

to each sink in Ē is less restricted. E.g., when each sink in Ē is epi, then R̄ contains all

the 2-sources of the form X
idX←−−− X

idX−−−→ X for X ∈ X -Ob , cf. Corollary 4.02. In order to

address the issue of pairs in R that do not belong to R̄ our strategy below will be to impose

further restrictions on Ē : not only will we require that the sinks in Ē be epi-sinks, but in

fact we want them to be colimit sinks of a special type, called effective sinks.

5.00 DEFINITION (cf. [14])

The kernel of a 2-sink •
u
−→ •

v
←− • in a category X is the diagram that consists of all those 2-

sources •
a
←− •

b
−→ • that satisfy a ; u = b ; v . The reduced kernel of •

u
−→ •

v
←− • coincides

with the kernel, if the 2-sink has no pullback, and consists of any pullback of •
u
−→ •

v
←− •

otherwise. The (reduced) kernel of a sink w is the disjoint union of all (reduced) kernels of

all 2-sinks contained in w . A sink w is called effective, provided that it is a colimit of its

kernel (or equivalently, of its reduced kernel).

It is well-known that all epi-sinks in a Grothendieck topos are effective. The following ex-

ample shows that despite this property the techniques of Section 4 cannot be used to construct

a largest weakly hereditary closure operator that has a given class of pre-sheaves as sheaves.

5.01 EXAMPLE

Consider the following small category A

H J

@
ց
h j

ւ
�

L

�
ր
i k

տ
@



















y

f

I K

(5-00)

with j 6= f ; k . Identify A with the appropriate subcategory of representable functors in

the functor category X = [A,Set] . In X define E to be the coproduct of H and I , F

to be the coproduct of H , I , and J , and G to be the colimit of the diagram spanned by

all A -objects except L . These colimits induce monomorphisms E
n
−→ F

p
−→ G . We now

attempt to construct a largest weakly hereditary closure operator for which the pre-sheaf L

will be a sheaf by forming the class A of all monos in X that are left-orthogonal to 〈L, ∅〉 .
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The only morphism from E to L is induced by the 2-sink H
h
−→ L

i
←− I . Since there is

only one natural sink with codomain L for the diagram that defines G , there also is only one

X -morphism from G to L . Thus m = n ; p is left-orthogonal to 〈L, ∅〉 , but neither n nor

p has this property. Hence A cannot be the class of dense elements for any closure operator

on M . Moreover, the closure operator A(∆̇I)∗ cannot have L as a sheaf.

Condition (C̄0) fails in this example, since 〈p, id〉 is a W -direct image of 〈m, id〉 . If n

in addition to m were left-orthogonal to 〈Z, ∅〉 , we could conclude that p has this property

as well. Hence it seems reasonable to restrict our attention to closure operators that are at

least hereditary. However, to take advantage of the effectiveness of the sinks in Ē , it seems

unavoidable to actually require all cartesian M -morphisms to belong to Z . So we are looking

at closure operators that are at least modal.

Compare the next result to the instance of Theorem 4.01(1) at C = { 〈f, g〉 ∈ M -Mor |

〈f, g〉 is cartesian } .

5.02 THEOREM

Suppose that W satisfies the Beck-Chevalley condition relative to C , and that 〈f, g〉← pre-

serves suprema for every cartesian M -morphism 〈f, g〉 . Further assume that all sinks in Ē

are effective. Then there exists a Galois connection iwCLC
λ
−−• R

i
P

op
such that the following

diagram commutes

τC

�
�
•

M PC

∆̇C
@

@•

R̄P
op

ψ̄op

−−−−−−−−−• R̄iP
op

•∣
∣

∣

∣

∣

∣

∣

∣

∣

∣

λ

CLC = wCLC −−−−−−−−−•
ǫ̇C

iwCLC = iCLC

(5-01)

More specifically, for every subclass J of R
i

there exists a largest idempotent modal closure

operator F that satisfies J ; in fact F (∆̇C)
∗ = J(τC)

∗ .

Proof:

The only difference between this proof and the proof that the outer part of Diagram (4-02)

commutes at C is that we can no longer rely on the fact that a given source h is right-

orthogonal to every sink in Ē .

Set A = {〈id,h〉}(τC)
∗ . This class is easily seen to be closed under composition, i.e.,

condition (C̄3) is satisfied. To establish (C̄0), i.e., that A(γC)∗ is closed under W -direct
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images, consider an M -morphism q
〈f,d〉
−−−→ s with q ∈ A and •

d
−→ •

s
←− • in Ē . Moreover,

consider an X -morphism x and an X -source z such that

x ; h = s ; z

We need to find a unique X -morphism y that satisfies

x = s ; y and y ; h = z (5-02)

Since q ∈ A , there exists a unique w such that

f ; x = q ; w and w ; h = d ; z

The reduced kernel of the sink 〈d, s〉 ∈ Ē consists of the pullback •
s′

←−− •
d′

−−→ • of

•
d
−→ •

s
←− • , the pullback of s along itself (which since s is mono, consists of two identities

and hence does not contribute to the diagram that has 〈d, s〉 as a colimit), and all sources

•
a
←− •

b
−→ • that satisfy a ; d = b ; d . We first establish that

d′ ; x = s′ ; w (5-03)

