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Abs t rac t .  The problems of nicely drawing planar graphs have received 
increasing attention due to their broad applications [5]. A technique, reg- 
ular edge labeling, was successfully used in solving several planar graph 
drawing problems, including visibility representation, straight-line embed- 
ding, and rectangular dual problems. A regular edge labeling of a plane 
graph G labels the edges of G so that the edge labels around any vertex 
show certain regular pattern. The drawing of G is obtained by using the 
combinatorial structures resulting from the edge labeling. In this paper, 
we survey these drawing algorithms and discuss some open problems. 

1 V i s i b i l i t y  R e p r e s e n t a t i o n  

Given a planar graph G = (V, E),  a visibility representation (VR) of G maps 
each vertex of G into a horizontal line segment and each edge into a vertical 
line segment that  only touches the two horizontal line segments representing 
its end vertices. This representation has been used in several applications for 
representing electrical diagrams and schemes [28]. Linear t ime algorithms for 
constructing a VR has been independently discovered by Rosenstiehl and Tarjan 
[20] and Tamassia and Tollis [29]. Their  algorithms are based on: 

D e f i n i t i o n  1: Let G be a connected plane graph and s, t be two vertices on 
the exterior face of G. An st-labeling of G is an orientation of edges such that: 
1. All edges incident to s are leaving s; all edges incident to t are entering t. 
2. For each vertex v ~ s,t, the edges incident to v are partit ioned into two 
subsets, each of which is consecutive around v in the embedding. The edges in 
the first subset are leaving v; the edges in the second subset are entering v. 

Such a labeling is also called an st-numbering, st-orientation, or st-planar 
graph. Its properties has been extensively studied [18, 20, 25, 26]. A VR of G 
can be obtained from an st-labeling by the following linear time algorithm [20]. 

A l g o r i t h m  1: V i s ib i l i t y  R e p r e s e n t a t i o n  

1. Construct an st-labeling of G. Let G be the resulting directed graph and G* 
the directed dual. 

2. For each vertex v, compute d(v), the length of the longest path from the 
unique source s of G to v in (~. 
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3. For each face F of G, compute d*(F), the length of the longest path from 
the unique source of G* to F in G*. 

4. For each vertex v of G Do: 
If v r s, t, draw horizontal line between (d* (left(v)), d(v)) and (d* (right(v))- 
1, d(v)). (left(v) denotes the face incident to v that  separates the edges 
entering v and the edges leaving v in clockwise direction, right(v) is defined 
analogously.) 
If v = s or t, draw horizontal line between (0, d(v)) and (D, d(v)), where D 
is the length of the longest path between the source and the sink in G*. 

5. For each edge (u, v) of G do: 
Draw vertical line between (d*(left(u, v)), d(u)) and (d*(left(u, v)), d(v)). 
(left(e) denotes the face on the left of the edge e.) 
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Fig. 1. A st-labeling of a plane graph and its visibility representation. 

Fig 1 shows an example of this algorithm. The figure on the left is a graph 
G with s = 1 and t = 14. The numbers in small boxes denote the d*-value of 
the faces. The figure on the right is the resulting VR. It is easy to show the size 
of the drawing is at most (2n - 5) • (n - 2). By using a carefully constructed 
st-labeling, the drawing size can be reduced to (n - 1) • (n - 1) for 4-connected 
planar graphs [15], and to ([~nJ3 _ 3) • (n - 1) for general planar graphs [14] 

2 S t r a i g h t - L i n e  G r i d  E m b e d d i n g  

A straight-line grid embedding of a planar graph G is a drawing where the ver- 
tices are located at grid points, and each edge is represented by a straight line 
segment. Such embeddings on reasonably small grids are very useful in visualiz- 
ing planar graphs on graphic screens and have wide applications in CAD/CAM 
and computer graphics [5]. Wagner [31], Fs [8], and Stein [24] showed that  
every planar graph has a straight-line embedding. Many embedding algorithms 
have been reported [3, 19, 30]. However, these algorithms all suffer two serious 
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Fig. 2. A realizer of a plane graph and its straight-line grid drawing. 

drawbacks. First, they require high-precision real arithmetic relative to the size 
of the graph. Second, in the drawings produced by them, the ratio of the smallest 
distance to the largest distance between vertices are often so small that it is very 
difficult to view those drawings on a graphic screen. 

In view of these drawbacks, R.osenstiehl and Tarjan [20] posed the problem of 
computing a straight-line embedding on a grid of polynomial size. Fraysseix et. 
al. showed that  a straight-line embedding on a grid of size (2n -4 )  x ( n - 2 )  can be 
computed in O(n log n) time [6, 7], which was improved to O(n) in [4]. By using 
regular edge labeling, which he calls realizer, Schnyder proved the existence of 
an embedding on a smaller grid of size ( n - 2 )  • ( n -  2) and gave an elegant linear 
time embedding algorithm [21, 22, 23]. Schnyder's algorithm can be implemented 
in parallel in O(log n log log n) time with optimally many processors [9]. For this 
problem, without loss of generality, we can consider only plane triangulated 
graphs. Schnyder's algorithm is based on the following concept [21, 22]: 

De f in i t i on  2: Let G be a plane triangulated graph with three exterior ver- 
tices Vl, v2, v3 in clockwise order. A reahzer of G is a partition of interior edges 
into three sets T1, T2, T3 and an orientation of interior edges such that: 
1. For i = 1, 2, 3, all interior edges incident to vi are in Ti and entering vi. 
2. For each interior vertex u of G, the edges incident to u appear around u 
clockwise in the following pattern: 

* one edge in T1 leaves u; a set (maybe empty) of edges in T3 enters u; 
* one edge in T2 leaves u; a set (maybe empty) of edges in 7'1 enters u; 
* one edge in T3 leaves u; a set (maybe empty) of edges in T2 enters u. 

A plane triangulated graph G and a realizer of G is shown in Fig 2(1). It is 
shown in [23] that  every plane triangulated graph has a realizer, and for each 
i E {1, 2, 3}, Ti forms a tree rooted at vi consisting of all interior vertices and 
one exterior vertex vi. For each i E {1, 2, 3} and for each vertex u in Ti: 

- let Pi(u) be the tree path in Ti from u to the root vi of ~ ;  
- let p~(u) be the number of vertices in the path P~(u); 
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- for each interior vertex u, let ri(u) be the number of vertices (including the 
vertices on the boundary) in the triangular region bounded by the paths 
Pi-l(u), Pi+l(u), and the exterior edge (vi-1, vi+l). 

From a realizer of G, the values defined above can be computed in linear time. 
A straight-line grid embedding of G can be obtained by using the following: 

T h e o r e m  [23]: A straight-line embedding of G on a (n - 2) • (n - 2) grid is 
given by assigning each interior vertex u to the grid point ( r3(u)-p2(u) ,  rl(u) - 
p3(u)) and assigning vl, v2, v3 to (0, n - 2), (1, 0), (n - 2, 1), respectively. 

Fig 2 shows an example embedding obtained from this theorem. 

3 Rectangular Dual 

Let R be a rectangle. A rectangular subdivision system of R is a partition of 
R into a set �9 -- {R1, R2 , . . . ,  R~} of non-intersecting smaller rectangles such 
that  no four rectangles in ~5 meet at the same point. A rectangular dual of 
a graph G - (V, E) is a rectangular subdivision system ~ and a one-to-one 
mapping f : V --* �9 such that  two vertices u and v are adjacent in G iff their 
corresponding rectangles f(u) and f(v) share a common boundary. Fig 3(1) and 
3(2) show a graph G and a rectangular dual of G. If G has a rectangular dual, 
it is clear that  G must be planar and all its interior faces must be triangles. 

The rectangular dual finds applications in the floor planning of electronic 
chips and in architectural design [12]. The rectangular dual is related to the 
tessellation representation of plane graphs [26, 27], which maps the vertices, 
edges and faces of G to the rectangles of the plane such that  the incidence 
relations of G correspond to the geometric adjacencies between the rectangles. 