Form the pullback •
s′′

←−− •
q′

−−→ • of •
q
−→ •

s′

←−− • . Since q′
〈s′′,s′〉
−−−−−→ q is cartesian and A is

C -stable, q′ belongs to A as well, i.e., q′ is left-orthogonal to 〈id,h〉 . We have

d′ ; x ; h = d′ ; s ; z = s′ ; d ; z = s′ ; w ; h (5-04)

Let k be the unique morphism (induced by the pullback) that satisfies k ; s′ = q and k ; d′ =

f . Since s′ is mono, it follows that q′ = s′′ ; k . Hence

q′ ; d′ ; x = s′′ ; k ; d′ ; x = s′′ ; f ; x = s′′ ; q ; w = s′′ ; k ; s′ ; w = q′ ; s′ ; w (5-05)

Together, (5-04), (5-05), and uniqueness in the definition of orthogonality establish (5-03).

Next we shall show that a ; d = b ; d implies

a ; w = b ; w (5-06)

Form the pullbacks •
ã
←− •

j
−→ • and •

b̃
←− •

k
−→ • of •

q
−→ •

a
←− • and •

q
−→ •

b
←− • ,

respectively. As above we conclude that j and k are left-orthogonal to 〈id,h〉 . However,

this alone is not sufficient to establish (5-06). Let •
k′

←−− •
j′

−−→ • be a pullback of •
j
−→ •

k
←− • .

Since both j′ and k′ are left-orthogonal to 〈id,h〉 , so by (C̄3) is the composite j′ ; k =

h = k′ ; j . Therefore a ; w is the unique morphism g that satisfies k′ ; ã ; f ; x = h ; g and

g ; h = a ; d ; z . Similarly, b ; w is the unique morphism g that satisfies j′ ; b̃ ; f ; x = h ; g

and g ; h = b ; d ; z . We observe that

k′ ; ã ; f ; s = k′ ; ã ; q ; d = j′ ; b̃ ; q ; d = j′ ; b̃ ; f ; s
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Since s is mono, this implies k′ ; ã ; f = j′ ; b̃ ; f , and thus in particular k′ ; ã ; f ; x =

j′ ; b̃ ; f ; x . Since a ; d ; z = b ; d ; z as well, it follows that a ; w = b ; w . Hence x in

conjunction with w yields a natural sink for the reduced kernel of •
d
−→ •

s
←− • . By the

effectiveness of 〈d, s〉 there exists a unique y for which (5-02) holds.

To establish (C̄1), for m ∈ M set (A(γC)∗ ∩W/m) sup≪ = 〈n, p〉 , and consider an X -

morphism x and an X -source z such that x ; h = m ; z . Whenever 〈q, r〉 and 〈s, t〉 belong

to A(γC)∗ ∩W/m there exist morphisms v and w such that

q ; v = x = s ; w and r ; z = v ; h and t ; z = w ; h

Moreover, r and t factor through p by means of morphisms c and d , respectively. Now

form the pullback •
a
←− •

b
−→ • of •

c
−→ •

d
←− • . We need to show that

a ; v = b ; w (5-07)

Let l be the unique morphism that satisfies l ; a = q and l ; b = s . If •
a′

←−− •
q′

−−→ • is a

pullback of •
q
−→ •

a
←− • , since a is mono it follows that a′ ; l = q′ . Therefore

q′ ; a ; v = a′ ; q ; v = a′ ; x = a′ ; s ; w = a′ ; l ; b ; w = q′ ; b ; w

Since we also know that

b ; w ; h = b ; t ; z = b ; d ; p ; z = a ; c ; p ; z = a ; r ; z = a ; v ; h

the left-orthogonality of q′ to 〈id,h〉 implies (5-07). Now the effectiveness of the supremum

sink that induces 〈n, p〉 yields the desired unique y with

x = n ; y and y ; h = p ; z

5.03 COROLLARY

For any category X that satisfies the hypotheses of Theorem 5.02 every collection Y of

objects (= full subcategory) induces an idempotent modal closure operator (unique up to

isomorphism) for which all objects in Y are sheaves.

5.04 REMARK

In view of the proof it seems unlikely, however, that a result like Theorem 5.02 can be extended

to other collections Z ∈ C , e.g., to idempotent hereditary closure operators, or in the case

that X has binary products to idempotent P -modal closure operators, where P consists of

all projections of the form idX × n −→ n in M , cf. [4], Section 2. (This latter type of closure

operators is interesting, since for a cartesian closed category X the sheaves of a P -modal

closure operator form a cartesian closed subcategory.) But so far counterexamples similar to

Example 5.01 have proved to be elusive.

It would be useful to be able to characterize those categories X and those closure operators

F for which the F -sheaves form a reflective subcategory.
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[0] Adámek, J., Herrlich, H., and Strecker, G. E. Abstract and Concrete Categories. John
Wiley, New York, 1990.

[1] Börger, R. Kategorielle Beschreibungen von Zusammenhangsbegriffen. PhD thesis, Fernuniver-
sität Hagen, 1981.

[2] Castellini, G. Closure operators, monomorphisms and epimorphisms in categories of groups.
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