The problem of finding rectangular duals has been studied in [1, 2, 16, 17]. A 
linear time algorithm was given in [2]. This algorithm is complicated and requires 
real arithmetic for the coordinates of the rectangular dual. 

Consider a plane graph H -- (V, E). We seek a rectangular dual of H. To sim- 
plify the problem, we modify H as follows: Add four new vertices VN, Vw, vs, VE 
and connect each of them to a subpath on the exterior face of H. Then add four 
new edges (vN, vw), (vw, vs), (vs, WE), (wE, VN). Let G be the resulting graph 
(see Fig 3(1)). Clearly H has a rectangular dual iff G has a rectangular dual 
R with exactly four rectangles on the boundary of R. Without loss of general- 
ity, we will only discuss plane graphs with triangular interior faces and exactly 
four vertices on the exterior face. In [1, 2, 16], it was shown that  such a graph 
G has a rectangular dual iff G has no separating triangles. We will call these 
graphs proper triangulated plane (PTP) graphs. By using regular edge labeling, 
a simple linear time algorithm for constructing rectangular dual was found in 
[10, 15]. The coordinates of the rectangular dual constructed are integers and 
closely related to the structure of the graph. This algorithm can also be imple- 
mented on PRAM in O(log 2 n) time with O(n) processors [11]. It was shown in 
[15] that  this technique is related to the line-ordering of planar graphs, which is 
very useful in solving planar graph drawing problems [13]. 
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Fig. 3. A PTP graph G and a rectangular dual of G. 

D e f i n i t i o n  3: A regu lar  edge label ing (REL) of a P T P  graph G = (V, E) is a 
parti t ion of the interior edges of G into two subsets {T1, T2} and an orientation 
of the interior edges of G such that: 

1. For each interior vertex v, the edges incident to v appear in counterclockwise 
order around v as follows: a set of edges in T1 leaving v; a set of edges in T2 
entering v; a set of edges in T1 entering v; a set of edges in T2 leaving v. 

2. All interior edges incident to v g  are in T1 and enter v g .  All interior edges 
incident to v w  are in T2 and leave v w .  All interior edges incident to v s  are 
in T1 and leave v s .  All interior edges incident to vE  are in T2 and enter rE. 

Let G = (V, E)  be a P T P  graph and {T1, T2} be a REL of G. Let Cl  be the 
directed subgraph of G induced by TI and the four exterior edges directed as 
v s  ~ v w ;  v w  ~ VN; v s  --* r E ;  vE --* VN. Let G2 be the directed subgraph of G 
analogously defined for T2. We will call G1 the S - N  net and G2 the W - E  ne t  of 
G derived from the REL {T1, T2}. Fig 3(1) shows a P T P  graph G. An S-N net 
G~ and the corresponding W-E net G2 are shown in Figs 3(3) and 3(4). Both 
G1 and G2 are s-I planar graphs [10]. 
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Consider the S-N net G1 of a .  For each edge e of G1, let left(e) (right(e), 
resp.) denote the face of G1 on the left (right, rasp.) of e. Define the dual graph, 
denoted by G~, of G1 as follows. The node set of G~ is the set of the interior 
faces of G1 plus two exterior faces fw  and lB. For each edge e of G1, there is 
a corresponding arc e* in G~ directed from the face left(e) to the face right(e). 
Since G1 is an s-t planar graph, G~ is also an s-t planar graph. Namely G~ is 
a directed acyclic plane graph with fw  as the only source and fE as the only 
sink. The dual graph G~ of G2 is defined analogously. For each face f of G1, let 
F l ( f )  be the length of the longest path in G~ from fw  to f (with F l ( fw)  = 0). 
For each face g of G2, let F2(g) be the length of the longest path in G~ from f s  
to g (with F2(fs) = 0). The following linear time algorithm computes a k~ x k2 
rectangular dual of G [10, 15]. An example of this algorithm is shown in Fig 3. 

A lgo r i t hm 2" DUAL (Input: A PWP graph G = (V, E)) 
(1) Find a REL {T1, T~} of G. 
(2a) Construct the S-N net G1 derived from {T1, T~} and its dual graph G~. 
(25) Compute the function F~(f) for G~. Let kl = Fl(f~).  
(2c) For each vertex v E Y other than vs and vg, let f l  = left(v) and 
f2 = right(v) in G1. Let Xl(V) = Fl( f l )  and x2(v) = Fl(f2). Define xl(vg)  = 
xl(vs)  = 1 and X2(VN) : X 2 ( V s )  ~- k 1 - 1. 
(3a) Construct the W-E net G~ derived from {T~, T2} and its dual graph G;. 
(3b) Compute the function F2(g) for G;. Let ks = F~(fg). 
(3c) For each vertex v e V, let gl = below(v) and g2 = above(v) in G2. Let 
yl(v) = F2(gl) and y2(v) = F2(g2). 
(4) For each vertex v e V, assign v a rectangle R(v) bounded by z-coordinates 
x l(v), x2(v) and y-coordinates yl(v), y2(v). 

4 O p e n  P r o b l e m s  

For each problem discussed above, there is a corresponding optimization prob- 
lem, which is usually hard to solve. As we have seen, the algorithms that are 
based on regular edge labeling techniques closely relate the drawing of the graph 
to the combinatorial properties of the graph. It is hopeful that this technique 
might be useful in solving these optimization problems. 

For example, consider the visibility representation problem. We want to find 
a representation R of a given planar graph G such that the height h(R), or the 
width w(R), or the area h(R) x w(R) of R is minimized. This problem was first 
posed in [20]. To simplify the discussion, let us consider the simpler problem: 
Find a representation R with minimum height h(R). From Algorithm 1, it is 
easy to see the problem is equivalent to: 

P rob l em 1: Given a plane graph G = (V, E) and two vertices s, t on the 
exterior face of G, find an st-labeling of G such that the length of the longest 
path from s to t in the resulting directed graph G is minimized. 

To our knowledge, this problem is not known to be in P nor NP-complete. 
We can also consider the problem from a different angle. Let G be a plane 

graph and G* be its dual. Any st-orientation G of G induces an st-orientation 
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G* of G*. G* is an acyclic directed graph with s* as the only source and t* as 
the only think. We can assign each edge of G* a flow value such that  each edge of 
d* has at least one unit flow and the flow conservation requirement is satisfied. 
This results in an s* - t *  flow in G*. Under this correspondence, it is easy to 
show that  the length of the longest path from s to t in G is equal to the total 
flow from s* to t* in O*. The problem 1 then is equivalent to the following: 

P r o b l e m  1': Given an undirected plane graph G* and two vertices s* and 
t* on the exterior face, find an s* - t* flow in G* such that the following hold: 
(a) There is no circulation. (b) Each edge of G* has at least one unit flow. (c) 
The total flow value from s* to t* is minimized. 

Although this flow problem has a "natural looking", no polynomial time 
algorithm for it is known. The reason is that we are dealing with an undirected 
graph with lower bounds on edge capacity. The traditional techniques for solving 
flow problems do not work here. It is intersting to see if Problem 1 and Problem 
1' are in P or NP-complete .  If they are indeed NP-complete ,  it is also interesting 
to find approximation algorithms for solving them. 

For the rectangular dual problem, we can ask similar questions: How to find a 
rectangular dual R of a given graph G such that h(R), or w(R), or h(R)• w(R) is 
minimized? The practicM importance of these optimization problems is obvious. 
Their  combinatorial structure is very similar to that  of VR problem. The study 
of the properties of the regular edge labeling might be useful in either finding 
polynomial time algorithms or approximation algorithms for solving them. 

We have discussed three planar graph drawing problems. Although they ap- 
pear very different, it is interesting to note that the algorithms for solving them 
are remarkably similar: They all require to label the edge set of the input graph G 
such that  certain regular properties around each vertex of G are satisfied. Then 
the drawing problem is easily solved by using the properties of the resulting 
combinatorial structures. It is interesting to see if there are other regular edge 
labelings that  can be used to solve interesting planar graph drawing problems. 
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